Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.311
Filter
Add more filters

Publication year range
1.
Arch Biochem Biophys ; 760: 110121, 2024 10.
Article in English | MEDLINE | ID: mdl-39151873

ABSTRACT

We aimed to study the influence of preventing methemoglobin (metHb) formation, in the roles of peroxiredoxin 2 (Prx2), glutathione peroxidase (GPx) and catalase (CAT) on the erythrocyte antioxidant defense system. We performed in vitro assays using healthy erythrocytes, with and without inhibition of autoxidation of Hb (saturation with carbon monoxide), followed by H2O2-induced oxidative stress. We assessed the enzyme activities and amounts of CAT, GPx and Prx2 in the red blood cell (RBC) cytosol and membrane and several biomarkers of oxidative stress, such as the reduced and oxidized glutathione levels, thiobarbituric acid reactive substances (TBARS) levels, membrane bound hemoglobin and total antioxidant status. When autoxidation of Hb was inhibited, no significant changes were found for GPx and CAT; Prx2 was observed only in the monomeric form in the cytosol and none bound to the membrane. Blocking the function of Hb as a pseudo-peroxidase does not seem to have an impact on the function of the RBC peroxidases.


Subject(s)
Antioxidants , Catalase , Erythrocytes , Glutathione Peroxidase , Methemoglobin , Oxidative Stress , Peroxiredoxins , Humans , Methemoglobin/metabolism , Erythrocytes/metabolism , Peroxiredoxins/metabolism , Antioxidants/metabolism , Glutathione Peroxidase/metabolism , Catalase/metabolism , Hydrogen Peroxide/metabolism , Oxidation-Reduction , Cytosol/metabolism , Male , Adult
2.
J Surg Res ; 301: 248-258, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38970873

ABSTRACT

INTRODUCTION: Normothermic machine perfusion (NMP) of donor kidneys provides the opportunity to assess and improve organ viability prior to transplantation. This study explored the necessity of an oxygen carrier during NMP and whether the hemoglobin-based oxygen carrier (HBOC-201) is a suitable alternative to red blood cells (RBCs). METHODS: Porcine kidneys were perfused with a perfusion solution containing either no-oxygen carrier, RBCs, or HBOC-201 for 360 min at 37°C. RESULTS: Renal flow and resistance did not differ significantly between groups. NMP without an oxygen carrier showed lower oxygen consumption with higher lactate and aspartate aminotransferase levels, indicating that the use of an oxygen carrier is necessary for NMP. Cumulative urine production and creatinine clearance in the RBC group were significantly higher than in the HBOC-201 group. Oxygen consumption, injury markers, and histology did not differ significantly between these two groups. However, methemoglobin levels increased to 45% after 360 min in the HBOC-201 group. CONCLUSIONS: We conclude that HBOC-201 could be used as an alternative for RBCs, but accumulating methemoglobin levels during our perfusions indicated that HBOC-201 is probably less suitable for prolonged NMP. Perfusion with RBCs, compared to HBOC-201, resulted in more favorable renal function during NMP.


Subject(s)
Blood Substitutes , Erythrocytes , Hemoglobins , Kidney , Perfusion , Animals , Hemoglobins/analysis , Hemoglobins/administration & dosage , Kidney/blood supply , Blood Substitutes/pharmacology , Blood Substitutes/administration & dosage , Perfusion/methods , Erythrocytes/metabolism , Swine , Oxygen Consumption , Organ Preservation/methods , Oxygen/metabolism , Oxygen/administration & dosage , Oxygen/blood , Kidney Transplantation/methods , Methemoglobin/analysis , Methemoglobin/metabolism
3.
Molecules ; 29(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38931005

ABSTRACT

Nitroxides are stable radicals consisting of a nitroxyl group, >N-O•, which carries an unpaired electron. This group is responsible for the paramagnetic and antioxidant properties of these compounds. A recent study evaluated the effects of pyrrolidine and pyrroline derivatives of nitroxides on the antioxidant system of human red blood cells (RBCs). It showed that nitroxides caused an increase in the activity of superoxide dismutase (SOD) and the level of methemoglobin (MetHb) in cells (in pyrroline derivatives) but had no effect on the activity of catalase and lactate dehydrogenase. Nitroxides also reduced the concentration of ascorbic acid (AA) in cells but did not cause any oxidation of proteins or lipids. Interestingly, nitroxides initiated an increase in thiols in the plasma membranes and hemolysate. However, the study also revealed that nitroxides may have pro-oxidant properties. The drop in the AA concentration and the increase in the MetHb level and in SOD activity may indicate the pro-oxidant properties of nitroxides in red blood cells.


Subject(s)
Antioxidants , Erythrocytes , Nitrogen Oxides , Superoxide Dismutase , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Ascorbic Acid/pharmacology , Ascorbic Acid/chemistry , Erythrocytes/metabolism , Erythrocytes/drug effects , Methemoglobin/metabolism , Nitrogen Oxides/chemistry , Oxidation-Reduction/drug effects , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , Superoxide Dismutase/metabolism
4.
Dokl Biol Sci ; 516(1): 50-54, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38700814

ABSTRACT

The content of membrane-bound methemoglobin (MtHb) in nucleated erythrocytes was studied in the black scorpionfish Scorpaena porcus (Linnaeus, 1758) in vitro. Spectral characteristics were determined for a whole hemolysate, a hemolysate obtained by stroma precipitation (a clarified hemolysate), and a resuspended stroma. The MtHb proportion in the erythrocyte stroma was found to exceed 80% (6.20 ± 0.59 µM). Clarified hemolysates were nearly free of MtHb (0.5 ± 0.2 µM). Membrane-bound ferric hemoglobin did not affect the erythrocyte resistance to osmotic shock. The osmotic fragility range was determined using a LaSca-TM laser microparticle analyzer (BioMedSystems, Russia) to be 102-136 mOsm/kg, much the same as in other bony fish species. A nitrite load (10 mg/L) significantly increased the MtHb content in the blood. However, the membrane-bound ferric hemoglobin content did not change significantly, amounting to 6.34 ± 1.09 µM (approximately 95%). The finding suggested a functional importance for MtHb present in the plasma membrane of nucleated erythrocytes. Membrane-bound MtHb was assumed to neutralize the external oxidative load and the toxic effect of hydrogen sulfide in bottom water layers, where the species lives.


Subject(s)
Methemoglobin , Perciformes , Animals , Methemoglobin/metabolism , Perciformes/metabolism , Perciformes/blood , Hemoglobins/metabolism , Osmotic Fragility , Erythrocyte Membrane/metabolism , Erythrocyte Membrane/drug effects , Erythrocytes/metabolism , Erythrocytes/drug effects , Erythroblasts/metabolism , Fishes/metabolism , Fishes/blood
5.
Toxicol Appl Pharmacol ; 481: 116752, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37956930

ABSTRACT

Methemoglobin (metHb), the oxidized form of hemoglobin, lacks the ability of reversible oxygen binding; however, it has a high binding affinity to toxic substances such as cyanide, hydrosulfide, and azide. This innate property of metHb offers the clinical option to treat patients poisoned with these toxins, by oxidizing the endogenous hemoglobin in the red blood cells (RBCs). The binding properties of naked metHb (isolated from RBC) with these toxins has been studied; however, the binding behaviors of metHb under the intracellular conditions of RBC are unclear because of the difficulty in detecting metHb status changes in RBC. This study aimed to elucidate the binding properties of metHb in RBC under physiological and poisoned conditions using artificial RBC, which was hemoglobin encapsulated in a liposome. The mimic-circumstances of metHb in RBC (metHb-V) was prepared by oxidizing the hemoglobin in artificial RBC. Spectroscopic analysis indicated that the metHb in metHb-V exhibited a binding behavior different from that of naked metHb, depending on the toxic substance: When the pH decreased, (i) the cyanide binding affinity of metHb-V remained unchanged, but that of naked metHb decreased (ii) the hydrosulfide binding affinity was increased in metHb-V but was decreased in naked metHb. (iii) Azide binding was increased in metHb-V, which was similar to that in naked metHb, irrespective of the pH change. Thus, the binding behavior of intracellular metHb in the RBC with cyanide, hydrosulfide, and azide under physiological and pathological conditions were partly elucidated using the oxidized artificial RBC.


Subject(s)
Azides , Methemoglobin , Humans , Methemoglobin/analysis , Methemoglobin/chemistry , Methemoglobin/metabolism , Azides/analysis , Azides/metabolism , Cyanides/toxicity , Cyanides/analysis , Cyanides/metabolism , Erythrocytes/metabolism , Hemoglobins/analysis , Hemoglobins/metabolism
6.
Toxicol Appl Pharmacol ; 466: 116472, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36934860

ABSTRACT

Sodium nitrite (NaNO2) is a universal antidote for patients with cyanide poisoning. However, its use has serious drawbacks in terms of efficacy and safety. Herein, we present a promising antidote: methemoglobin (metHb)-albumin clusters. The metHb-albumin cluster is made by a metHb core wrapped by covalently bound human serum albumin. Spectral analyses proved that the metHb-albumin clusters possessed cyanide-binding properties similar to those of naked metHb. In vitro cell experiments showed that metHb-albumin clusters prevented the cyanide-induced inhibition of cytochrome c oxidase activity, resulting in a strong cytoprotective effect. In mice subjected to cyanide poisoning, metHb-albumin clusters reduced mortality and alleviated metabolic acidosis, while maintaining the activity of cytochrome c oxidase in organs; their efficacy was better than that of NaNO2. Furthermore, the oxygen carrying capacity was maintained in poisoned mice treated with metHb-albumin clusters and was low in those treated with NaNO2. These results indicate that metHb-albumin clusters could be a more effective and safer antidote against cyanide poisoning than NaNO2.


Subject(s)
Cyanides , Methemoglobin , Humans , Mice , Animals , Methemoglobin/analysis , Methemoglobin/chemistry , Methemoglobin/metabolism , Cyanides/metabolism , Antidotes/pharmacology , Electron Transport Complex IV/metabolism , Albumins/metabolism
7.
Toxicol Appl Pharmacol ; 450: 116159, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35803436

ABSTRACT

Hydrogen sulfide (H2S) induces acute and lethal toxicity at high concentrations. However, no specific antidotes for H2S poisoning have been approved. Liposomal methemoglobin (metHb@Lipo) was developed as an antidote for cyanide poisoning. As the toxic mechanism of H2S poisoning is the same as that of cyanide poisoning, metHb@Lipo could potentially be used as an antidote for H2S poisoning. In this study, we evaluated the antidotal efficacy of metHb@Lipo against H2S poisoning. Stopped-flow rapid-scan spectrophotometry clearly showed that metHb@Lipo scavenged H2S rapidly. Additionally, metHb@Lipo showed cytoprotective effects against H2S exposure in H9c2 cells by maintaining mitochondrial function. MetHb@Lipo treatment also improved the survival rate after H2S exposure in vivo, with the maintenance of cytochrome c oxidase activity and suppression of metabolic acidosis. Moreover, metHb@Lipo therapy maintained significant antidotal efficacy even after 1-year-storage at 4-37 °C. In conclusion, metHb@Lipo is a candidate antidote for H2S poisoning.


Subject(s)
Hydrogen Sulfide , Poisoning , Antidotes/pharmacology , Antidotes/therapeutic use , Cyanides , Humans , Hydrogen Sulfide/metabolism , Methemoglobin/metabolism , Methemoglobin/pharmacology , Poisoning/drug therapy
8.
Cell Mol Biol (Noisy-le-grand) ; 68(4): 1-11, 2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35988288

ABSTRACT

Red blood cells (RBCs) carry large cholesterol fractions and imbalance in them leads to several vascular complications. RBCs band 3 protein plays an important role in maintaining membrane integrity and there are many reports on cholesterol and band 3 protein interaction. Yet, RBCs band 3 protein role in regulating cholesterol homeostasis needs to be investigated. In this study, we induced cholesterol-depletion and band 3 inhibition in RBCs; both of which cause stress by decreasing band 3 channel activity with an increase in RBCs adhesion to endothelial cells (EC) by elevating band 3 phosphorylation (Tyr21), methemoglobin level and decreasing nitric oxide level. We hypothesized that nitric oxide (NO), a prominent determinant for RBC structural stability, would protect RBCs from stressors. To estimate this, we used three NO donors (SpNO, Sildenafil citrate and 8-Bromo-cGMP) and found that all 3 NO donors were able to recover, with 8-Bromo-cGMP being the most effective as it not only increased band 3 channel activity but also decreased RBC-EC adhesiveness and methemoglobin level in both stressors. Whereas NO donor's treatment did not display an ameliorative impact when both stresses were combined. Overall, these findings may shed light on the role of 8-bromo-cGMP in regulating RBC cholesterol homeostasis by maintaining band 3 function. Further studies in this direction might help identify targets for the therapeutic use of NO donors in the treatment of blood disorders.


Subject(s)
Nitric Oxide Donors , Nitric Oxide , Anion Exchange Protein 1, Erythrocyte/metabolism , Cholesterol , Cyclic GMP/analogs & derivatives , Endothelial Cells/metabolism , Erythrocytes/metabolism , Methemoglobin/metabolism , Nitric Oxide/metabolism , Nitric Oxide Donors/pharmacology
9.
Int J Mol Sci ; 24(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36613503

ABSTRACT

Dapsone (DDS) therapy can frequently lead to hematological side effects, such as methemoglobinemia and DNA damage. In this study, we aim to evaluate the protective effect of racemic alpha lipoic acid (ALA) and its enantiomers on methemoglobin induction. The pre- and post-treatment of erythrocytes with ALA, ALA isomers, or MB (methylene blue), and treatment with DDS-NOH (apsone hydroxylamine) was performed to assess the protective and inhibiting effect on methemoglobin (MetHb) formation. Methemoglobin percentage and DNA damage caused by dapsone and its metabolites were also determined by the comet assay. We also evaluated oxidative parameters such as SOD, GSH, TEAC (Trolox equivalent antioxidant capacity) and MDA (malondialdehyde). In pretreatment, ALA showed the best protector effect in 2.5 µg/mL of DDS-NOH. ALA (1000 µM) was able to inhibit the induced MetHb formation even at the highest concentrations of DDS-NOH. All ALA tested concentrations (100 and 1000 µM) were able to inhibit ROS and CAT activity, and induced increases in GSH production. ALA also showed an effect on DNA damage induced by DDS-NOH (2.5 µg/mL). Both isomers were able to inhibit MetHb formation and the S-ALA was able to elevate GSH levels by stimulating the production of this antioxidant. In post-treatment with the R-ALA, this enantiomer inhibited MetHb formation and increased GSH levels. The pretreatment with R-ALA or S-ALA prevented the increase in SOD and decrease in TEAC, while R-ALA decreased the levels of MDA; and this pretreatment with R-ALA or S-ALA showed the effect of ALA enantiomers on DNA damage. These data show that ALA can be used in future therapies in patients who use dapsone chronically, including leprosy patients.


Subject(s)
Methemoglobin , Thioctic Acid , Methemoglobin/metabolism , Antioxidants/pharmacology , Thioctic Acid/pharmacology , Dapsone/pharmacology , Superoxide Dismutase , DNA Damage
10.
Int J Mol Sci ; 23(19)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36232293

ABSTRACT

During their lifespan, red blood cells (RBCs) are exposed to a large number of stressors and are therefore considered as a suitable model to investigate cell response to oxidative stress (OS). This study was conducted to evaluate the potential beneficial effects of the natural antioxidant quercetin (Q) on an OS model represented by human RBCs treated with H2O2. Markers of OS, including % hemolysis, reactive oxygen species (ROS) production, thiobarbituric acid reactive substances (TBARS) levels, oxidation of protein sulfhydryl groups, CD47 and B3p expression, methemoglobin formation (% MetHb), as well as the anion exchange capability through Band 3 protein (B3p) have been analyzed in RBCs treated for 1 h with 20 mM H2O2 with or without pre-treatment for 1 h with 10 µM Q, or in RBCs pre-treated with 20 mM H2O2 and then exposed to 10 µM Q. The results show that pre-treatment with Q is more effective than post-treatment to counteract OS in RBCs. In particular, pre-exposure to Q avoided morphological alterations (formation of acanthocytes), prevented H2O2-induced OS damage, and restored the abnormal distribution of B3p and CD47 expression. Moreover, H2O2 exposure was associated with a decreased rate constant of SO42- uptake via B3p, as well as an increased MetHb formation. Both alterations have been attenuated by pre-treatment with 10 µM Q. These results contribute (1) to elucidate OS-related events in human RBCs, (2) propose Q as natural antioxidant to counteract OS-related alterations, and (3) identify B3p as a possible target for the treatment and prevention of OS-related disease conditions or aging-related complications impacting on RBCs physiology.


Subject(s)
Anion Exchange Protein 1, Erythrocyte , Antioxidants , Anion Exchange Protein 1, Erythrocyte/metabolism , Anion Exchange Protein 1, Erythrocyte/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , CD47 Antigen/metabolism , Erythrocytes/metabolism , Humans , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Methemoglobin/metabolism , Oxidative Stress , Quercetin/metabolism , Quercetin/pharmacology , Reactive Oxygen Species/metabolism , Thiobarbituric Acid Reactive Substances/metabolism
11.
Biophys J ; 120(17): 3807-3819, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34265263

ABSTRACT

Hemoglobin-mediated transport of dioxygen (O2) critically depends on the stability of the reduced (Fe2+) form of the heme cofactors. Some protein mutations stabilize the oxidized (Fe3+) state (methemoglobin, Hb M), causing methemoglobinemia, and can be lethal above 30%. The majority of the analyses of factors influencing Hb oxidation are retrospective and give insights only for inner-sphere mutations of heme (His58, His87). Herein, we report the first all-atom molecular dynamics simulations on both redox states and calculations of the Marcus electron transfer (ET) parameters for the α chain Hb oxidation and reduction rates for Hb M. The Hb wild-type (WT) and most of the studied α chain variants maintain globin structure except the Hb M Iwate (H87Y). The mutants forming Hb M tend to have lower redox potentials and thus stabilize the oxidized (Fe3+) state (in particular, the Hb Miyagi variant with K61E mutation). Solvent reorganization (λsolv 73-96%) makes major contributions to reorganization free energy, whereas protein reorganization (λprot) accounts for 27-30% except for the Miyagi and J-Buda variants (λprot ∼4%). Analysis of heme-solvent H-bonding interactions among variants provide insights into the role of Lys61 residue in stabilizing the Fe2+ state. Semiclassical Marcus ET theory-based calculations predict experimental kET for the Cyt b5-Hb complex and provide insights into relative reduction rates for Hb M in Hb variants. Thus, our methodology provides a rationale for the effect of mutations on the structure, stability, and Hb oxidation reduction rates and has potential for identification of mutations that result in methemoglobinemia.


Subject(s)
Electrons , Methemoglobin , Heme , Hemoglobins/genetics , Hemoglobins/metabolism , Methemoglobin/metabolism , Oxidation-Reduction , Retrospective Studies
12.
Gynecol Obstet Invest ; 86(1-2): 1-12, 2021.
Article in English | MEDLINE | ID: mdl-33395684

ABSTRACT

The aim of this review is to investigate the oxidant/antioxidant status and its regulatory mechanisms in patients with endometriosis and to summarize the antioxidant therapy as an alternative to hormonal therapy for endometriosis. Each keyword alone or in combination was used to search from PubMed and Embase by applying the filters of the title and the publication years between January 2000 and March 2020. Endometriosis is a chronic inflammatory disease characterized by repeated episodes of hemorrhage. Methemoglobin in repeated hemorrhage produces large amounts of superoxide anion via the autoxidation of hemoglobin. Excessive free-radical production causes redox imbalance, leading to inadequate antioxidant defenses and damage to endometrial cells, but may contribute to endometrial cell growth and survival through activation of various signaling pathways. In addition, to overcome excessive oxidative stress, estradiol participates in the induction of antioxidants such as superoxide dismutase in mitochondria. Several antioxidants that suppress free radicals may be effective in endometriosis-related pain. We searched for 23 compounds and natural substances that could reduce the pain caused by superoxide/reactive oxygen species in basic research and animal models. Next, we built a list of 16 drugs that were suggested to be effective against endometriosis other than hormone therapy in preclinical studies and clinical trials. Of the 23 and 16 drugs, 4 overlapping drugs could be potential candidates for clinically reducing endometriosis-related pain caused by superoxide anion/reactive oxygen species. These drugs include polyphenols (resveratrol and polydatin), dopamine agonists (cabergoline), and statins (simvastatin). However, no randomized controlled trials have evaluated the efficacy of these drugs. In conclusion, this review summarizes the following 2 points: superoxide anion generation by methemoglobin is enhanced in endometriosis, resulting in redox imbalance; and some compounds and natural substances that can suppress free radicals may be effective in endometriosis-related pain. Further randomized clinical trials based on larger series are mandatory to confirm the promising role of antioxidants in the nonhormonal management of endometriosis.


Subject(s)
Antioxidants/pharmacology , Cabergoline/pharmacology , Dopamine Agonists/pharmacology , Endometriosis/metabolism , Glucosides/pharmacology , Resveratrol/pharmacology , Simvastatin/pharmacology , Stilbenes/pharmacology , Animals , Female , Humans , Methemoglobin/metabolism , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species/metabolism , Signal Transduction , Superoxides/metabolism
13.
Int J Mol Sci ; 22(24)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34948445

ABSTRACT

Dinitrosyl iron complexes (DNICs) are a physiological form of nitric oxide (•NO) in an organism. They are able not only to deposit and transport •NO, but are also to act as antioxidant and antiradical agents. However, the mechanics of hemoglobin-bound DNICs (Hb-DNICs) protecting Hb against peroxynitrite-caused, mediated oxidative modification have not yet been scrutinized. Through EPR spectroscopy we show that Hb-DNICs are destroyed under the peroxynitrite action in a dose-dependent manner. At the same time, DNICs inhibit the oxidation of tryptophan and tyrosine residues and formation of carbonyl derivatives. They also prevent the formation of covalent crosslinks between Hb subunits and degradation of a heme group. These effects can arise from the oxoferryl heme form being reduced, and they can be connected with the ability of DNICs to directly intercept peroxynitrite and free radicals, which emerge due to its homolysis. These data show that DNICs may ensure protection from myocardial ischemia.


Subject(s)
Iron/chemistry , Methemoglobin/metabolism , Nitrogen Oxides/chemistry , Peroxynitrous Acid/adverse effects , Animals , Cattle , Electron Spin Resonance Spectroscopy , Humans , Methemoglobin/chemistry , Oxidation-Reduction , Tryptophan/chemistry , Tyrosine/chemistry
14.
Biochemistry ; 59(42): 4093-4107, 2020 10 27.
Article in English | MEDLINE | ID: mdl-32945658

ABSTRACT

Heme dissociations disrupt function and structural integrity of human hemoglobin and trigger various cardiovascular complications. These events become significant in methemoglobins that have undergone autoxidation of ferrous into ferric heme. We have structurally characterized the heme disassociation pathways for adult tetrameric methemoglobins using all-atom molecular dynamics simulations. These reveal that bis-histidine hemichromes, characterized here by the coordination of heme iron to both the F8 (proximal) and E7 (distal) histidines, are seen as intermediates following dissociation of the water molecule distally bound to each heme iron. Later, the breaking of coordination between heme iron and proximal histidine disrupts the F helix and pushes it away from the heme cavity, enabling both bulk solvent penetration and disruption of tetramer interface interactions. The interactions inhibiting heme dissociation were then seen to be (i) either a direct or a water-molecule-mediated interaction between distal histidine and heme iron and (ii) stacking between heme and the αCE1/ßCD1 phenylalanine residue. These interactions are less important in the ß than in α subunits due to a more flexible ß subunit CE loop region. The absence of a distal histidine interaction in the H(E7)L mutant and increased heme cavity volume in the V(E11)A mutant both promoted heme escape from the protein interior. Adult and fetal hemoglobins were seen to share a general heme disassociation pathway and intermediates due to the conservation of key heme pocket residues. The intermediates seen here are analyzed in light of experimental studies of heme dissociation and pathways of certain hemoglobinopathies.


Subject(s)
Methemoglobin/chemistry , Methemoglobin/metabolism , Heme/chemistry , Heme/metabolism , Hemeproteins/chemistry , Hemeproteins/metabolism , Humans , Molecular Dynamics Simulation , Mutation , Protein Conformation
15.
Haemophilia ; 26(4): e187-e193, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32530133

ABSTRACT

INTRODUCTION AND AIM: Haemarthroses cause major morbidity in haemophilia resulting in chronic haemophilic synovitis (CHS) and arthropathy. Oxidation of haemoglobin-coupled iron released in synovium after haemolysis induces chondrocytes death and cartilage damage, allowing postulate using iron-chelating drugs as potential therapeutic tool for haemophilic joint damage. Considering that albumin, the most abundant plasma protein, is a physiologic iron chelator, we aim to demonstrate that impediment of haemoglobin oxidation is exerted by plasma as a mechanism involved in the therapeutic effect of intra-articular injection of platelet-rich plasma in CHS. METHODS: Oxidation of haemoglobin (Hb) to methaemoglobin (MeHb) through Fenton reaction was induced in vitro by addition of potassium ferricyanide in the presence or absence of peripheral blood-derived platelets-rich or platelets-poor plasma (PRP/PPP) or albumin. The relevance of in vitro findings was analysed in synovial fluid (SF) samples from one patient with CHS obtained before and after 6 months of PRP intra-articular injection. RESULTS: MeHb formation was completely impaired either by of PPP, PRP or albumin indicating that PRP exerts an anti-oxidative effect, probably due by plasma albumin. Analysis of SF samples revealed the presence of MeHb levels and haemosiderin-laden macrophages in SF obtained before PRP treatment. Reduction of synovial MeHb, normalization of cellular composition and improvement of health joint haemophilic score, pain and bleeding episodes were registered after 6 months of PRP intra-articular injection. CONCLUSION: Inhibition of Fenton reaction and the consequent normalization of joint cellular composition is a noncanonical mechanism underlying the therapeutic effect of PRP intra-articular injection in CHS.


Subject(s)
Cartilage, Articular/physiopathology , Hemarthrosis/prevention & control , Hemophilia A/complications , Platelet-Rich Plasma/metabolism , Synovitis/therapy , Adolescent , Albumins/pharmacology , Argentina/epidemiology , Cartilage, Articular/metabolism , Hemarthrosis/complications , Humans , Injections, Intra-Articular , Iron Chelating Agents/therapeutic use , Male , Methemoglobin/drug effects , Methemoglobin/metabolism , Platelet-Rich Plasma/chemistry , Synovial Membrane/metabolism , Synovial Membrane/pathology
16.
Transfus Med ; 30(3): 231-239, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32017306

ABSTRACT

BACKGROUND: Therapeutic whole blood exchange (TWBE) has been used as an alternative when methylene blue (MB) fails in severe methaemoglobinemia. However, there are limited data on the efficacy and safety of TWBE. OBJECTIVES: Our aim was to report our institutional experience with TWBE. We also perform a systematic review of published literature. METHODS: We retrospectively reviewed our respiratory intensive care unit database to identify cases of methaemoglobinemia managed with TWBE. A systematic review of the PubMed database was performed to identify similar cases (≥12 years). We report the indications, utility, and safety of therapeutic exchange in methaemoglobinemia. The procedural details were also noted. RESULTS: We identified five subjects who received TWBE for methaemoglobinemia (median methaemoglobin level 39%; range 19.6-42.4%). TWBE was successful in all five cases and no adverse events were encountered. Our review identified 27 additional subjects. The median methaemoglobin level was 37.5% (range 3.7-81%). The most common indication (n = 24, 75%) for therapeutic exchange was a lack of response to MB. A majority of the subjects (n = 26/32, 81.2%) survived. No procedure-related complications were reported. CONCLUSION: TWBE is a safe and effective salvage modality for adults with methaemoglobinemia, when MB is either contraindicated or ineffective. Future studies should standardise therapeutic exchange in the management of methaemoglobinemia.


Subject(s)
Exchange Transfusion, Whole Blood , Methemoglobinemia/therapy , Adolescent , Adult , Child , Female , Humans , Male , Methemoglobin/metabolism , Methemoglobinemia/blood , Methylene Blue/therapeutic use , Middle Aged , Retrospective Studies
17.
Int J Mol Sci ; 21(13)2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32646002

ABSTRACT

In red blood cells, hemoglobin iron represents the most plausible candidate to catalyze artemisinin activation but the limited reactivity of iron bound to hemoglobin does not play in favor for its direct involvement. Denatured hemoglobin appears a more likely candidate for artemisinin redox activation because it is expected to contain reactive iron and it has been described to release free heme and/or iron in erythrocyte. The aim of our study is to investigate, using three different methods: fluorescence, electron paramagnetic resonance and liquid chromatography coupled to mass spectrometry, how increasing the level of accessible iron into the red blood cells can enhance the reactive oxygen species (ROS) production derived from artemisinin. The over-increase of iron was achieved using phenylhydrazine, a strong oxidant that causes oxidative stress within erythrocytes, resulting in oxidation of oxyhemoglobin and leading to the formation of methemoglobin, which is subsequently converted into irreversible hemichromes (iron (III) compounds). Our findings confirmed, using the iron III chelator, desferrioxamine, the indirect participation of iron (III) compounds in the activation process of artemisinins. Furthermore, in strong reducing conditions, the activation of artemisinin and the consequent production of ROS was enhanced. In conclusion, we demonstrate, through the measurement of intra-erythrocytic superoxide and hydrogen peroxide production using various methods, that artemisinin activation can be drastically enhanced by pre-oxidation of erythrocytes.


Subject(s)
Artemisinins/therapeutic use , Erythrocytes/drug effects , Oxidation-Reduction/drug effects , Reactive Oxygen Species/metabolism , Deferoxamine/therapeutic use , Erythrocytes/metabolism , Female , Heme/metabolism , Hemoglobins/metabolism , Humans , Hydrogen Peroxide/metabolism , Iron/metabolism , Male , Methemoglobin/metabolism , Middle Aged , Oxidants/metabolism , Oxidative Stress/drug effects , Oxyhemoglobins/metabolism , Superoxides/metabolism
18.
Biochemistry ; 58(10): 1400-1410, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30789715

ABSTRACT

Oxyhemoglobin (HbO2) coexisting with equimolar NADH retards autoxidation and oxidant-induced metHb formation based on the pseudocatalase (CAT) and pseudosuperoxide dismutase (SOD) activities. In this work, we compared the effects of NADH with those of NADPH and estimated the binding site of NAD(P)H to HbO2 to elucidate the antioxidative mechanisms. The results clarified that pseudo-CAT and pseudo-SOD activities of HbO2 coexisting with NADPH were similar to activities obtained with NADH. Prompt MetHb formation (<40 min) facilitated by oxidants (H2O2, NO, and NaNO2) was hindered by NADPH. These effects were similar to those of NADH. However, we found that NADPH is thermally unstable compared to NADH and that NADPH cannot sustain antioxidative effects for a long period of autoxidation to metHb such as 24 h. Lineweaver-Burk plots clarified that the Michaelis constants of these pseudoenzymatic activities are in the millimolar range. Addition of inositol hexaphosphate (IHP) and 2,3-diphosphoglycerate (DPG), which are known to bind not only with deoxyHb but also weakly with HbO2, showed competitive inhibition of pseudoenzymatic activities. These results suggest that the binding site of NADH and NADPH on HbO2 is the same as those of IHP and DPG. 31P nuclear magnetic resonance definitively showed 1:1 stoichiometric binding of NADH to HbO2. High-performance liquid chromatography analysis showed that NADH preferentially inhibited autoxidation of α-subunit heme. Docking simulations also predicted that the binding site of relaxed-state HbO2 with NAD(P)H is the same as those with IHP and DPG. Collectively, the pseudoenzymatic activities of HbO2 coexisting with NAD(P)H are induced by the 1:1 stoichiometric binding of NAD(P)H to HbO2.


Subject(s)
Methemoglobin/biosynthesis , NADP/metabolism , Oxyhemoglobins/metabolism , Antioxidants/metabolism , Binding Sites/genetics , Catalase/metabolism , Hemoglobins , Hydrogen Peroxide , Methemoglobin/metabolism , NAD/metabolism , Oxidants , Oxidation-Reduction , Superoxide Dismutase/metabolism
19.
J Cell Biochem ; 120(1): 305-320, 2019 01.
Article in English | MEDLINE | ID: mdl-30218451

ABSTRACT

AIM: Nitric oxide (NO) prevents the decline of RBC deformability under high altitude and other ischemic and hypoxic conditions, but the clear mechanisms remain unknown. Here, we have carried out a systematic study to find the mechanisms of NO-induced regulation of RBC deformability under hypoxia. METHODS: NO levels, RBCs membrane elongation index (EI), membrane protein band 3 methemoglobin (MetHb) were determined during hypoxia (0 to 120 minutes). To validate the role of NO in regulating RBC deformability, tests were also performed with a NO donor (sodium nitroprusside) or a NO synthase inhibitor (l-nitro-arginine methylester) under 60 minutes hypoxia. RESULTS: Hypoxia for 45 minutes increased NO levels from 25.65 ± 1.95 to 35.26 ± 2.01 µmol/L, and there was a plateau after 60 minutes hypoxia. The EI did not change before 45 minutes hypoxia, but decreased from 0.567 ± 0.019 to 0.409 ± 0.042 (30 Pa) after 60 minutes hypoxia. The cross-linking of band 3 and phosphotyrosine increased after 45 minutes hypoxia. All can be alleviated by supplement NO and aggregated by inhibiting NOS. However, the MetHb was not present this trend. CONCLUSION: NO may prevent decreased of RBCs deformability through reducing the cross-linking of membrane band 3 under hypoxia; this helps microvascular perfusion of RBCs during ischemic and hypoxic disease states.


Subject(s)
Anion Exchange Protein 1, Erythrocyte/metabolism , Cell Hypoxia , Erythrocyte Deformability/physiology , Erythrocytes/physiology , Nitric Oxide/metabolism , Adult , Enzyme Inhibitors/pharmacology , Healthy Volunteers , Humans , Lipid Peroxidation , Membrane Lipids/metabolism , Methemoglobin/metabolism , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide Donors/pharmacology , Nitroprusside/pharmacology , Phosphotyrosine/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Syk Kinase/metabolism
20.
Transfusion ; 59(1): 359-370, 2019 01.
Article in English | MEDLINE | ID: mdl-30444016

ABSTRACT

BACKGROUND: Hemoglobin-based oxygen carriers (HBOCs) are potential alternatives to red blood cells in transfusions. Clinical trials using early versions of HBOCs noted adverse effects that appeared to result from removal of the vasodilator nitric oxide (NO). Previous reports suggest that size-enlarged HBOCs may avoid NO-rich regions along the vasculature and therefore not cause vasoconstriction and hypertension. STUDY DESIGN AND METHODS: Hemoglobin (Hb) bis-tetramers (bis-tetramers of hemoglobin that are prepared using CuAAC chemistry [BT-Hb] and bis-tetramers of hemoglobin that are specifically acetylated and prepared using CuAAC chemistry [BT-acHb]) can be reliably produced by a bio-orthogonal cyclo-addition approach. We considered that an HBOC derived from chemical coupling of two Hbs would be sufficiently large to avoid NO scavenging and related side effects. The ability of intravenously infused BT-Hb and BT-acHb to remain in the circulation without causing hypertension were determined in wild-type (WT) and diabetic (db/db) mouse models. RESULTS: In WT mice, the coupled oxygen-carrying proteins retained their function over several hours after administration. No significant changes in systolic blood pressure from baseline were observed after intravenous infusion of BT-Hb or BT-acHb in awake WT and db/db mice. In contrast, infusion of native Hb or cross-linked Hb tetramers in both animal models induced systemic hypertension. CONCLUSION: The results of this study indicate that bis-tetrameric HBOCs derived from the bio-orthogonal cyclo-addition process are likely to overcome clinical issues that arise from NO scavenging by Hb derivatives.


Subject(s)
Hemoglobins/metabolism , Vasoconstriction , Animals , Blood Pressure/physiology , Heart Rate/physiology , Humans , Hypertension/metabolism , Male , Methemoglobin/metabolism , Mice , Mice, Inbred C57BL , Nitric Oxide/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL