Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Biol Chem ; 295(25): 8442-8448, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32345611

ABSTRACT

Bioactive gibberellins (GAs) are central regulators of plant growth and development, including seed development. GA homeostasis is achieved via complex biosynthetic and catabolic pathways, whose exact activities remain to be elucidated. Here, we isolated two cDNAs from mature or imbibed cucumber seeds with high sequence similarity to known GA 3-oxidases. We found that one enzyme (designated here CsGA3ox5) has GA 3-oxidation activity. However, the second enzyme (designated CsGA1ox/ds) performed multiple reactions, including 1ß-oxidation and 9,11-desaturation of GAs, but was lacking the 3-oxidation activity. CsGA1ox/ds overexpression in Arabidopsis plants resulted in severely dwarfed plants that could be rescued by the exogenous application of bioactive GA4, confirming that CsGA1ox/ds catabolizes GAs. Substitution of three amino acids in CsGA1ox/ds, Phe93, Pro106, and Ser202, with those typically conserved among GA 3-oxidases, Tyr93, Met106, and Thr202, respectively, conferred GA 3-oxidase activity to CsGA1ox/ds and thereby augmented its potential to form bioactive GAs in addition to catabolic products. Accordingly, overexpression of this amino acid-modified GA1ox/ds variant in Arabidopsis accelerated plant growth and development, indicating that this enzyme variant can produce bioactive GAs in planta Furthermore, a genetically modified GA3ox5 variant in which these three canonical GA 3-oxidase amino acids were changed to the ones present in CsGA1ox/ds was unable to convert GA9 to GA4, highlighting the importance of these three conserved amino acids for GA 3-oxidase activity.


Subject(s)
Mixed Function Oxygenases/metabolism , Plant Proteins/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , Cucumis sativus/metabolism , Gibberellins/metabolism , Mixed Function Oxygenases/classification , Mixed Function Oxygenases/genetics , Mutagenesis , Phenotype , Phylogeny , Plant Proteins/classification , Plant Proteins/genetics , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/metabolism
2.
Arch Biochem Biophys ; 698: 108732, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33358998

ABSTRACT

The ubiquitous flavoenzymes commonly catalyze redox chemistry such as the monooxygenation of organic substrates and are both widely utilized in nature (e.g., in primary and secondary metabolism) and of significant industrial interest. In this work, we highlight the structural and mechanistic characteristics of the distinct types of flavoprotein monooxygenases (FPMOs). We thereby illustrate the chemical basis of FPMO catalysis, which enables reactions such as (aromatic) hydroxylation, epoxidation, (de)halogenation, heteroatom oxygenation, Baeyer-Villiger oxidation, α-hydroxylation of ketones, or non-oxidative carbon-hetero bond cleavage. This seemingly unmatched versatility in oxygenation chemistry results from extensive fine-tuning and regiospecific functionalization of the flavin cofactor that is tightly controlled by the surrounding protein matrix. Accordingly, FPMOs steer the formation of covalent flavin-oxygen adducts for oxygen transfer in the form of the classical flavin-C4a-(hydro)peroxide or the recently discovered N5-functionalized flavins (i.e. the flavin-N5-oxide and the flavin-N5-peroxide), while in rare cases covalent oxygen adduct formation may be foregone entirely. Finally, we speculate about hitherto undiscovered flavin-mediated oxygenation reactions and compare FPMOs to cytochrome P450 monooxygenases, before addressing open questions and challenges for the future investigation of FPMOs.


Subject(s)
Flavoproteins/chemistry , Mixed Function Oxygenases/chemistry , Bacteria/enzymology , Bacterial Proteins/chemistry , Biocatalysis , Cytochrome P-450 Enzyme System/chemistry , Flavin Mononucleotide/chemistry , Flavin-Adenine Dinucleotide/chemistry , Mixed Function Oxygenases/classification , Models, Chemical , Oxygen/chemistry
3.
Chembiochem ; 21(7): 971-977, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31608538

ABSTRACT

Baeyer-Villiger monooxygenases (BVMOs) are remarkable biocatalysts, but, due to their low stability, their application in industry is hampered. Thus, there is a high demand to expand on the diversity and increase the stability of this class of enzyme. Starting from a known thermostable BVMO sequence from Thermocrispum municipale (TmCHMO), a novel BVMO from Amycolaptosis thermoflava (BVMOFlava ), which was successfully expressed in Escherichia coli BL21(DE3), was identified. The activity and stability of the purified enzyme was investigated and the substrate profile for structurally different cyclohexanones and cyclobutanones was assigned. The enzyme showed a lower activity than that of cyclohexanone monooxygenase (CHMOAcineto ) from Acinetobacter sp., as the prototype BVMO, but indicated higher kinetic stability by showing a twofold longer half-life at 30 °C. The thermodynamic stability, as represented by the melting temperature, resulted in a Tm value of 53.1 °C for BVMOFlava , which was comparable to the Tm of TmCHMO (ΔTm =1 °C) and significantly higher than the Tm value for CHMOAcineto ((ΔTm =14.6 °C)). A strong deviation between the thermodynamic and kinetic stabilities of BVMOFlava was observed; this might have a major impact on future enzyme discovery for BVMOs and their synthetic applications.


Subject(s)
Bacterial Proteins/metabolism , Mixed Function Oxygenases/metabolism , Actinobacteria/enzymology , Amycolatopsis/enzymology , Bacterial Proteins/classification , Bacterial Proteins/genetics , Biocatalysis , Enzyme Stability , Escherichia coli/metabolism , Half-Life , Hydrogen-Ion Concentration , Kinetics , Mixed Function Oxygenases/classification , Mixed Function Oxygenases/genetics , Phylogeny , Protein Engineering , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Substrate Specificity , Thermodynamics
4.
Appl Environ Microbiol ; 84(14)2018 07 15.
Article in English | MEDLINE | ID: mdl-29752270

ABSTRACT

Two Baeyer-Villiger monooxygenases (BVMOs), designated BoBVMO and AmBVMO, were discovered from Bradyrhizobium oligotrophicum and Aeromicrobium marinum, respectively. Both monooxygenases displayed novel features for catalyzing the asymmetric sulfoxidation of bulky and pharmaceutically relevant thioethers. Evolutionary relationship and sequence analysis revealed that the two BVMOs belong to the family of typical type I BVMOs and the subtype ethionamide monooxygenase. Both BVMOs are active toward medium- and long-chain aliphatic ketones as well as various thioether substrates but are ineffective toward cyclohexanone, aromatic ketones, and other typical BVMO substrates. BoBVMO and AmBVMO showed the highest activities (0.117 and 0.025 U/mg protein, respectively) toward thioanisole among the tested substrates. Furthermore, these BVMOs exhibited distinct activity and excellent stereoselectivity toward bulky and prochiral prazole thioethers, which is a unique feature of this family of BVMOs. No native enzyme has been reported for the asymmetric sulfoxidation of bulky prazole thioethers into chiral sulfoxides. The identification of BoBVMO and AmBVMO provides an important scaffold for discovering enzymes capable of asymmetrically oxidizing bulky thioether substrates by genome mining.IMPORTANCE Baeyer-Villiger monooxygenases (BVMOs) are valuable enzyme catalysts that are an alternative to the chemical Baeyer-Villiger oxidation reaction. Although BVMOs display broad substrate ranges, no native enzymes were reported to have activity toward the asymmetric oxidation of bulky prazole-like thioether substrates. Herein, we report the discovery of two type I BVMOs from Bradyrhizobium oligotrophicum (BoBVMO) and Aeromicrobium marinum (AmBVMO) which are able to catalyze the asymmetric sulfoxidation of bulky prazole thioethers (proton pump inhibitors [PPIs], a group of drugs whose main action is a pronounced and long-lasting reduction of gastric acid production). Efficient catalysis of omeprazole oxidation by BoBVMO was developed, indicating that this enzyme is a promising biocatalyst for the synthesis of bulky and pharmaceutically relevant chiral sulfoxide drugs. These results demonstrate that the newly identified enzymes are suitable templates for the discovery of more and better thioether-converting BVMOs.


Subject(s)
Actinomycetales/enzymology , Bradyrhizobium/enzymology , Mixed Function Oxygenases/metabolism , Sulfides/metabolism , Sulfoxides/metabolism , Amino Acid Sequence , Biocatalysis , Cloning, Molecular , Cyclohexanones/metabolism , Gene Expression Regulation, Bacterial , Ketones/metabolism , Kinetics , Mixed Function Oxygenases/classification , Mixed Function Oxygenases/isolation & purification , Oxidation-Reduction , Phylogeny , Sequence Alignment , Sequence Analysis, Protein , Substrate Specificity
5.
Proc Natl Acad Sci U S A ; 110(36): 14807-12, 2013 Sep 03.
Article in English | MEDLINE | ID: mdl-23959884

ABSTRACT

The plant hormone salicylic acid (SA) plays critical roles in plant defense, stress responses, and senescence. Although SA biosynthesis is well understood, the pathways by which SA is catabolized remain elusive. Here we report the identification and characterization of an SA 3-hydroxylase (S3H) involved in SA catabolism during leaf senescence. S3H is associated with senescence and is inducible by SA and is thus a key part of a negative feedback regulation system of SA levels during senescence. The enzyme converts SA (with a Km of 58.29 µM) to both 2,3-dihydroxybenzoic acid (2,3-DHBA) and 2,5-DHBA in vitro but only 2,3-DHBA in vivo. The s3h knockout mutants fail to produce 2,3-DHBA sugar conjugates, accumulate very high levels of SA and its sugar conjugates, and exhibit a precocious senescence phenotype. Conversely, the gain-of-function lines contain high levels of 2,3-DHBA sugar conjugates and extremely low levels of SA and its sugar conjugates and display a significantly extended leaf longevity. This research reveals an elegant SA catabolic mechanism by which plants regulate SA levels by converting it to 2,3-DHBA to prevent SA overaccumulation. The research also provides strong molecular genetic evidence for an important role of SA in regulating the onset and rate of leaf senescence.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Mixed Function Oxygenases/genetics , Plant Leaves/genetics , Salicylic Acid/metabolism , Amino Acid Sequence , Arabidopsis/physiology , Arabidopsis Proteins/classification , Arabidopsis Proteins/metabolism , Biocatalysis , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Plant/drug effects , Gentisates/chemistry , Gentisates/metabolism , Hydroxybenzoates/chemistry , Hydroxybenzoates/metabolism , Kinetics , Mass Spectrometry , Mixed Function Oxygenases/classification , Mixed Function Oxygenases/metabolism , Molecular Sequence Data , Molecular Structure , Mutation , Phylogeny , Plant Leaves/chemistry , Plant Leaves/physiology , Plants, Genetically Modified , RNA, Messenger/genetics , RNA, Messenger/metabolism , Salicylic Acid/pharmacology , Sequence Homology, Amino Acid
6.
BMC Genomics ; 16: 368, 2015 May 09.
Article in English | MEDLINE | ID: mdl-25956378

ABSTRACT

BACKGROUND: Lytic polysaccharide monooxygenases are important enzymes for the decomposition of recalcitrant biological macromolecules such as plant cell wall and chitin polymers. These enzymes were originally designated glycoside hydrolase family 61 and carbohydrate-binding module family 33 but are now classified as auxiliary activities 9, 10 and 11 in the CAZy database. To obtain a systematic analysis of the divergent families of lytic polysaccharide monooxygenases we used Peptide Pattern Recognition to divide 5396 protein sequences resembling enzymes from families AA9 (1828 proteins), AA10 (2799 proteins) and AA11 (769 proteins) into subfamilies. RESULTS: The results showed that the lytic polysaccharide monooxygenases have two conserved regions identified by conserved peptides specific for each AA family. The peptides were used for in silico PCR discovery of the lytic polysaccharide monooxygenases in 79 fungal and 95 bacterial genomes. The bacterial genomes encoded 0-7 AA10s (average 0.6). No AA9 or AA11 were found in the bacteria. The fungal genomes encoded 0-40 AA9s (average 7) and 0-15 AA11s (average 2) and two of the fungi possessed a gene encoding a putative AA10. The AA9s were mainly found in plant cell wall-degrading asco- and basidiomycetes in agreement with the described role of AA9 enzymes. In contrast, the AA11 proteins were found in 36 of the 39 ascomycetes and in only two of the 32 basidiomycetes and their abundance did not correlate to the degradation of cellulose and hemicellulose. CONCLUSIONS: These results provides an overview of the sequence characteristics and occurrence of the divergent AA9, AA10 and AA11 families and pave the way for systematic investigations of the of lytic polysaccharide monooxygenases and for structure-function studies of these enzymes.


Subject(s)
Bacteria/metabolism , Computational Biology , Fungi/metabolism , Mixed Function Oxygenases/classification , Mixed Function Oxygenases/metabolism , Polysaccharides/metabolism , Animals , Bacteria/cytology , Cellulose/metabolism , Cluster Analysis , Conserved Sequence , Fungi/cytology , Mixed Function Oxygenases/chemistry , Models, Molecular , Protein Conformation
7.
BMC Genomics ; 15: 69, 2014 Jan 25.
Article in English | MEDLINE | ID: mdl-24460898

ABSTRACT

BACKGROUND: Paclitaxel (Taxol™) is an important anticancer drug with a unique mode of action. The biosynthesis of paclitaxel had been considered restricted to the Taxus species until it was discovered in Taxomyces andreanae, an endophytic fungus of T. brevifolia. Subsequently, paclitaxel was found in hazel (Corylus avellana L.) and in several other endophytic fungi. The distribution of paclitaxel in plants and endophytic fungi and the reported sequence homology of key genes in paclitaxel biosynthesis between plant and fungi species raises the question about whether the origin of this pathway in these two physically associated groups could have been facilitated by horizontal gene transfer. RESULTS: The ability of the endophytic fungus of hazel Penicillium aurantiogriseum NRRL 62431 to independently synthesize paclitaxel was established by liquid chromatography-mass spectrometry and proton nuclear magnetic resonance. The genome of Penicillium aurantiogriseum NRRL 62431 was sequenced and gene candidates that may be involved in paclitaxel biosynthesis were identified by comparison with the 13 known paclitaxel biosynthetic genes in Taxus. We found that paclitaxel biosynthetic gene candidates in P. aurantiogriseum NRRL 62431 have evolved independently and that horizontal gene transfer between this endophytic fungus and its plant host is unlikely. CONCLUSIONS: Our findings shed new light on how paclitaxel-producing endophytic fungi synthesize paclitaxel, and will facilitate metabolic engineering for the industrial production of paclitaxel from fungi.


Subject(s)
Genome, Fungal , Paclitaxel/biosynthesis , Penicillium/genetics , Acyltransferases/classification , Acyltransferases/genetics , Acyltransferases/metabolism , Base Sequence , Chromatography, High Pressure Liquid , Farnesyltranstransferase/classification , Farnesyltranstransferase/genetics , Farnesyltranstransferase/metabolism , Fungal Proteins/classification , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungi/genetics , Gene Transfer, Horizontal , Mass Spectrometry , Mixed Function Oxygenases/classification , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Molecular Sequence Data , Paclitaxel/analysis , Penicillium/classification , Phylogeny , Sequence Analysis, RNA
8.
Plant Mol Biol ; 85(4-5): 459-71, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24803411

ABSTRACT

Proline hydroxylation is a major posttranslational modification of hydroxyproline-rich glycoproteins (HRGPs) that is catalyzed by prolyl 4-hydroxylases (P4Hs). HRGPs such as arabinogalactan proteins (AGPs) and extensios play significant roles on cell wall structure and function and their implication in cell division and expansion has been reported. We used tobacco rattle virus (TRV)-based virus induced gene silencing to investigate the role of three tomato P4Hs, out of ten present in the tomato genome, in growth and development. Eight-days old tomato seedlings were infected with the appropriate TRV vectors and plants were allowed to grow under standard conditions for 6 weeks. Lower P4H mRNA levels were associated with lower hydroxyproline content in root and shoot tissues indicating successful gene silencing. P4H-silenced plants had longer roots and shoots and larger leaves. The increased leaf area can be attributed to increased cell division as indicated by the higher leaf epidermal cell number in SlP4H1- and SlP4H9-silenced plants. In contrast, SlP4H7-silenced plants had larger leaves due to enhanced cell expansion. Western blot analysis revealed that silencing of SlP4H7 and SlP4H9 was associated with reduced levels of JIM8-bound AGP and JIM11-bound extensin epitopes, while silencing of SlP4H1 reduced only the levels of AGP proteins. Collectively these results show that P4Hs have significant and distinct roles in cell division and expansion of tomato leaves.


Subject(s)
Gene Expression Regulation, Plant/physiology , Gene Silencing , Mixed Function Oxygenases/classification , Mixed Function Oxygenases/metabolism , Plant Proteins/metabolism , Solanum lycopersicum/enzymology , Amino Acid Sequence , Gene Expression Regulation, Enzymologic/physiology , Genetic Vectors , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Solanum lycopersicum/virology , Mixed Function Oxygenases/genetics , Molecular Sequence Data , Plant Leaves/ultrastructure , Plant Proteins/genetics , Protein Subunits , RNA Viruses/physiology
9.
Biochim Biophys Acta ; 1824(3): 433-42, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22207056

ABSTRACT

The genome of Rhodococcus jostii RHA1 contains an unusually large number of oxygenase encoding genes. Many of these genes have yet an unknown function, implying that a notable part of the biochemical and catabolic biodiversity of this Gram-positive soil actinomycete is still elusive. Here we present a multiple sequence alignment and phylogenetic analysis of putative R. jostii RHA1 flavoprotein hydroxylases. Out of 18 candidate sequences, three hydroxylases are absent in other available Rhodococcus genomes. In addition, we report the biochemical characterization of 3-hydroxybenzoate 6-hydroxylase (3HB6H), a gentisate-producing enzyme originally mis-annotated as salicylate hydroxylase. R. jostii RHA1 3HB6H expressed in Escherichia coli is a homodimer with each 47kDa subunit containing a non-covalently bound FAD cofactor. The enzyme has a pH optimum around pH 8.3 and prefers NADH as external electron donor. 3HB6H is active with a series of 3-hydroxybenzoate analogues, bearing substituents in ortho- or meta-position of the aromatic ring. Gentisate, the physiological product, is a non-substrate effector of 3HB6H. This compound is not hydroxylated but strongly stimulates the NADH oxidase activity of the enzyme.


Subject(s)
Bacterial Proteins/chemistry , Flavin-Adenine Dinucleotide/chemistry , Genome, Bacterial , Hydroxybenzoates/chemistry , Mixed Function Oxygenases/chemistry , Rhodococcus/chemistry , Amino Acid Sequence , Bacterial Proteins/classification , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biocatalysis , Escherichia coli/genetics , Flavin-Adenine Dinucleotide/metabolism , Gentisates/metabolism , Hydrogen-Ion Concentration , Hydroxybenzoates/metabolism , Kinetics , Mixed Function Oxygenases/classification , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Molecular Sequence Data , NAD/chemistry , NAD/metabolism , Phylogeny , Protein Multimerization , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/classification , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Rhodococcus/enzymology , Rhodococcus/genetics , Sequence Alignment , Substrate Specificity
10.
J Theor Biol ; 334: 80-6, 2013 Oct 07.
Article in English | MEDLINE | ID: mdl-23774066

ABSTRACT

The stearoyl-acyl carrier protein desaturase (SAD) gene widely exists in all kinds of plants. In this paper, the Camellia sinensis SAD gene (CsSAD) sequence was firstly analyzed by Codon W, CHIPS, and CUSP programs online, and then compared with genomes of the tea plant, other species and SAD genes from 11 plant species. The results show that the CsSAD gene and the selected 73 of C. sinensis genes have similar codon usage bias. The CsSAD gene has a bias toward the synonymous codons with A and T at the third codon position, the same as the 73 of C. sinensis genes. Compared with monocotyledons such as Triticum aestivum and Zea mays, the differences in codon usage frequency between the CsSAD gene and dicotyledons such as Arabidopsis thaliana and Nicotiana tobacum are less. Therefore, A. thaliana and N. tobacum expression systems may be more suitable for the expression of the CsSAD gene. The analysis result of SAD genes from 12 plant species also shows that most of the SAD genes are biased toward the synonymous codons with G and C at the third codon position. We believe that the codon usage bias analysis presented in this study will be essential for providing a theoretical basis for discussing the structure and function of the CsSAD gene.


Subject(s)
Camellia sinensis/genetics , Codon/genetics , Mixed Function Oxygenases/genetics , Plant Proteins/genetics , Arabidopsis/enzymology , Arabidopsis/genetics , Camellia sinensis/enzymology , Cluster Analysis , Computational Biology/methods , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Genome, Plant/genetics , Mixed Function Oxygenases/classification , Models, Genetic , Phylogeny , Plant Proteins/classification , Species Specificity , Nicotiana/enzymology , Nicotiana/genetics , Triticum/enzymology , Triticum/genetics , Zea mays/enzymology , Zea mays/genetics
11.
Int J Mol Sci ; 13(12): 15601-39, 2012 Nov 23.
Article in English | MEDLINE | ID: mdl-23443084

ABSTRACT

Flavoprotein monooxygenases (FPMOs) exhibit an array of mechanistic solutions to a common chemical objective; the monooxygenation of a target substrate. Each FPMO efficiently couples reduction of a flavin cofactor by NAD(P)H to oxygenation of the target substrate via a (hydro)peroxyflavin intermediate. This purpose of this review is to describe in detail the Class A flavoprotein hydroxylases (FPMO) in the context of the other FPMO classes (B-F). Both one and two component FPMOs are found in nature. Two-component enzymes require, in addition to the monooxygenase, the involvement of a reductase that first catalyzes the reduction of the flavin by NAD(P)H. The Class A and B FPMOs are single-component and manage to orchestrate the same net reaction within a single peptide. The Class A enzymes have, by some considerable margin, the most complete research record. These enzymes use choreographed movements of the flavin ring that facilitate access of the organic substrates to the active site, provide a means for interaction of NADPH with the flavin, offer a mechanism to sequester the dioxygen reduction chemistry from solvent and a means to release the product. The majority of the discrete catalytic events of the catalytic cycle can be observed directly in exquisite detail using spectrophotometric kinetic methods and many of the key mechanistic conclusions are further supported by structural data. This review attempts to compile each of the key observations made for both paradigm and newly discovered examples of Class A FPMOs into a complete catalytic description of one enzymatic turnover.


Subject(s)
Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/classification , Mixed Function Oxygenases/metabolism , Animals , Catalysis , Humans , NADP/chemistry , NADP/metabolism , Protein Structure, Tertiary , Structure-Activity Relationship
12.
Biochem Biophys Res Commun ; 407(1): 118-23, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21362401

ABSTRACT

To elucidate functional diversity of cytochrome P450 monooxygenases from the white-rot basidiomycete Phanerochaete chrysosporium (PcCYPs), we conducted a comprehensive functional screening using a wide variety of compounds. A functionomic survey resulted in characterization of novel PcCYP functions and discovery of versatile PcCYPs that exhibit broad substrate profiles. These results suggested that multifunctional properties of the versatile PcCYPs would play crucial roles in diversification of fungal metabolic systems involved in xenobiotic detoxification. To our knowledge, this is the first report describing multifunctional properties of versatile P450s from the fungal kingdom. An increased compilation of PcCYP functions will facilitate a thorough understanding of metabolic diversity in basidiomycetes and provide new insights that could also expedite practical applications in the biotechnology sector.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Mixed Function Oxygenases/metabolism , Phanerochaete/enzymology , Catalysis , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/classification , Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/classification , Phylogeny , Substrate Specificity
13.
Nucleic Acids Res ; 37(18): 5959-68, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19661281

ABSTRACT

Multiple sequence alignments (MSAs) are one of the most important sources of information in sequence analysis. Many methods have been proposed to detect, extract and visualize their most significant properties. To the same extent that site-specific methods like sequence logos successfully visualize site conservations and sequence-based methods like clustering approaches detect relationships between sequences, both types of methods fail at revealing informational elements of MSAs at the level of sequence-site interactions, i.e. finding clusters of sequences and sites responsible for their clustering, which together account for a high fraction of the overall information of the MSA. To fill this gap, we present here a method that combines the Fisher score-based embedding of sequences from a profile hidden Markov model (pHMM) with correspondence analysis. This method is capable of detecting and visualizing group-specific or conflicting signals in an MSA and allows for a detailed explorative investigation of alignments of any size tractable by pHMMs. Applications of our methods are exemplified on an alignment of the Neisseria surface antigen LP2086, where it is used to detect sites of recombinatory horizontal gene transfer and on the vitamin K epoxide reductase family to distinguish between evolutionary and functional signals.


Subject(s)
Sequence Alignment/methods , Antigens, Bacterial/chemistry , Antigens, Bacterial/classification , Bacterial Proteins/chemistry , Bacterial Proteins/classification , Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/classification , Phylogeny , Sequence Analysis, Protein , Vitamin K Epoxide Reductases
14.
Proc Natl Acad Sci U S A ; 105(22): 7887-92, 2008 Jun 03.
Article in English | MEDLINE | ID: mdl-18505841

ABSTRACT

Lycophytes arose in the early Silurian ( approximately 400 Mya) and represent a major lineage of vascular plants that has evolved in parallel with the ferns, gymnosperms, and angiosperms. A hallmark of vascular plants is the presence of the phenolic lignin heteropolymer in xylem and other sclerified cell types. Although syringyl lignin is often considered to be restricted in angiosperms, it has been detected in lycophytes as well. Here we report the characterization of a cytochrome P450-dependent monooxygenase from the lycophyte Selaginella moellendorffii. Gene expression data, cross-species complementation experiments, and in vitro enzyme assays indicate that this P450 is a ferulic acid/coniferaldehyde/coniferyl alcohol 5-hydroxylase (F5H), and is capable of diverting guaiacyl-substituted intermediates into syringyl lignin biosynthesis. Phylogenetic analysis indicates that the Selaginella F5H represents a new family of plant P450s and suggests that it has evolved independently of angiosperm F5Hs.


Subject(s)
Cytochrome P-450 Enzyme System/chemistry , Lignin/biosynthesis , Mixed Function Oxygenases/chemistry , Plant Proteins/chemistry , Selaginellaceae/enzymology , Amino Acid Sequence , Arabidopsis Proteins/genetics , Cytochrome P-450 Enzyme System/classification , Cytochrome P-450 Enzyme System/genetics , Genetic Complementation Test , Lignin/chemistry , Mixed Function Oxygenases/classification , Mixed Function Oxygenases/genetics , Molecular Sequence Data , Mutation , Phylogeny , Plant Proteins/classification , Plant Proteins/genetics , Substrate Specificity
15.
Methods Mol Biol ; 2272: 251-262, 2021.
Article in English | MEDLINE | ID: mdl-34009619

ABSTRACT

TET proteins are methylcytosine dioxygenases that interact directly with chromatin to shape the DNA methylation landscape. To increase the understanding of TET protein function in a specific cellular context, it is important to be able to map the interactions between TET proteins and DNA. This ChIP-seq protocol details our procedure to analyze TET2 bound DNA in disuccinimidyl glutarate (DSG) and formaldehyde-crosslinked chromatin but can also be adapted to study other TET enzymes.


Subject(s)
Chromatin Immunoprecipitation Sequencing/methods , DNA Methylation , Mixed Function Oxygenases/metabolism , Proto-Oncogene Proteins/metabolism , Sequence Analysis, DNA/methods , Humans , Mixed Function Oxygenases/classification , Mixed Function Oxygenases/genetics , Proto-Oncogene Proteins/classification , Proto-Oncogene Proteins/genetics
16.
Carbohydr Polym ; 260: 117814, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33712158

ABSTRACT

Lytic polysaccharide monooxygenases (LPMOs), monocopper enzymes that oxidatively cleave recalcitrant polysaccharides, have important biotechnological applications. Thermothelomyces thermophilus is a rich source of biomass-active enzymes, including many members from auxiliary activities family 9 LPMOs. Here, we report biochemical and structural characterization of recombinant TtLPMO9H which oxidizes cellulose at the C1 and C4 positions and shows enhanced activity in light-driven catalysis assays. TtLPMO9H also shows activity against xyloglucan. The addition of TtLPMO9H to endoglucanases from four different glucoside hydrolase families (GH5, GH12, GH45 and GH7) revealed that the product formation was remarkably increased when TtLPMO9H was combined with GH7 endoglucanase. Finally, we determind the first low resolution small-angle X-ray scattering model of the two-domain TtLPMO9H in solution that shows relative positions of its two functional domains and a conformation of the linker peptide, which can be relevant for the catalytic oxidation of cellulose and xyloglucan.


Subject(s)
Cellulases/metabolism , Cellulose/metabolism , Enzyme Activation/radiation effects , Fungal Proteins/metabolism , Light , Mixed Function Oxygenases/metabolism , Sordariales/enzymology , Biomass , Catalysis , Cellulose/chemistry , Fungal Proteins/chemistry , Fungal Proteins/classification , Fungal Proteins/genetics , Glucans/chemistry , Glucans/metabolism , Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/classification , Mixed Function Oxygenases/genetics , Oxidation-Reduction , Phylogeny , Protein Domains , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Scattering, Small Angle , Stereoisomerism , Substrate Specificity , X-Ray Diffraction , Xylans/chemistry , Xylans/metabolism
17.
Appl Biochem Biotechnol ; 191(2): 463-481, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31792786

ABSTRACT

In this study, two novel thermostable lytic polysaccharide monooxygenases (LPMOs) were cloned from thermophilic fungus Scytalidium thermophilum (PMO9D_SCYTH) and Malbranchea cinnamomea (PMO9D_MALCI) and expressed in the methylotrophic yeast Pichia pastoris X33. The purified PMO9D_SCYTH was active at 60 °C (t1/2 = 60.58 h, pH 7.0), whereas, PMO9D_MALCI was optimally active at 50 °C (t1/2 = 144 h, pH 7.0). The respective catalytic efficiency (kcat/Km) of PMO9D_SCYTH and PMO9D_MALCI determined against avicel in presence of H2O2 was (6.58 × 10-3 and 1.79 × 10-3 mg-1 ml min-1) and carboxy-methylcellulose (CMC) (1.52 × 10-1 and 2.62 × 10-2 mg-1 ml min-1). The HRMS analysis of products obtained after hydrolysis of avicel and CMC showed the presence of both C1 and C4 oxidized oligosaccharides, in addition to phylogenetic tree constructed with other characterized type 1 and 3 LPMOs demonstrated that both LPMOs belongs to type-3 family of AA9s. The release of sugars during saccharification of acid/alkali pretreated sugarcane bagasse and rice straw was enhanced upon replacing one part of commercial enzyme Cellic CTec2 with these LPMOs.


Subject(s)
Fungi/enzymology , Fungi/metabolism , Lignin/metabolism , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Polysaccharides/metabolism , Carboxymethylcellulose Sodium , Cellulose/chemistry , Cloning, Molecular , Enzyme Stability , Fungal Proteins/chemistry , Fungi/genetics , Gene Expression Regulation, Fungal , Hydrogen Peroxide , Hydrogen-Ion Concentration , Hydrolysis , Kinetics , Mixed Function Oxygenases/classification , Onygenales/enzymology , Onygenales/genetics , Onygenales/metabolism , Phylogeny , Saccharomycetales/enzymology , Substrate Specificity , Temperature
18.
PLoS One ; 15(7): e0235642, 2020.
Article in English | MEDLINE | ID: mdl-32640001

ABSTRACT

Aspergillus tamarii grows abundantly in naturally composting waste fibers of the textile industry and has a great potential in biomass decomposition. Amongst the key (hemi)cellulose-active enzymes in the secretomes of biomass-degrading fungi are the lytic polysaccharide monooxygenases (LPMOs). By catalyzing oxidative cleavage of glycoside bonds, LPMOs promote the activity of other lignocellulose-degrading enzymes. Here, we analyzed the catalytic potential of two of the seven AA9-type LPMOs that were detected in recently published transcriptome data for A. tamarii, namely AtAA9A and AtAA9B. Analysis of products generated from cellulose revealed that AtAA9A is a C4-oxidizing enzyme, whereas AtAA9B yielded a mixture of C1- and C4-oxidized products. AtAA9A was also active on cellopentaose and cellohexaose. Both enzymes also cleaved the ß-(1→4)-glucan backbone of tamarind xyloglucan, but with different cleavage patterns. AtAA9A cleaved the xyloglucan backbone only next to unsubstituted glucosyl units, whereas AtAA9B yielded product profiles indicating that it can cleave the xyloglucan backbone irrespective of substitutions. Building on these new results and on the expanding catalog of xyloglucan- and oligosaccharide-active AA9 LPMOs, we discuss possible structural properties that could underlie the observed functional differences. The results corroborate evidence that filamentous fungi have evolved AA9 LPMOs with distinct substrate specificities and regioselectivities, which likely have complementary functions during biomass degradation.


Subject(s)
Aspergillus/metabolism , Fungal Proteins/metabolism , Glucans/metabolism , Mixed Function Oxygenases/metabolism , Xylans/metabolism , Amino Acid Sequence , Binding Sites , Chromatography, High Pressure Liquid , Cloning, Molecular , Copper/chemistry , Copper/metabolism , Fungal Proteins/classification , Fungal Proteins/genetics , Glucans/analysis , Glucans/chemistry , Mixed Function Oxygenases/classification , Mixed Function Oxygenases/genetics , Oxidation-Reduction , Phylogeny , Polysaccharides , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Substrate Specificity , Xylans/chemistry
19.
ACS Synth Biol ; 9(6): 1246-1253, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32408742

ABSTRACT

The salt-tolerant unicellular alga Dunaliella bardawil FACHB-847 can accumulate large amounts of lutein, but the underlying cause of massive accumulation of lutein is still unknown. In this study, genes encoding two types of carotene hydroxylases, i.e., ß-carotene hydroxylase (DbBCH) and cytochrome P450 carotenoid hydroxylase (DbCYP97s; DbCYP97A, DbCYP97B, and DbCYP97C), were cloned from D. bardawil. Their substrate specificities and enzyme activities were tested through functional complementation assays in Escherichia coli. It was showed that DbBCH could catalyze the hydroxylation of the ß-rings of both ß- and α-carotene, and displayed a low level of ε-hydroxylase. Unlike CYP97A from higher plants, DbCYP97A could not hydroxylate ß-carotene. DbCYP97A and DbCYP97C showed high hydroxylase activity toward the ß-ring and ε-ring of α-carotene, respectively. DbCYP97B displayed minor activity toward the ß-ring of α-carotene. The high accumulation of lutein in D. bardawil may be due to the multiple pathways for lutein biosynthesis generated from α-carotene with zeinoxanthin or α-cryptoxanthin as intermediates by DbBCH and DbCYP97s. Taken together, this study provides insights for understanding the underlying reason for high production of lutein in the halophilic green alga D. bardawil FACHB-847.


Subject(s)
Algal Proteins/metabolism , Chlorophyta/enzymology , Lutein/biosynthesis , Mixed Function Oxygenases/metabolism , Algal Proteins/classification , Algal Proteins/genetics , Amino Acid Sequence , Carotenoids/metabolism , Cloning, Molecular , Cryptoxanthins/metabolism , Escherichia coli/metabolism , Hydroxylation , Mixed Function Oxygenases/classification , Mixed Function Oxygenases/genetics , Phylogeny , Sequence Alignment , Substrate Specificity
20.
Chembiochem ; 10(7): 1208-17, 2009 May 04.
Article in English | MEDLINE | ID: mdl-19360806

ABSTRACT

Microbial genome sequences are providing a wealth of information on new enzymes that have considerable potential as biocatalysts. The recently sequenced genome of Rhodococcus jostii RHA1, for example, has revealed an impressive array of catabolic enzymes, including many putative Baeyer-Villiger monooxygenases (BVMOs). We have cloned 23 target BVMO sequences from the genome of R. jostii RHA1 and heterologously expressed 13 of these as soluble proteins to unearth new substrate specificities and selectivities. Whole-cell biocatalysts expressing the genes were screened against seven different test substrates. Each of these catalysts displayed activity toward at least three ketones. We observed a remarkable diversity of both regio- and enantioselectivity among the BVMOs from R. jostii RHA1 for the transformation of two chiral substrates, with some enzymes displaying high enantioselectivity for the isomers of 2-methylcyclopentanone. With the notable exception of the product of gene ro03437, named MO14, the biocatalysts' sequences correlated well with their respective activities and selectivities. This correlation allowed the identification of sequence motifs specific to subgroups of the BVMOs from R. jostii and other organisms. Overall, the data improve predictive models of BVMO activity from sequence and suggest new avenues to pursue in engineering these enzymes.


Subject(s)
Mixed Function Oxygenases/metabolism , Rhodococcus/enzymology , Amino Acid Sequence , Biocatalysis , Cyclopentanes/chemistry , Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/classification , Phylogeny , Rhodococcus/metabolism , Sequence Homology, Amino Acid , Stereoisomerism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL