Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 17.099
Filter
Add more filters

Publication year range
1.
Cell ; 184(17): 4547-4563.e17, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34314701

ABSTRACT

Frontotemporal dementia (FTD) because of MAPT mutation causes pathological accumulation of tau and glutamatergic cortical neuronal death by unknown mechanisms. We used human induced pluripotent stem cell (iPSC)-derived cerebral organoids expressing tau-V337M and isogenic corrected controls to discover early alterations because of the mutation that precede neurodegeneration. At 2 months, mutant organoids show upregulated expression of MAPT, glutamatergic signaling pathways, and regulators, including the RNA-binding protein ELAVL4, and increased stress granules. Over the following 4 months, mutant organoids accumulate splicing changes, disruption of autophagy function, and build-up of tau and P-tau-S396. By 6 months, tau-V337M organoids show specific loss of glutamatergic neurons as seen in individuals with FTD. Mutant neurons are susceptible to glutamate toxicity, which can be rescued pharmacologically by the PIKFYVE kinase inhibitor apilimod. Our results demonstrate a sequence of events that precede neurodegeneration, revealing molecular pathways associated with glutamate signaling as potential targets for therapeutic intervention in FTD.


Subject(s)
Cerebrum/pathology , ELAV-Like Protein 4/genetics , Glutamic Acid/metabolism , Mutation/genetics , Neurons/pathology , Organoids/metabolism , RNA Splicing/genetics , tau Proteins/genetics , Autophagy/drug effects , Autophagy/genetics , Biomarkers/metabolism , Body Patterning/drug effects , Body Patterning/genetics , Cell Death/drug effects , Cell Line , Humans , Hydrazones/pharmacology , Lysosomes/drug effects , Lysosomes/metabolism , Morpholines/pharmacology , Neurons/drug effects , Neurons/metabolism , Organoids/drug effects , Organoids/ultrastructure , Phosphorylation/drug effects , Pyrimidines/pharmacology , RNA Splicing/drug effects , Signal Transduction/drug effects , Stress Granules/drug effects , Stress Granules/metabolism , Synapses/metabolism , Up-Regulation/drug effects , Up-Regulation/genetics
2.
Cell ; 181(2): 211, 2020 04 16.
Article in English | MEDLINE | ID: mdl-32302562

ABSTRACT

Tazemetostat is the first epigenetic therapy to gain FDA approval in a solid tumor. This lysine methyltransferase inhibitor targets EZH2, the enzymatic subunit of the PRC2 transcriptional silencing complex. Tumors with mutations in subunits of the SWI/SNF chromatin remodeling complex, inclusive of most epithelioid sarcomas, are sensitive to EZH2 inhibition.


Subject(s)
Benzamides/therapeutic use , Epigenesis, Genetic/genetics , Pyridones/therapeutic use , Sarcoma/drug therapy , Biphenyl Compounds , Cell Line, Tumor , Chromatin Assembly and Disassembly , DNA Helicases/metabolism , Enhancer of Zeste Homolog 2 Protein/drug effects , Enhancer of Zeste Homolog 2 Protein/genetics , Enzyme Inhibitors/pharmacology , Epigenomics , Genetic Therapy/methods , Humans , Morpholines , Nuclear Proteins/metabolism , Sarcoma/genetics , Transcription Factors/metabolism
3.
Cell ; 177(6): 1367, 2019 05 30.
Article in English | MEDLINE | ID: mdl-31150614

ABSTRACT

Transcription of viral mRNA in cells infected with influenza viruses involves capturing and cleaving the first 10-20 nucleotides of 5' capped host mRNAs to be used as primers in viral RNA synthesis. A newly developed inhibitor of the viral endonuclease responsible for this cap-snatching shows therapeutic efficacy for the treatment of influenza. To view this Bench to Bedside, open or download the PDF.


Subject(s)
Influenza, Human/drug therapy , Oxazines/pharmacology , Oxazines/therapeutic use , Pyridines/pharmacology , Pyridines/therapeutic use , Thiepins/pharmacology , Thiepins/therapeutic use , Triazines/pharmacology , Triazines/therapeutic use , Dibenzothiepins , Endonucleases/genetics , Humans , Morpholines , Orthomyxoviridae/drug effects , Orthomyxoviridae/pathogenicity , Pyridones , RNA Caps/genetics , RNA, Messenger/genetics , RNA, Viral/genetics , Viral Proteins/genetics
4.
Cell ; 167(3): 750-762.e14, 2016 Oct 20.
Article in English | MEDLINE | ID: mdl-27768894

ABSTRACT

Cannabinoid receptor 1 (CB1) is the principal target of Δ9-tetrahydrocannabinol (THC), a psychoactive chemical from Cannabis sativa with a wide range of therapeutic applications and a long history of recreational use. CB1 is activated by endocannabinoids and is a promising therapeutic target for pain management, inflammation, obesity, and substance abuse disorders. Here, we present the 2.8 Å crystal structure of human CB1 in complex with AM6538, a stabilizing antagonist, synthesized and characterized for this structural study. The structure of the CB1-AM6538 complex reveals key features of the receptor and critical interactions for antagonist binding. In combination with functional studies and molecular modeling, the structure provides insight into the binding mode of naturally occurring CB1 ligands, such as THC, and synthetic cannabinoids. This enhances our understanding of the molecular basis for the physiological functions of CB1 and provides new opportunities for the design of next-generation CB1-targeting pharmaceuticals.


Subject(s)
Cannabinoid Receptor Antagonists/chemistry , Morpholines/chemistry , Pyrazoles/chemistry , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB1/chemistry , Binding Sites , Cannabinoids/pharmacology , Cannabis/chemistry , Crystallography, X-Ray , Dronabinol/pharmacology , Endocannabinoids/pharmacology , Humans , Ligands , Morpholines/chemical synthesis , Protein Binding , Protein Conformation, alpha-Helical , Pyrazoles/chemical synthesis
5.
Mol Cell ; 81(11): 2278-2289, 2021 06 03.
Article in English | MEDLINE | ID: mdl-33984284

ABSTRACT

Agents that induce DNA damage can cure some cancers. However, the side effects of chemotherapy are severe because of the indiscriminate action of DNA-damaging agents on both healthy and cancerous cells. DNA repair pathway inhibition provides a less toxic and targeted alternative to chemotherapy. A compelling DNA repair target is the Fanconi anemia (FA) E3 ligase core complex due to its critical-and likely singular-role in the efficient removal of specific DNA lesions. FA pathway inactivation has been demonstrated to specifically kill some types of cancer cells without the addition of exogenous DNA damage, including cells that lack BRCA1, BRCA2, ATM, or functionally related genes. In this perspective, we discuss the genetic and biochemical evidence in support of the FA core complex as a compelling drug target for cancer therapy. In particular, we discuss the genetic, biochemical, and structural data that could rapidly advance our capacity to identify and implement the use of FA core complex inhibitors in the clinic.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/genetics , BRCA1 Protein/genetics , BRCA2 Protein/genetics , DNA Repair/drug effects , Fanconi Anemia Complementation Group Proteins/genetics , Fanconi Anemia/drug therapy , Ubiquitin-Protein Ligases/genetics , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Ataxia Telangiectasia Mutated Proteins/deficiency , BRCA1 Protein/deficiency , BRCA2 Protein/deficiency , DNA Damage , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/therapeutic use , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , Fanconi Anemia/pathology , Fanconi Anemia Complementation Group Proteins/antagonists & inhibitors , Fanconi Anemia Complementation Group Proteins/metabolism , Gene Expression Regulation, Neoplastic , Humans , Molecular Targeted Therapy/methods , Morpholines/therapeutic use , Pyrones/therapeutic use , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Synthetic Lethal Mutations , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/metabolism , Ubiquitins/antagonists & inhibitors , Ubiquitins/genetics , Ubiquitins/metabolism
6.
Proc Natl Acad Sci U S A ; 121(5): e2318718121, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38252820

ABSTRACT

Several compounds have been used for atherosclerosis treatment, including clinical trials; however, no anti-atherosclerotic drugs based on hemodynamic force-mediated atherogenesis have been discovered. Our previous studies demonstrated that "small mothers against decapentaplegic homolog 1/5" (Smad1/5) is a convergent signaling molecule for chemical [e.g., bone morphogenetic proteins (BMPs)] and mechanical (e.g., disturbed flow) stimulations and hence may serve as a promising hemodynamic-based target for anti-atherosclerosis drug development. The goal of this study was to develop a high-throughput screening (HTS) platform to identify potential compounds that can inhibit disturbed flow- and BMP-induced Smad1/5 activation and atherosclerosis. Through HTS using a Smad1/5 downstream target inhibitor of DNA binding 1 (Id-1) as a luciferase reporter, we demonstrated that KU-55933 and Apicidin suppressed Id-1 expression in AD-293 cells. KU-55933 (10 µM), Apicidin (10 µM), and the combination of half doses of each [1/2(K + A)] inhibited disturbed flow- and BMP4-induced Smad1/5 activation in human vascular endothelial cells (ECs). KU-55933, Apicidin, and 1/2(K + A) treatments caused 50.6%, 47.4%, and 73.3% inhibitions of EC proliferation induced by disturbed flow, respectively, whereas EC inflammation was only suppressed by KU-55933 and 1/2(K + A), but not Apicidin alone. Administrations of KU-55933 and 1/2(K + A) to apolipoprotein E-deficient mice inhibited Smad1/5 activation in ECs in athero-susceptible regions, thereby suppressing endothelial proliferation and inflammation, with the attenuation of atherosclerotic lesions in these mice. A unique drug screening platform has been developed to demonstrate that KU-55933 and its combination with Apicidin are promising therapeutic compounds for atherosclerosis based on hemodynamic considerations.


Subject(s)
Atherosclerosis , Endothelial Cells , Morpholines , Pyrones , Humans , Animals , Mice , Drug Evaluation, Preclinical , High-Throughput Screening Assays , Atherosclerosis/drug therapy , Hemodynamics , Inflammation
7.
Blood ; 144(6): 646-656, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38843478

ABSTRACT

ABSTRACT: Fostamatinib, a recently approved Syk inhibitor used in adult primary immune thrombocytopenia (ITP), has been shown to be safe and effective in this disorder. However, clinical trial results may not be similarly reproduced in clinical practice. Here, 138 patients with ITP (both primary and secondary) from 42 Spanish centers who had been treated with fostamatinib were evaluated prospectively and retrospectively. The median age of our cohort (55.8% women) was 66 years (interquartile range [IQR], 56-80). The median time since ITP diagnosis at fostamatinib initiation was 51 months (IQR, 10-166). The median number of therapies before fostamatinib initiation was 4 (IQR, 2-5), including eltrombopag (76.1%), romiplostim (57.2%), and IV immunoglobulins (44.2%). Fifty-eight patients (42.0%) had signs/symptoms of bleeding in the month before treatment initiation. Seventy-nine percent of patients responded to fostamatinib with 53.6% complete responses (platelet count > 100 × 109/L). Eighty-three patients (60.1%) received fostamatinib monotherapy, achieving a high response rate (85.4%). The proportion of time in response during the 27-month period examined was 83.3%. The median time to platelet response was 11 days (IQR, 7-21). Sixty-seven patients (48.5%) experienced adverse events, mainly grade 1 to 2; the commonest of which were diarrhea (n = 28) and hypertension (n = 21). One patient had deep venous thrombosis, and one patient developed acute myocardial infarction. Fostamatinib was shown to be effective with good safety profile in patients with primary and secondary ITP across a wide age spectrum in this real-world study.


Subject(s)
Aminopyridines , Morpholines , Oxazines , Purpura, Thrombocytopenic, Idiopathic , Pyridines , Pyrimidines , Humans , Female , Male , Middle Aged , Purpura, Thrombocytopenic, Idiopathic/drug therapy , Aged , Oxazines/therapeutic use , Oxazines/adverse effects , Aged, 80 and over , Pyrimidines/therapeutic use , Pyrimidines/adverse effects , Morpholines/therapeutic use , Morpholines/adverse effects , Pyridines/therapeutic use , Pyridines/adverse effects , Aminopyridines/therapeutic use , Aminopyridines/adverse effects , Retrospective Studies , Treatment Outcome , Syk Kinase/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/adverse effects , Platelet Count , Prospective Studies
8.
Blood ; 143(15): 1513-1527, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38096371

ABSTRACT

ABSTRACT: Small molecules that target the menin-KMT2A protein-protein interaction (menin inhibitors) have recently entered clinical trials in lysine methyltransferase 2A (KMT2A or MLL1)-rearranged (KMT2A-r) and nucleophosmin-mutant (NPM1c) acute myeloid leukemia (AML) and are demonstrating encouraging results. However, rationally chosen combination therapy is needed to improve responses and prevent resistance. We have previously identified IKZF1/IKAROS as a target in KMT2A-r AML and shown in preclinical models that IKAROS protein degradation with lenalidomide or iberdomide has modest single-agent activity yet can synergize with menin inhibitors. Recently, the novel IKAROS degrader mezigdomide was developed with greatly enhanced IKAROS protein degradation. In this study, we show that mezigdomide has increased preclinical activity in vitro as a single-agent in KMT2A-r and NPM1c AML cell lines, including sensitivity in cell lines resistant to lenalidomide and iberdomide. Further, we demonstrate that mezigdomide has the greatest capacity to synergize with and induce apoptosis in combination with menin inhibitors, including in MEN1 mutant models. We show that the superior activity of mezigdomide compared with lenalidomide or iberdomide is due to its increased depth, rate, and duration of IKAROS protein degradation. Single-agent mezigdomide was efficacious in 5 patient-derived xenograft models of KMT2A-r and 1 NPM1c AML. The combination of mezigdomide with the menin inhibitor VTP-50469 increased survival and prevented and overcame MEN1 mutations that mediate resistance in patients receiving menin inhibitor monotherapy. These results support prioritization of mezigdomide for early phase clinical trials in KMT2A-r and NPM1c AML, either as a single agent or in combination with menin inhibitors.


Subject(s)
Leukemia, Myeloid, Acute , Morpholines , Myeloid-Lymphoid Leukemia Protein , Phthalimides , Piperidones , Humans , Lenalidomide/therapeutic use , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Transcription Factors/genetics , Mutation
9.
Nature ; 586(7827): 113-119, 2020 10.
Article in English | MEDLINE | ID: mdl-32707573

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 has triggered an ongoing global pandemic of the severe pneumonia-like disease coronavirus disease 2019 (COVID-19)1. The development of a vaccine is likely to take at least 12-18 months, and the typical timeline for approval of a new antiviral therapeutic agent can exceed 10 years. Thus, repurposing of known drugs could substantially accelerate the deployment of new therapies for COVID-19. Here we profiled a library of drugs encompassing approximately 12,000 clinical-stage or Food and Drug Administration (FDA)-approved small molecules to identify candidate therapeutic drugs for COVID-19. We report the identification of 100 molecules that inhibit viral replication of SARS-CoV-2, including 21 drugs that exhibit dose-response relationships. Of these, thirteen were found to harbour effective concentrations commensurate with probable achievable therapeutic doses in patients, including the PIKfyve kinase inhibitor apilimod2-4 and the cysteine protease inhibitors MDL-28170, Z LVG CHN2, VBY-825 and ONO 5334. Notably, MDL-28170, ONO 5334 and apilimod were found to antagonize viral replication in human pneumocyte-like cells derived from induced pluripotent stem cells, and apilimod also demonstrated antiviral efficacy in a primary human lung explant model. Since most of the molecules identified in this study have already advanced into the clinic, their known pharmacological and human safety profiles will enable accelerated preclinical and clinical evaluation of these drugs for the treatment of COVID-19.


Subject(s)
Antiviral Agents/analysis , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Drug Evaluation, Preclinical , Drug Repositioning , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Alveolar Epithelial Cells/cytology , Alveolar Epithelial Cells/drug effects , Betacoronavirus/growth & development , COVID-19 , Cell Line , Cysteine Proteinase Inhibitors/analysis , Cysteine Proteinase Inhibitors/pharmacology , Dose-Response Relationship, Drug , Drug Synergism , Gene Expression Regulation/drug effects , Humans , Hydrazones , Induced Pluripotent Stem Cells/cytology , Models, Biological , Morpholines/analysis , Morpholines/pharmacology , Pandemics , Pyrimidines , Reproducibility of Results , SARS-CoV-2 , Small Molecule Libraries/analysis , Small Molecule Libraries/pharmacology , Triazines/analysis , Triazines/pharmacology , Virus Internalization/drug effects , Virus Replication/drug effects , COVID-19 Drug Treatment
10.
Mol Cell ; 72(5): 888-901.e7, 2018 12 06.
Article in English | MEDLINE | ID: mdl-30344095

ABSTRACT

Safeguarding cell function and identity following a genotoxic stress challenge entails a tight coordination of DNA damage signaling and repair with chromatin maintenance. How this coordination is achieved and with what impact on chromatin integrity remains elusive. Here, we address these questions by investigating the mechanisms governing the distribution in mammalian chromatin of the histone variant H2A.X, a central player in damage signaling. We reveal that H2A.X is deposited de novo at sites of DNA damage in a repair-coupled manner, whereas the H2A.Z variant is evicted, thus reshaping the chromatin landscape at repair sites. Our mechanistic studies further identify the histone chaperone FACT (facilitates chromatin transcription) as responsible for the deposition of newly synthesized H2A.X. Functionally, we demonstrate that FACT potentiates H2A.X-dependent signaling of DNA damage. We propose that new H2A.X deposition in chromatin reflects DNA damage experience and may help tailor DNA damage signaling to repair progression.


Subject(s)
DNA Repair , DNA-Binding Proteins/genetics , DNA/genetics , High Mobility Group Proteins/genetics , Histones/genetics , Transcriptional Elongation Factors/genetics , Alpha-Amanitin/pharmacology , Animals , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Line, Tumor , Chromatin Assembly and Disassembly/drug effects , DNA/metabolism , DNA Damage , DNA-Binding Proteins/metabolism , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Gene Expression Regulation , High Mobility Group Proteins/metabolism , Histones/metabolism , Humans , Mice , Morpholines/pharmacology , NIH 3T3 Cells , Nucleosomes/chemistry , Nucleosomes/drug effects , Nucleosomes/metabolism , Poisons/pharmacology , Pyrimidines/pharmacology , Pyrones/pharmacology , Signal Transduction , Transcriptional Elongation Factors/metabolism
11.
J Biol Chem ; 300(7): 107517, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38945448

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a deadly clinical presentation in sepsis, COVID, and other lung disorders where vascular fluid leakage is a severe problem. Recent findings by Shadab et al. in the JBC show that a well-known player in immune function, Syk, also regulates vascular leakage in response to sepsis. An existing FDA-approved inhibitor of Syk, fostamatinib, prevents the vascular leakage and improves survival in a mouse sepsis model, providing promise for ARDS treatment in the clinic.


Subject(s)
Aminopyridines , Morpholines , Protein Kinase Inhibitors , Pyrimidines , Respiratory Distress Syndrome , Syk Kinase , Humans , Aminopyridines/therapeutic use , Morpholines/therapeutic use , Pyrimidines/therapeutic use , Syk Kinase/antagonists & inhibitors , Syk Kinase/metabolism , Respiratory Distress Syndrome/drug therapy , Animals , Mice , Protein Kinase Inhibitors/therapeutic use , Sepsis/drug therapy
12.
N Engl J Med ; 386(11): 1034-1045, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35294813

ABSTRACT

BACKGROUND: Iberdomide, a cereblon modulator promoting degradation of the transcription factors Ikaros and Aiolos, which affect leukocyte development and autoimmunity, is being evaluated for the treatment of systemic lupus erythematosus (SLE). METHODS: In this phase 2 trial, we randomly assigned patients in a 2:2:1:2 ratio to receive oral iberdomide (at a dose of 0.45, 0.30, or 0.15 mg) or placebo once daily for 24 weeks, in addition to standard medications. The primary end point at week 24 was a response on the SLE Responder Index (SRI-4), which was defined as a reduction of at least 4 points in the Systemic Lupus Erythematosus Disease Activity Index 2000 score (a 24-item weighted score of lupus activity that ranges from 0 to 105, with higher scores indicating greater disease activity), no new disease activity as measured on the British Isles Lupus Assessment Group 2004 index, and no increase of 0.3 points or more in the Physician's Global Assessment score (on a visual-analogue scale ranging from 0 [no disease activity] to 3 [maximal disease]). RESULTS: A total of 288 patients received the assigned intervention: 81 received iberdomide at a dose of 0.45 mg, 82 received iberdomide at a dose of 0.30 mg, 42 received iberdomide at a dose of 0.15 mg, and 83 received placebo. At week 24, the percentages of patients with an SRI-4 response were 54% in the iberdomide 0.45-mg group, 40% in the iberdomide 0.30-mg group, 48% in the iberdomide 0.15-mg group, and 35% in the placebo group (adjusted difference between the iberdomide 0.45-mg group and the placebo group, 19.4 percentage points; 95% confidence interval, 4.1 to 33.4; P = 0.01), with no significant differences between the groups that received the lower doses of iberdomide and the group that received placebo. Iberdomide-associated adverse events included urinary tract and upper respiratory tract infections and neutropenia. CONCLUSIONS: In this 24-week, phase 2 trial involving patients with SLE, iberdomide at a dose of 0.45 mg resulted in a higher percentage of patients with an SRI-4 response than did placebo. Data from larger, longer trials are needed to determine the efficacy and safety of iberdomide in SLE. (Funded by Bristol Myers Squibb; ClinicalTrials.gov number, NCT03161483; EudraCT number, 2016-004574-17.).


Subject(s)
Adaptor Proteins, Signal Transducing/agonists , Lupus Erythematosus, Systemic/drug therapy , Morpholines/therapeutic use , Phthalimides/therapeutic use , Piperidones/therapeutic use , Adult , Dose-Response Relationship, Drug , Double-Blind Method , Female , Humans , Ikaros Transcription Factor/metabolism , Lupus Erythematosus, Systemic/ethnology , Male , Middle Aged , Morpholines/administration & dosage , Morpholines/pharmacology , Phthalimides/administration & dosage , Phthalimides/pharmacology , Piperidones/administration & dosage , Piperidones/pharmacology , Severity of Illness Index , Ubiquitin-Protein Ligases/metabolism
13.
Hepatology ; 79(4): 798-812, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37505213

ABSTRACT

ABSTRACT AND AIM: Cholangiocarcinoma (CCA) is a highly aggressive and lethal cancer that originates from the biliary epithelium. Systemic treatment options for CCA are currently limited, and the first targeted drug of CCA, pemigatinib, emerged in 2020 for CCA treatment by inhibiting FGFR2 phosphorylation. However, the regulatory mechanism of FGFR2 phosphorylation is not fully elucidated. APPROACH AND RESULTS: Here we screened the FGFR2-interacting proteins and showed that protein tyrosine phosphatase (PTP) N9 interacts with FGFR2 and negatively regulates FGFR2 pY656/657 . Using phosphatase activity assays and modeling the FGFR2-PTPN9 complex structure, we identified FGFR2 pY656/657 as a substrate of PTPN9, and found that sec. 14p domain of PTPN9 interacts with FGFR2 through ACAP1 mediation. Coexpression of PTPN9 and ACAP1 indicates a favorable prognosis for CCA. In addition, we identified key amino acids and motifs involved in the sec. 14p-APCP1-FGFR2 interaction, including the "YRETRRKE" motif of sec. 14p, Y471 of PTPN9, as well as the PH and Arf-GAP domain of ACAP1. Moreover, we discovered that the FGFR2 I654V substitution can decrease PTPN9-FGFR2 interaction and thereby reduce the effectiveness of pemigatinib treatment. Using a series of in vitro and in vivo experiments including patient-derived xenografts (PDX), we showed that PTPN9 synergistically enhances pemigatinib effectiveness and suppresses CCA proliferation, migration, and invasion by inhibiting FGFR2 pY656/657 . CONCLUSIONS: Our study identifies PTPN9 as a negative regulator of FGFR2 phosphorylation and a synergistic factor for pemigatinib treatment. The molecular mechanism, oncogenic function, and clinical significance of the PTPN9-ACAP1-FGFR2 complex are revealed, providing more evidence for CCA precision treatment.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Morpholines , Pyrimidines , Pyrroles , Humans , Cholangiocarcinoma/drug therapy , Epithelium , Bile Duct Neoplasms/drug therapy , Bile Ducts, Intrahepatic , Receptor, Fibroblast Growth Factor, Type 2 , GTPase-Activating Proteins
14.
Brain ; 147(9): 2998-3008, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-38606777

ABSTRACT

Apilimod dimesylate is a first-in-class phosphoinositide kinase, FYVE-type zinc finger-containing (PIKfyve) inhibitor with a favourable clinical safety profile and has demonstrated activity in preclinical C9orf72 and TDP-43 amyotrophic lateral sclerosis (ALS) models. In this ALS clinical trial, the safety, tolerability, CNS penetrance and modulation of pharmacodynamic target engagement biomarkers were evaluated. This phase 2a, randomized, double-blind, placebo-controlled, biomarker-end-point clinical trial was conducted in four US centres (ClinicalTrials.gov NCT05163886). Participants with C9orf72 repeat expansions were randomly assigned (2:1) to receive twice-daily oral treatment with 125 mg apilimod dimesylate capsules or matching placebo for 12 weeks, followed by a 12-week open-label extension. Safety was measured as the occurrence of treatment-emergent or serious adverse events attributable to the study drug and tolerability at trial completion or treatment over 12 weeks. Changes from baseline in plasma and CSF and concentrations of apilimod dimesylate and its active metabolites and of pharmacodynamic biomarkers of PIKfyve inhibition [soluble glycoprotein nonmetastatic melanoma protein B (sGPNMB) upregulation] and disease-specific CNS target engagement [poly(GP)] were measured. Between 16 December 2021 and 7 July 2022, 15 eligible participants were enrolled. There were no drug-related serious adverse events reported in the trial. Fourteen (93%) participants completed the double-blind period with 99% dose compliance [n = 9 (90%) apilimod dimesylate; n = 5 (100%) placebo]. At Week 12, apilimod dimesylate was measurable in CSF at 1.63 ng/ml [standard deviation (SD): 0.937]. At Week 12, apilimod dimesylate increased plasma sGPNMB by >2.5-fold (P < 0.001), indicating PIKfyve inhibition, and lowered CSF poly(GP) protein levels by 73% (P < 0.001), indicating CNS tissue-level proof of mechanism. Apilimod dimesylate met prespecified key safety and biomarker end-points in this phase 2a trial and demonstrated CNS penetrance and pharmacodynamic target engagement. Apilimod dimesylate was observed to result in the greatest reduction in CSF poly(GP) levels observed to date in C9orf72 clinical trials.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , Humans , Male , Female , Middle Aged , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/genetics , Double-Blind Method , Adult , Aged , C9orf72 Protein/genetics , Pyrazoles/therapeutic use , Pyrazoles/pharmacokinetics , Treatment Outcome , Biomarkers/blood , Hydrazones , Morpholines , Pyrimidines
15.
Lancet Oncol ; 25(4): 474-487, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38547892

ABSTRACT

BACKGROUND: The PI3K-mTOR pathway is frequently dysregulated in breast cancer. Combining an inhibitor targeting all class I PI3K isoforms and mTOR complex 1 (mTORC1)-mTOR complex 2 (mTORC2) with endocrine therapy and a CDK4/6 inhibitor might provide more effective tumour control than standard-of-care therapy. To evaluate this hypothesis, gedatolisib, a pan-PI3K-mTOR inhibitor, was assessed in a phase 1b trial combined with palbociclib and endocrine therapy in patients with hormone receptor-positive, HER2-negative, advanced breast cancer. Results from the dose expansion portion of this trial are reported herein. METHODS: This multicentre, open-label, phase 1b study recruited female patients aged at least 18 years from 17 sites across the USA with hormone-receptor-positive, HER2-negative, advanced breast cancer and an Eastern Cooperative Oncology Group performance status of 0-1. Four patient groups were studied in the dose expansion portion of the study: treatment-naive in the advanced setting (first line; group A), progression on 1-2 lines of endocrine therapy but CDK4/6 inhibitor-naive (group B); and one or more previous lines (second-line and higher) of therapy, including a CDK4/6 inhibitor (groups C and D). Gedatolisib 180 mg was administered intravenously weekly in 28-day treatment cycles for groups A-C, and on days 1, 8, and 15 for group D. Letrozole (group A), fulvestrant (groups B-D), and palbociclib (all groups) were administered at standard doses and schedules. The primary endpoint was investigator-assessed objective response rate per RECIST version 1.1 in the evaluable analysis set. This trial is completed and registered with ClinicalTrials.gov, NCT02684032. FINDINGS: Between Dec 19, 2017, and June 19, 2019, 103 female participants were enrolled in the dose expansion groups A (n=31), B (n=13), C (n=32), and D (n=27). Median follow-up was 16·6 months (IQR 5·7-48·4) for group A, 11·0 months (7·6-16·9) for group B, 3·6 months (1·8-7·5) for group C, and 9·4 months (5·3-16·7) for group D for the primary endpoint. Gedatolisib, palbociclib, and endocrine therapy induced an objective response in 23 (85·2%; 90% CI 69·2-94·8) of 27 evaluable first-line participants (group A). In the second-line and higher setting, an objective response was observed in eight (61·5%; 90% CI 35·5-83·4) of 13 evaluable group B participants, seven (25·0%; 12·4-41·9) of 28 evaluable group C participants, and 15 (55·6%; 38·2-72·0) of 27 evaluable group D participants; this included participants with both wild-type and mutated PIK3CA tumours. The most common grade 3-4 treatment-related adverse events were neutropenia (65 [63%] of 103), stomatitis (28 [27%]), and rash (21 [20%]). Grade 3-4 hyperglycaemia was reported in six (6%) participants. 23 (22%) of 103 participants had a treatment-related serious adverse event, and there were no treatment-related deaths. Nine (9%) participants discontinued treatment because of a treatment-emergent adverse event. INTERPRETATION: Gedatolisib plus palbociclib and endocrine therapy showed a promising objective response rate compared with the published results for standard-of-care therapies and had an acceptable safety profile. FUNDING: Pfizer and Celcuity.


Subject(s)
Breast Neoplasms , Morpholines , Piperazines , Pyridines , Triazines , Female , Humans , Adolescent , Adult , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Receptor, ErbB-2/metabolism , Disease-Free Survival , Antineoplastic Combined Chemotherapy Protocols/adverse effects , TOR Serine-Threonine Kinases
16.
Am J Physiol Cell Physiol ; 327(2): C403-C414, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38881423

ABSTRACT

Aqueous humor drainage from the anterior eye determines intraocular pressure (IOP) under homeostatic and pathological conditions. Swelling of the trabecular meshwork (TM) alters its flow resistance but the mechanisms that sense and transduce osmotic gradients remain poorly understood. We investigated TM osmotransduction and its role in calcium and chloride homeostasis using molecular analyses, optical imaging, and electrophysiology. Anisosmotic conditions elicited proportional changes in TM cell volume, with swelling, but not shrinking, evoking elevations in intracellular calcium concentration [Ca2+]TM. Hypotonicity-evoked calcium signals were sensitive to HC067047, a selective blocker of TRPV4 channels, whereas the agonist GSK1016790A promoted swelling under isotonic conditions. TRPV4 inhibition partially suppressed hypotonicity-induced volume increases and reduced the magnitude of the swelling-induced membrane current, with a substantial fraction of the swelling-evoked current abrogated by Cl- channel antagonists 4,4'-diisothiocyanato-2,2'-stilbenedisulfonic acid (DIDS) and niflumic acid. The transcriptome of volume-sensing chloride channel candidates in primary human was dominated by ANO6 transcripts, with moderate expression of ANO3, ANO7, and ANO10 transcripts and low expression of LTTRC genes that encode constituents of the volume-activated anion channel. Imposition of 190 mosM but not 285 mosM hypotonic gradients increased conventional outflow in mouse eyes. TRPV4-mediated cation influx thus works with Cl- efflux to sense and respond to osmotic stress, potentially contributing to pathological swelling, calcium overload, and intracellular signaling that could exacerbate functional disturbances in inflammatory disease and glaucoma.NEW & NOTEWORTHY Intraocular pressure is dynamically regulated by the flow of aqueous humor through paracellular passages within the trabecular meshwork (TM). This study shows hypotonic gradients that expand the TM cell volume and reduce the outflow facility in mouse eyes. The swelling-induced current consists of TRPV4 and chloride components, with TRPV4 as a driver of swelling-induced calcium signaling. TRPV4 inhibition reduced swelling, suggesting a novel treatment for trabeculitis and glaucoma.


Subject(s)
Cell Size , Chloride Channels , TRPV Cation Channels , Trabecular Meshwork , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , TRPV Cation Channels/agonists , Trabecular Meshwork/metabolism , Trabecular Meshwork/drug effects , Chloride Channels/metabolism , Chloride Channels/genetics , Animals , Mice , Cell Size/drug effects , Humans , Calcium/metabolism , Mice, Inbred C57BL , Osmotic Pressure , Calcium Signaling/drug effects , Male , Intraocular Pressure/physiology , Intraocular Pressure/drug effects , Cells, Cultured , Female , Leucine/analogs & derivatives , Morpholines , Pyrroles , Sulfonamides
17.
Biochemistry ; 63(3): 264-272, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38190441

ABSTRACT

Vital to the treatment of influenza is the use of antivirals such as Oseltamivir (Tamiflu) and Zanamivir (Relenza); however, antiviral resistance is becoming an increasing problem for these therapeutics. The RNA-dependent RNA polymerase acidic N-terminal (PAN) endonuclease, a critical component of influenza viral replication machinery, is an antiviral target that was recently validated with the approval of Baloxavir Marboxil (BXM). Despite its clinical success, BXM has demonstrated susceptibility to resistance mutations, specifically the I38T, E23K, and A36 V mutants of PAN. To better understand the effects of these mutations on BXM resistance and improve the design of more robust therapeutics, this study examines key differences in protein-inhibitor interactions with two inhibitors and the I38T, E23K, and A36 V mutants. Differences in inhibitor binding were evaluated by measuring changes in binding to PAN using two biophysical methods. The binding mode of two distinct inhibitors was determined crystallographically with both wild-type and mutant forms of PAN. Collectively, these studies give some insight into the mechanism of antiviral resistance of these mutants.


Subject(s)
Dibenzothiepins , Influenza, Human , Morpholines , Thiepins , Humans , Oxazines , Pyridines/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Endonucleases/genetics , Thiepins/pharmacology , Thiepins/therapeutic use , Pyridones/therapeutic use , Oseltamivir/pharmacology , Oseltamivir/therapeutic use , Zanamivir/therapeutic use , Triazines/pharmacology , Triazines/therapeutic use
18.
Immunology ; 172(3): 486-499, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38547355

ABSTRACT

To explore the effect of K33 only mutant ubiquitin (K33O) on bone marrow-derived dendritic cells' (BMDCs') maturity, antigen uptake capability, surface molecule expressions and BMDC-mediated CTL priming, and further investigate the role of PI3K-Akt engaged in K33O-increased BMDC maturation, antigen uptake and presentation, surface molecule expressions and BMDC-based CTL priming. BMDCs were conferred K33O and other ubiquitin mutants (K33R, K48R, K63R-mutant ubiquitin) incubation or LY294002 and wortmannin pretreatment. PI3K-Akt phosphorylation, antigen uptake, antigenic presentation and CD86/MHC class I expression in BMDC were determined by western blot or flow cytometry. BMDC-based CTL proliferation and priming were determined by in vitro mixed lymphocyte reaction (MLR), ex vivo enzyme-linked immunospot assay (Elispot) and flow cytometry with intracellular staining, respectively. The treatment with K33O effectively augmented PI3K-Akt phosphorylation, BMDCs' antigen uptake, antigenic presentation, CD86/MHC class I and CD11c expressions. MLR, Elispot and flow cytometry revealed that K33O treatment obviously enhanced CTL proliferation, CTL priming and perforin/granzyme B expression. The pretreatment with PI3K-Akt inhibitors efficiently abrogated K33O's effects on BMDC. The replenishment of K33 only mutant ubiquitin augments BMDC-mediated CTL priming in bone marrow-derived dendritic cells via PI3K-Akt signalling.


Subject(s)
Antigen Presentation , Bone Marrow Cells , Dendritic Cells , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , T-Lymphocytes, Cytotoxic , Ubiquitin , Dendritic Cells/immunology , Dendritic Cells/metabolism , Animals , Mice , Proto-Oncogene Proteins c-akt/metabolism , Ubiquitin/metabolism , T-Lymphocytes, Cytotoxic/immunology , Bone Marrow Cells/immunology , Bone Marrow Cells/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Antigen Presentation/immunology , Mice, Inbred C57BL , Phosphorylation , Lymphocyte Activation , Cell Differentiation , Mutation , Morpholines/pharmacology , Lymphocyte Culture Test, Mixed , Cell Proliferation , B7-2 Antigen/metabolism , B7-2 Antigen/genetics , B7-2 Antigen/immunology , Cells, Cultured , Chromones/pharmacology , Wortmannin/pharmacology , Androstadienes/pharmacology
19.
J Am Chem Soc ; 146(26): 17629-17635, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38909357

ABSTRACT

The total synthesis and structural elucidation of the antimicrobial sactipeptide enteropeptin A is reported. Enteropeptin A contains a thioaminoketal group with an unassigned stereochemical configuration that is embedded in a highly unusual thiomorpholine ring. In this synthesis, a linear peptide containing a dehydroamino acid and a pendant cysteine residue is subjected to Markovnikov hydrothiolation by a dithiophosphoric acid catalyst. This cyclization reaction forms the central thiomorpholine ring found in the enteropeptins. Both diastereomers at the unassigned thioaminoketal stereocenter of enteropeptin A were prepared, and their comparison to an authentic standard allowed for the unambiguous stereochemical assignment of the natural product to be of the D configuration. This inaugural total synthesis of enteropeptin A represents the first total synthesis of a sactipeptide reported to date. Moreover, the strategy disclosed herein serves as a general platform for the synthesis of stereochemically defined thiomorpholine-containing peptides, which may enable the discovery of new cyclic peptide antibiotics.


Subject(s)
Morpholines , Stereoisomerism , Cyclization , Morpholines/chemistry , Morpholines/chemical synthesis
20.
J Am Chem Soc ; 146(12): 8547-8556, 2024 03 27.
Article in English | MEDLINE | ID: mdl-38498689

ABSTRACT

Photocatalysis has found increasing applications in biological systems, for example, in localized prodrug activation; however, high-energy light is usually required without giving sufficient efficiency and target selectivity. In this work, we report that ion pairing between photocatalysts and prodrugs can significantly improve the photoactivation efficiency and enable tumor-targeted activation by red light. This is exemplified by a gold-based prodrug (1d) functionalized with a morpholine moiety. Such a modification causes 1d to hydrolyze in aqueous solution, forming a cationic species that tightly interacts with anionic photosensitizers including Eosin Y (EY) and Rose Bengal (RB), along with a significant bathochromic shift of absorption tailing to the far-red region. As a result, a high photoactivation efficiency of 1d by EY or RB under low-energy light was found, leading to an effective release of active gold species in living cells, as monitored by a gold-specific biosensor (GolS-mCherry). Importantly, the morpholine moiety, with pKa ∼6.9, in 1d brings in a highly pH-sensitive and preferential ionic interaction under a slightly acidic condition over the normal physiological pH, enabling tumor-targeted prodrug activation by red light irradiation in vitro and in vivo. Since a similar absorption change was found in other morpholine/amine-containing clinic drugs, photocages, and precursors of reactive labeling intermediates, it is believed that the ion-pairing strategy could be extended for targeted activation of different prodrugs and for mapping of an acidic microenvironment by low-energy light.


Subject(s)
Neoplasms , Prodrugs , Humans , Prodrugs/chemistry , Red Light , Morpholines , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL