Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 466
Filter
Add more filters

Publication year range
1.
Nature ; 574(7777): 259-263, 2019 10.
Article in English | MEDLINE | ID: mdl-31554973

ABSTRACT

Chikungunya virus (CHIKV) is a re-emerging alphavirus that is transmitted to humans by mosquito bites and causes musculoskeletal and joint pain1,2. Despite intensive investigations, the human cellular factors that are critical for CHIKV infection remain unknown, hampering the understanding of viral pathogenesis and the development of anti-CHIKV therapies. Here we identified the four-and-a-half LIM domain protein 1 (FHL1)3 as a host factor that is required for CHIKV permissiveness and pathogenesis in humans and mice. Ablation of FHL1 expression results in the inhibition of infection by several CHIKV strains and o'nyong-nyong virus, but not by other alphaviruses and flaviviruses. Conversely, expression of FHL1 promotes CHIKV infection in cells that do not normally express it. FHL1 interacts directly with the hypervariable domain of the nsP3 protein of CHIKV and is essential for the replication of viral RNA. FHL1 is highly expressed in CHIKV-target cells and is particularly abundant in muscles3,4. Dermal fibroblasts and muscle cells derived from patients with Emery-Dreifuss muscular dystrophy that lack functional FHL15 are resistant to CHIKV infection. Furthermore,  CHIKV infection  is undetectable in Fhl1-knockout mice. Overall, this study shows that FHL1 is a key factor expressed by the host that enables CHIKV infection and identifies the interaction between nsP3 and FHL1 as a promising target for the development of anti-CHIKV therapies.


Subject(s)
Chikungunya Fever/virology , Chikungunya virus/pathogenicity , Host-Derived Cellular Factors/metabolism , Host-Pathogen Interactions , Intracellular Signaling Peptides and Proteins/metabolism , LIM Domain Proteins/metabolism , Muscle Proteins/metabolism , Animals , Cells, Cultured , Chikungunya Fever/drug therapy , Chikungunya virus/drug effects , Chikungunya virus/genetics , Chikungunya virus/growth & development , Female , Fibroblasts/virology , HEK293 Cells , Host-Derived Cellular Factors/genetics , Humans , Intracellular Signaling Peptides and Proteins/deficiency , Intracellular Signaling Peptides and Proteins/genetics , LIM Domain Proteins/deficiency , LIM Domain Proteins/genetics , Male , Mice , Muscle Proteins/deficiency , Muscle Proteins/genetics , Myoblasts/virology , O'nyong-nyong Virus/growth & development , O'nyong-nyong Virus/pathogenicity , Protein Binding , RNA, Viral/biosynthesis , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication
2.
J Biol Chem ; 296: 100697, 2021.
Article in English | MEDLINE | ID: mdl-33895138

ABSTRACT

Down syndrome critical region (DSCR)-1 functions as a feedback modulator for calcineurin-nuclear factor for activated T cell (NFAT) signals, which are crucial for cell proliferation and inflammation. Stable expression of DSCR-1 inhibits pathological angiogenesis and septic inflammation. DSCR-1 also plays a critical role in vascular wall remodeling associated with aneurysm development that occurs primarily in smooth muscle cells. Besides, Dscr-1 deficiency promotes the M1-to M2-like phenotypic switch in macrophages, which correlates to the reduction of denatured cholesterol uptakes. However, the distinct roles of DSCR-1 in cholesterol and lipid metabolism are not well understood. Here, we show that loss of apolipoprotein (Apo) E in mice with chronic hypercholesterolemia induced Dscr-1 expression in the liver and aortic atheroma. In Dscr-1-null mice fed a high-fat diet, oxidative- and endoplasmic reticulum (ER) stress was induced, and sterol regulatory element-binding protein (SREBP) 2 production in hepatocytes was stimulated. This exaggerated ApoE-/--mediated nonalcoholic fatty liver disease (NAFLD) and subsequent hypercholesterolemia. Genome-wide screening revealed that loss of both ApoE and Dscr-1 resulted in the induction of immune- and leukocyte activation-related genes in the liver compared with ApoE deficiency alone. However, expressions of inflammation-activated markers and levels of monocyte adhesion were suspended upon induction of the Dscr-1 null background in the aortic endothelium. Collectively, our study shows that the combined loss of Dscr-1 and ApoE causes metabolic dysfunction in the liver but reduces atherosclerotic plaques, thereby leading to a dramatic increase in serum cholesterol and the formation of sporadic vasculopathy.


Subject(s)
Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Calcium-Binding Proteins/deficiency , Cholesterol/metabolism , Gene Deletion , Hypercholesterolemia/genetics , Muscle Proteins/deficiency , Animals , Calcium-Binding Proteins/genetics , Gene Expression Regulation , Hepatocytes/metabolism , Hypercholesterolemia/metabolism , Mice , Muscle Proteins/genetics , Phenotype
3.
Biochem Biophys Res Commun ; 596: 14-21, 2022 03 12.
Article in English | MEDLINE | ID: mdl-35104662

ABSTRACT

Vinexin ß is a member of an adaptor protein family. Previous research has elucidated its role in cell adhesion and growth factor signaling. Recently, several studies demonstrated its role in metabolic abnormality, such as obesity and atherosclerosis. In this study, we found that vinexin ß-knockout (KO) mice were more obese and gained more obvious visceral fat accumulation than their wildtype (WT) littermates fed with high fat diet (HFD). KO mice also showed more severe hepatosteatosis when compared with the WT control, which was in line with the significant increase of key serum lipids in KO mice. Furthermore, we confirmed the inhibited Akt signaling and exacerbated insulin resistance which resulted in high fasting blood glucose in KO mice. The endoplasmic reticulum stress response was found obviously activated which may mediate the metabolic changes in KO mice. Our studies indicated that vinexin ß deficiency promotes the diet-induced metabolic disorders.


Subject(s)
Endoplasmic Reticulum Stress/genetics , Fatty Liver/genetics , Insulin Resistance/genetics , Muscle Proteins/genetics , Obesity/genetics , Animals , Body Weight/genetics , Diet, High-Fat/adverse effects , Down-Regulation , Fatty Liver/etiology , Fatty Liver/metabolism , Gene Expression Regulation , Intra-Abdominal Fat/metabolism , Liver/metabolism , Liver/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Obese , Muscle Proteins/deficiency , Obesity/etiology , Obesity/metabolism
4.
Am J Physiol Heart Circ Physiol ; 320(1): H200-H210, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33216625

ABSTRACT

Sarcolipin (SLN) is an inhibitor of sarco/endoplasmic reticulum (SR) Ca2+-ATPase (SERCA) and expressed at high levels in the ventricles of animal models for and patients with Duchenne muscular dystrophy (DMD). The goal of this study was to determine whether the germline ablation of SLN expression improves cardiac SERCA function and intracellular Ca2+ (Ca2+i) handling and prevents cardiomyopathy in the mdx mouse model of DMD. Wild-type, mdx, SLN-haploinsufficient mdx (mdx:sln+/-), and SLN-deficient mdx (mdx:sln-/-) mice were used for this study. SERCA function and Ca2+i handling were determined by Ca2+ uptake assays and by measuring single-cell Ca2+ transients, respectively. Age-dependent disease progression was determined by histopathological examinations and by echocardiography in 6-, 12-, and 20-mo-old mice. Gene expression changes in the ventricles of mdx:sln+/- mice were determined by RNA-Seq analysis. SERCA function and Ca2+i cycling were improved in the ventricles of mdx:sln+/- mice. Fibrosis and necrosis were significantly decreased, and cardiac function was enhanced in the mdx:sln+/- mice until the study endpoint. The mdx:sln-/- mice also exhibited similar beneficial effects. RNA-Seq analysis identified distinct gene expression changes including the activation of the apelin pathway in the ventricles of mdx:sln+/- mice. Our findings suggest that reducing SLN expression is sufficient to improve cardiac SERCA function and Ca2+i cycling and prevent cardiomyopathy in mdx mice.NEW & NOTEWORTHY First, reducing sarcopolin (SLN) expression improves sarco/endoplasmic reticulum Ca2+ uptake and intracellular Ca2+ handling and prevents cardiomyopathy in mdx mice. Second, reducing SLN expression prevents diastolic dysfunction and improves cardiac contractility in mdx mice Third, reducing SLN expression activates apelin-mediated cardioprotective signaling pathways in mdx heart.


Subject(s)
Cardiomyopathies/prevention & control , Haploinsufficiency , Muscle Proteins/deficiency , Muscular Dystrophy, Duchenne/complications , Myocardium/metabolism , Proteolipids/deficiency , Animals , Apelin/genetics , Apelin/metabolism , Calcium/metabolism , Calcium Signaling , Cardiomyopathies/etiology , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Disease Models, Animal , Female , Fibrosis , Gene Expression Regulation , Male , Mice, Inbred C57BL , Mice, Inbred mdx , Mice, Knockout , Muscle Proteins/genetics , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Myocardium/pathology , Necrosis , Proteolipids/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Ventricular Function, Left
5.
Biochem Biophys Res Commun ; 556: 134-141, 2021 06 04.
Article in English | MEDLINE | ID: mdl-33839409

ABSTRACT

Oxidative stress is a deteriorating factor for pancreatic ß-cells under chronic hyperglycemia in diabetes. However, the molecular mechanism underlying the increase in oxidative stress in ß-cells under diabetic conditions remains unclear. We demonstrated previously that the selective alleviation of glucotoxicity ameliorated the downregulation of several ß-cell factors, including Cox6a2. Cox6a2 encodes a subunit of the respiratory chain complex IV in mitochondria. In this study, we analyzed the role of Cox6a2 in pancreatic ß-cell function and its pathophysiological significance in diabetes mellitus. Cox6a2-knockdown experiments in MIN6-CB4 cells indicated an increased production of reactive oxygen species as detected by CellROX Deep Red reagent using flow cytometry. In systemic Cox6a2-knockout mice, impaired glucose tolerance was observed under a high-fat high-sucrose diet. However, insulin resistance was reduced when compared with control littermates. This indicates a relative insufficiency of ß-cell function. To examine the transcriptional regulation of Cox6a2, ATAC-seq with islet DNA was performed and an open-chromatin area within the Cox6a2 enhancer region was detected. Reporter gene analysis using this area revealed that MafA directly regulates Cox6a2 expression. These findings suggest that the decreased expression of Cox6a2 increases the levels of reactive oxygen species and that Mafa is associated with decreased Cox6a2 expression under glucotoxic conditions.


Subject(s)
Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Muscle Proteins/deficiency , Reactive Oxygen Species/metabolism , Animals , Cell Line , Diabetes Mellitus, Experimental/metabolism , Electron Transport Complex IV/biosynthesis , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Gene Expression Regulation , Glucose/metabolism , Glucose Intolerance/genetics , HEK293 Cells , Humans , Insulin/metabolism , Insulin Resistance/genetics , Maf Transcription Factors, Large/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Muscle Proteins/biosynthesis , Muscle Proteins/genetics , Oxidative Stress , Transcription, Genetic
6.
Development ; 145(19)2018 10 01.
Article in English | MEDLINE | ID: mdl-30201685

ABSTRACT

Early mammalian development is crucially dependent on the establishment of oxidative energy metabolism within the trophectoderm (TE) lineage. Unlike the inner cell mass, TE cells enhance ATP production via mitochondrial oxidative phosphorylation (OXPHOS) and this metabolic preference is essential for blastocyst maturation. However, molecular mechanisms that regulate establishment of oxidative energy metabolism in TE cells are incompletely understood. Here, we show that conserved transcription factor TEAD4, which is essential for pre-implantation mammalian development, regulates this process by promoting mitochondrial transcription. In developing mouse TE and TE-derived trophoblast stem cells (TSCs), TEAD4 localizes to mitochondria, binds to mitochondrial DNA (mtDNA) and facilitates its transcription by recruiting mitochondrial RNA polymerase (POLRMT). Loss of TEAD4 impairs recruitment of POLRMT, resulting in reduced expression of mtDNA-encoded electron transport chain components, thereby inhibiting oxidative energy metabolism. Our studies identify a novel TEAD4-dependent molecular mechanism that regulates energy metabolism in the TE lineage to ensure mammalian development.


Subject(s)
DNA-Binding Proteins/metabolism , Embryonic Development/genetics , Energy Metabolism , Mammals/embryology , Mammals/genetics , Mitochondria/genetics , Muscle Proteins/metabolism , Transcription Factors/metabolism , Transcription, Genetic , Animals , Blastocyst/cytology , Blastocyst/metabolism , Blastocyst/ultrastructure , DNA, Mitochondrial/genetics , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , DNA-Directed RNA Polymerases/metabolism , Ectoderm/cytology , Electron Transport , Energy Metabolism/genetics , Mice , Mitochondria/ultrastructure , Models, Biological , Muscle Proteins/deficiency , Muscle Proteins/genetics , Oxidation-Reduction , Stem Cells/cytology , Stem Cells/metabolism , TEA Domain Transcription Factors , Transcription Factors/deficiency , Transcription Factors/genetics , Trophoblasts/cytology
7.
Cell Tissue Res ; 385(3): 675-696, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34037836

ABSTRACT

The desmin-associated protein myospryn, encoded by the cardiomyopathy-associated gene 5 (CMYA5), is a TRIM-like protein associated to the BLOC-1 (Biogenesis of Lysosomes Related Organelles Complex 1) protein dysbindin. Human myospryn mutations are linked to both cardiomyopathy and schizophrenia; however, there is no evidence of a direct causative link of myospryn to these diseases. Therefore, we sought to unveil the role of myospryn in heart and brain. We have genetically inactivated the myospryn gene by homologous recombination and demonstrated that myospryn null hearts have dilated phenotype and compromised cardiac function. Ultrastructural analyses revealed that the sarcomere organization is not obviously affected; however, intercalated disk (ID) integrity is impaired, along with mislocalization of ID and sarcoplasmic reticulum (SR) protein components. Importantly, cardiac and skeletal muscles of myospryn null mice have severe mitochondrial defects with abnormal internal vacuoles and extensive cristolysis. In addition, swollen SR and T-tubules often accompany the mitochondrial defects, strongly implying a potential link of myospryn together with desmin to SR- mitochondrial physical and functional cross-talk. Furthermore, given the reported link of human myospryn mutations to schizophrenia, we performed behavioral studies, which demonstrated that myospryn-deficient male mice display disrupted startle reactivity and prepulse inhibition, asocial behavior, decreased exploratory behavior, and anhedonia. Brain neurochemical and ultrastructural analyses revealed prefrontal-striatal monoaminergic neurotransmitter defects and ultrastructural degenerative aberrations in cerebellar cytoarchitecture, respectively, in myospryn-deficient mice. In conclusion, myospryn is essential for both cardiac and brain structure and function and its deficiency leads to cardiomyopathy and schizophrenia-associated symptoms.


Subject(s)
Intracellular Signaling Peptides and Proteins/deficiency , Muscle Proteins/deficiency , Myocardium/pathology , Schizophrenia/genetics , Animals , Female , Humans , Male , Mice
8.
Circ Res ; 124(2): 256-262, 2019 01 18.
Article in English | MEDLINE | ID: mdl-30582449

ABSTRACT

RATIONALE: Somatic overexpression in mice using an adeno-associated virus (AAV) as gene transfer vectors has become a valuable tool to analyze the roles of specific genes in cardiac diseases. The lack of atrial-specific AAV vector has been a major obstacle for studies into the pathogenesis of atrial diseases. Moreover, gene therapy studies for atrial fibrillation would benefit from atrial-specific vectors. Atrial natriuretic factor (ANF) promoter drives gene expression specifically in atrial cardiomyocytes. OBJECTIVE: To establish the platform of atrial specific in vivo gene delivery by AAV-ANF. METHODS AND RESULTS: We constructed AAV vectors based on serotype 9 (AAV9) that are driven by the atrial-specific ANF promoter. Hearts from mice injected with AAV9-ANF-GFP (green fluorescent protein) exhibited strong and atrial-specific GFP expression without notable GFP in ventricular tissue. In contrast, similar vectors containing a cardiac troponin T promoter (AAV9-TNT4-GFP) showed GFP expression in all 4 chambers of the heart, while AAV9 with an enhanced chicken ß-actin promoter (AAV-enCB-GFP) caused ubiquitous GFP expression. Next, we used Rosa26mT/mG (membrane-targeted tandem dimer Tomato/membrane-targeted GFP), a double-fluorescent Cre reporter mouse that expresses membrane-targeted tandem dimer Tomato before Cre-mediated excision, and membrane-targeted GFP after excision. AAV9-ANF-Cre led to highly efficient LoxP recombination in membrane-targeted tandem dimer Tomato/membrane-targeted green fluorescent protein mice with high specificity for the atria. We measured the frequency of transduced cardiomyocytes in atria by detecting Cre-dependent GFP expression from the Rosa26mT/mG allele. AAV9 dose was positively correlated with the number of GFP-positive atrial cardiomyocytes. Finally, we assessed whether the AAV9-ANF-Cre vector could be used to induce atrial-specific gene knockdown in proof-of-principle experiments using conditional JPH2 (junctophilin-2) knockdown mice. Four weeks after AAV9-ANF-Cre injection, a strong reduction in atrial expression of JPH2 protein was observed. Furthermore, there was evidence for abnormal Ca2+ handling in atrial myocytes isolated from mice with atrial-restricted JPH2 deficiency. CONCLUSIONS: AAV9-ANF vectors produce efficient, dose-dependent, and atrial-specific gene expression following a single-dose systemic delivery in mice. This vector is a novel reagent for both mechanistic and gene therapy studies on atrial diseases.


Subject(s)
Dependovirus/genetics , Gene Knock-In Techniques , Gene Knockdown Techniques , Gene Transfer Techniques , Genetic Vectors , Heart Atria/metabolism , Myocytes, Cardiac/metabolism , Natriuretic Peptide, C-Type/genetics , Protein Precursors/genetics , Animals , Atrial Natriuretic Factor , Calcium Signaling , Dependovirus/metabolism , Disease Models, Animal , Down-Regulation , Female , Genes, Reporter , Heart Atria/pathology , Heart Atria/physiopathology , Heart Failure/genetics , Heart Failure/metabolism , Heart Failure/pathology , Heart Failure/physiopathology , Luminescent Proteins/biosynthesis , Luminescent Proteins/genetics , Male , Membrane Proteins/deficiency , Membrane Proteins/genetics , Mice, Inbred C57BL , Mice, Transgenic , Muscle Proteins/deficiency , Muscle Proteins/genetics , Myocytes, Cardiac/pathology , Promoter Regions, Genetic , Up-Regulation
9.
Pharmacol Res ; 165: 105421, 2021 03.
Article in English | MEDLINE | ID: mdl-33429034

ABSTRACT

High-throughput screening identified isoxazoles as potent but metabolically unstable inhibitors of the mitochondrial permeability transition pore (PTP). Here we have studied the effects of a metabolically stable triazole analog, TR001, which maintains the PTP inhibitory properties with an in vitro potency in the nanomolar range. We show that TR001 leads to recovery of muscle structure and function of sapje zebrafish, a severe model of Duchenne muscular dystrophy (DMD). PTP inhibition fully restores the otherwise defective respiration in vivo, allowing normal development of sapje individuals in spite of lack of dystrophin. About 80 % sapje zebrafish treated with TR001 are alive and normal at 18 days post fertilization (dpf), a point in time when not a single untreated sapje individual survives. Time to 50 % death of treated zebrafish increases from 5 to 28 dpf, a sizeable number of individuals becoming young adults in spite of the persistent lack of dystrophin expression. TR001 improves respiration of myoblasts and myotubes from DMD patients, suggesting that PTP-dependent dysfunction also occurs in the human disease and that mitochondrial therapy of DMD with PTP-inhibiting triazoles is a viable treatment option.


Subject(s)
Membrane Proteins/deficiency , Mitochondrial Permeability Transition Pore/antagonists & inhibitors , Mitochondrial Permeability Transition Pore/metabolism , Muscle Proteins/deficiency , Triazoles/pharmacology , Zebrafish Proteins/deficiency , Animals , Animals, Genetically Modified , Cell Line, Transformed , Dose-Response Relationship, Drug , Humans , Locomotion/drug effects , Locomotion/physiology , Membrane Proteins/genetics , Muscle Proteins/genetics , Rhodamines/pharmacology , Triazoles/chemistry , Zebrafish , Zebrafish Proteins/genetics
10.
Arterioscler Thromb Vasc Biol ; 40(10): 2425-2439, 2020 10.
Article in English | MEDLINE | ID: mdl-32787520

ABSTRACT

OBJECTIVE: The calcineurin-NFAT (nuclear factor for activated T cells)-DSCR (Down syndrome critical region)-1 pathway plays a crucial role as the downstream effector of VEGF (vascular endothelial growth factor)-mediated tumor angiogenesis in endothelial cells. A role for DSCR-1 in different organ microenvironment such as the cornea and its role in ocular diseases is not well understood. Corneal changes can be indicators of various disease states and are easily detected through ocular examinations. Approach and Results: The presentation of a corneal arcus or a corneal opacity due to lipid deposition in the cornea often indicates hyperlipidemia and in most cases, hypercholesterolemia. Although the loss of Apo (apolipoprotein) E has been well characterized and is known to lead to elevated serum cholesterol levels, there are few corneal changes observed in ApoE-/- mice. In this study, we show that the combined loss of ApoE and DSCR-1 leads to a dramatic increase in serum cholesterol levels and severe corneal opacity with complete penetrance. The cornea is normally maintained in an avascular state; however, loss of Dscr-1 is sufficient to induce hyper-inflammatory and -oxidative condition, increased corneal neovascularization, and lymphangiogenesis. Furthermore, immunohistological analysis and genome-wide screening revealed that loss of Dscr-1 in mice triggers increased immune cell infiltration and upregulation of SDF (stromal derived factor)-1 and its receptor, CXCR4 (C-X-C motif chemokine ligand receptor-4), potentiating this signaling axis in the cornea, thereby contributing to pathological corneal angiogenesis and opacity. CONCLUSIONS: This study is the first demonstration of the critical role for the endogenous inhibitor of calcineurin, DSCR-1, and pathological corneal angiogenesis in hypercholesterolemia induced corneal opacity.


Subject(s)
Calcium-Binding Proteins/deficiency , Corneal Neovascularization/etiology , Corneal Opacity/etiology , Endothelial Cells/metabolism , Endothelium, Corneal/metabolism , Hypercholesterolemia/complications , Muscle Proteins/deficiency , Animals , Calcium-Binding Proteins/genetics , Chemokine CXCL12/metabolism , Chemotaxis, Leukocyte , Corneal Neovascularization/genetics , Corneal Neovascularization/metabolism , Corneal Neovascularization/pathology , Corneal Opacity/genetics , Corneal Opacity/metabolism , Corneal Opacity/pathology , DNA-Binding Proteins/metabolism , Disease Models, Animal , Disease Progression , Endothelial Cells/pathology , Endothelium, Corneal/pathology , Eye Infections, Fungal/metabolism , Eye Infections, Fungal/pathology , HEK293 Cells , Humans , Hypercholesterolemia/genetics , Hypercholesterolemia/metabolism , Lymphangiogenesis , Male , Mice, Inbred C57BL , Mice, Knockout, ApoE , Muscle Proteins/genetics , Muscle Proteins/metabolism , Oxidative Stress , Receptors, CXCR4/metabolism , Signal Transduction , Stevens-Johnson Syndrome/metabolism , Stevens-Johnson Syndrome/pathology , Time Factors , Vascular Endothelial Growth Factor A/metabolism
11.
PLoS Genet ; 14(11): e1007755, 2018 11.
Article in English | MEDLINE | ID: mdl-30444878

ABSTRACT

Recent genome-wide association studies (GWAS) have identified multiple new loci which appear to alter coronary artery disease (CAD) risk via arterial wall-specific mechanisms. One of the annotated genes encodes LMOD1 (Leiomodin 1), a member of the actin filament nucleator family that is highly enriched in smooth muscle-containing tissues such as the artery wall. However, it is still unknown whether LMOD1 is the causal gene at this locus and also how the associated variants alter LMOD1 expression/function and CAD risk. Using epigenomic profiling we recently identified a non-coding regulatory variant, rs34091558, which is in tight linkage disequilibrium (LD) with the lead CAD GWAS variant, rs2820315. Herein we demonstrate through expression quantitative trait loci (eQTL) and statistical fine-mapping in GTEx, STARNET, and human coronary artery smooth muscle cell (HCASMC) datasets, rs34091558 is the top regulatory variant for LMOD1 in vascular tissues. Position weight matrix (PWM) analyses identify the protective allele rs34091558-TA to form a conserved Forkhead box O3 (FOXO3) binding motif, which is disrupted by the risk allele rs34091558-A. FOXO3 chromatin immunoprecipitation and reporter assays show reduced FOXO3 binding and LMOD1 transcriptional activity by the risk allele, consistent with effects of FOXO3 downregulation on LMOD1. LMOD1 knockdown results in increased proliferation and migration and decreased cell contraction in HCASMC, and immunostaining in atherosclerotic lesions in the SMC lineage tracing reporter mouse support a key role for LMOD1 in maintaining the differentiated SMC phenotype. These results provide compelling functional evidence that genetic variation is associated with dysregulated LMOD1 expression/function in SMCs, together contributing to the heritable risk for CAD.


Subject(s)
Autoantigens/genetics , Coronary Artery Disease/genetics , Cytoskeletal Proteins/genetics , Myocytes, Smooth Muscle/metabolism , Alleles , Animals , Autoantigens/metabolism , Becaplermin/metabolism , Binding Sites/genetics , Cells, Cultured , Chromosome Mapping , Coronary Artery Disease/etiology , Coronary Artery Disease/metabolism , Coronary Vessels/metabolism , Cytoskeletal Proteins/antagonists & inhibitors , Cytoskeletal Proteins/deficiency , Cytoskeletal Proteins/metabolism , Disease Models, Animal , Forkhead Box Protein O3/metabolism , Gene Knockdown Techniques , Genome-Wide Association Study , Humans , Linkage Disequilibrium , Male , Mice , Mice, Transgenic , Models, Cardiovascular , Muscle Proteins/deficiency , Muscle Proteins/genetics , Protein Binding , Quantitative Trait Loci , Risk Factors
12.
Int J Mol Sci ; 22(18)2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34575879

ABSTRACT

Different forms of sudden cardiac death have been described, including a recently identified form of genetic arrhythmogenic disorder, named "Triadin KnockOut Syndrome" (TKOS). TKOS is associated with recessive mutations in the TRDN gene, encoding for TRIADIN, but the pathogenic mechanism underlying the malignant phenotype has yet to be completely defined. Moreover, patients with TKOS are often refractory to conventional treatment, substantiating the need to identify new therapeutic strategies in order to prevent or treat cardiac events. The zebrafish (Danio rerio) heart is highly comparable to the human heart in terms of functions, signal pathways and ion channels, representing a good model to study cardiac disorders. In this work, we generated the first zebrafish model for trdn loss-of-function, by means of trdn morpholino injections, and characterized its phenotype. Although we did not observe any gross cardiac morphological defect between trdn loss-of-function embryos and controls, we found altered cardiac rhythm that was recovered by the administration of arrhythmic drugs. Our model will provide a suitable platform to study the effect of TRDN mutations and to perform drug screening to identify new pharmacological strategies for patients carrying TRDN mutations.


Subject(s)
Death, Sudden, Cardiac/etiology , Disease Models, Animal , Genetic Association Studies , Genetic Predisposition to Disease , Muscle Proteins/deficiency , Animals , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/genetics , Carrier Proteins , Gene Expression , Gene Knockout Techniques , Humans , Loss of Function Mutation , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Phenotype , Syndrome , Zebrafish
13.
Int J Mol Sci ; 22(12)2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34204426

ABSTRACT

The last decade has witnessed the identification of several families affected by hereditary non-syndromic hearing loss (NSHL) caused by mutations in the SMPX gene and the loss of function has been suggested as the underlying mechanism. In the attempt to confirm this hypothesis we generated an Smpx-deficient zebrafish model, pointing out its crucial role in proper inner ear development. Indeed, a marked decrease in the number of kinocilia together with structural alterations of the stereocilia and the kinocilium itself in the hair cells of the inner ear were observed. We also report the impairment of the mechanotransduction by the hair cells, making SMPX a potential key player in the construction of the machinery necessary for sound detection. This wealth of evidence provides the first possible explanation for hearing loss in SMPX-mutated patients. Additionally, we observed a clear muscular phenotype consisting of the defective organization and functioning of muscle fibers, strongly suggesting a potential role for the protein in the development of muscle fibers. This piece of evidence highlights the need for more in-depth analyses in search for possible correlations between SMPX mutations and muscular disorders in humans, thus potentially turning this non-syndromic hearing loss-associated gene into the genetic cause of dysfunctions characterized by more than one symptom, making SMPX a novel syndromic gene.


Subject(s)
Ear, Inner/embryology , Ear, Inner/metabolism , Muscle Proteins/deficiency , Muscles/embryology , Muscles/metabolism , Zebrafish/embryology , Zebrafish/genetics , Animals , Embryonic Development , Fluorescent Antibody Technique , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Hair Cells, Auditory/metabolism , Mechanotransduction, Cellular/genetics , Muscle Development/genetics , Organogenesis/genetics , Phenotype , Protein Transport
14.
Int J Mol Sci ; 22(20)2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34681711

ABSTRACT

Congenital heart disease (CHD) is one of the most common birth defects in humans, present in around 40% of newborns with Down's syndrome (DS). The SH3 domain-binding glutamic acid-rich (SH3BGR) gene, which maps to the DS region, belongs to a gene family encoding a cluster of small thioredoxin-like proteins sharing SH3 domains. Although its expression is confined to the cardiac and skeletal muscle, the physiological role of SH3BGR in the heart is poorly understood. Interestingly, we observed a significant upregulation of SH3BGR in failing hearts of mice and human patients with hypertrophic cardiomyopathy. Along these lines, the overexpression of SH3BGR exhibited a significant increase in the expression of hypertrophic markers (Nppa and Nppb) and increased cell surface area in neonatal rat ventricular cardiomyocytes (NRVCMs), whereas its knockdown attenuated cellular hypertrophy. Mechanistically, using serum response factor (SRF) response element-driven luciferase assays in the presence or the absence of RhoA or its inhibitor, we found that the pro-hypertrophic effects of SH3BGR are mediated via the RhoA-SRF axis. Furthermore, SH3BGR knockdown resulted in the induction of apoptosis and reduced cell viability in NRVCMs via apoptotic Hippo-YAP signaling. Taking these results together, we here show that SH3BGR is vital for maintaining cytoskeletal integrity and cellular viability in NRVCMs through its modulation of the SRF/YAP signaling pathways.


Subject(s)
Apoptosis , Muscle Proteins/genetics , Actinin/metabolism , Animals , Animals, Newborn , Cells, Cultured , Heart Ventricles/cytology , Hippo Signaling Pathway , Muscle Proteins/deficiency , Muscle Proteins/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Rats , Serum Response Factor/genetics , Serum Response Factor/metabolism , YAP-Signaling Proteins/metabolism , rhoA GTP-Binding Protein/antagonists & inhibitors , rhoA GTP-Binding Protein/metabolism
15.
Int J Mol Sci ; 22(14)2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34298968

ABSTRACT

Mitochondrial dysfunction is considered the major contributor to skeletal muscle wasting in different conditions. Genetically determined neuromuscular disorders occur as a result of mutations in the structural proteins of striated muscle cells and therefore are often combined with cardiac phenotype, which most often manifests as a cardiomyopathy. The specific roles played by mitochondria and mitochondrial energetic metabolism in skeletal muscle under muscle-wasting conditions in cardiomyopathies have not yet been investigated in detail, and this aspect of genetic muscle diseases remains poorly characterized. This review will highlight dysregulation of mitochondrial representation and bioenergetics in specific skeletal muscle disorders caused by mutations that disrupt the structural and functional integrity of muscle cells.


Subject(s)
Cardiomyopathies/genetics , Heart/physiopathology , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Neuromuscular Diseases/genetics , Animals , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Disease Models, Animal , Energy Metabolism , Humans , Mice , Mitochondria, Heart/metabolism , Muscle Proteins/deficiency , Muscle Proteins/genetics , Muscle Proteins/physiology , Muscle, Skeletal/ultrastructure , Muscular Atrophy/metabolism , Muscular Dystrophies/genetics , Muscular Dystrophies/metabolism , Muscular Dystrophies/pathology , Muscular Dystrophy, Animal/genetics , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Animal/pathology , Neuromuscular Diseases/metabolism , Neuromuscular Diseases/pathology , Phenotype
16.
Int J Mol Sci ; 22(14)2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34298987

ABSTRACT

Limb-girdle muscular dystrophy R1 calpain 3-related (LGMDR1) is an autosomal recessive muscular dystrophy produced by mutations in the CAPN3 gene. It is a rare disease and there is no cure or treatment for the disease while the pathophysiological mechanism by which the absence of calpain 3 provokes the dystrophy in muscles is not clear. However, key proteins implicated in Wnt and mTOR signaling pathways, which regulate muscle homeostasis, showed a considerable reduction in their expression and in their phosphorylation in LGMDR1 patients' muscles. Finally, the administration of tideglusib and VP0.7, ATP non-competitive inhibitors of glycogen synthase kinase 3ß (GSK-3ß), restore the expression and phosphorylation of these proteins in LGMDR1 cells, opening the possibility of their use as therapeutic options.


Subject(s)
Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Muscular Dystrophies, Limb-Girdle/drug therapy , Nerve Tissue Proteins/antagonists & inhibitors , Signal Transduction/drug effects , Adenosine Triphosphate/metabolism , Allosteric Site/drug effects , CD56 Antigen/analysis , Calpain/deficiency , Calpain/genetics , Fibroblasts/drug effects , Fibroblasts/metabolism , Gene Expression Regulation/drug effects , Glycogen Synthase Kinase 3 beta/chemistry , Humans , Hydrazines/pharmacology , Hydrazines/therapeutic use , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle Proteins/deficiency , Muscle Proteins/genetics , Muscular Dystrophies, Limb-Girdle/enzymology , Nerve Tissue Proteins/chemistry , Phosphorylation , Protein Processing, Post-Translational/drug effects , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/physiology , Quinolones/pharmacology , Quinolones/therapeutic use , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/physiology , Thiadiazoles/pharmacology , Thiadiazoles/therapeutic use , Wnt Signaling Pathway/drug effects
17.
Am J Physiol Cell Physiol ; 318(6): C1092-C1106, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32233951

ABSTRACT

Intraflagellar transport (IFT) is an evolutionarily conserved mechanism that is indispensable for the formation and maintenance of cilia and flagella; however, the implications and functions of IFT81 remain unknown. In this study, we disrupted IFT81 expression in male germ cells starting from the spermatocyte stage. As a result, homozygous mutant males were completely infertile and displayed abnormal sperm parameters. In addition to oligozoospermia, spermatozoa presented dysmorphic and nonfunctional flagella. Histological examination of testes from homozygous mutant mice revealed abnormal spermiogenesis associated with sloughing of germ cells and the presence of numerous multinucleated giant germ cells (symblasts) in the lumen of seminiferous tubules and epididymis. Moreover, only few elongated spermatids and spermatozoa were seen in analyzed cross sections. Transmission electron microscopy showed a complete disorganization of the axoneme and para-axonemal structures such as the mitochondrial sheath, fibrous sheath, and outer dense fibers. In addition, numerous vesicles that contain unassembled microtubules were observed within developing spermatids. Acrosome structure analysis showed normal appearance, thus excluding a crucial role of IFT81 in acrosome biogenesis. These observations showed that IFT81 is an important member of the IFT process during spermatogenesis and that its absence is associated with abnormal flagellum formation leading to male infertility. The expression levels of several IFT components in testes, including IFT20, IFT25, IFT27, IFT57, IFT74, and IFT88, but not IFT140, were significantly reduced in homozygous mutant mice. Overall, our study demonstrates that IFT81 plays an essential role during spermatogenesis by modulating the assembly and elongation of the sperm flagella.


Subject(s)
Fertility , Flagella/metabolism , Infertility, Male/metabolism , Microtubule-Associated Proteins/metabolism , Muscle Proteins/metabolism , Spermatocytes/metabolism , Spermatogenesis , Testis/metabolism , Animals , Cytoskeletal Proteins/metabolism , Epididymis/metabolism , Epididymis/physiopathology , Epididymis/ultrastructure , Flagella/ultrastructure , Infertility, Male/genetics , Infertility, Male/pathology , Infertility, Male/physiopathology , Male , Mice, Inbred C57BL , Mice, Knockout , Microtubule-Associated Proteins/deficiency , Microtubule-Associated Proteins/genetics , Muscle Proteins/deficiency , Muscle Proteins/genetics , Signal Transduction , Sperm Count , Sperm Motility , Spermatocytes/ultrastructure , Testis/physiopathology , Testis/ultrastructure
18.
Hum Mol Genet ; 27(9): 1608-1617, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29474540

ABSTRACT

Centronuclear myopathies (CNM) are a subtype of congenital myopathies (CM) characterized by skeletal muscle weakness and an increase in the number of central myonuclei. We have previously identified three CNM probands, two with associated dilated cardiomyopathy, carrying striated preferentially expressed gene (SPEG) mutations. Currently, the role of SPEG in skeletal muscle function is unclear as constitutive SPEG-deficient mice developed severe dilated cardiomyopathy and died in utero. We have generated a conditional Speg-KO mouse model and excised Speg by crosses with striated muscle-specific cre-expressing mice (MCK-Cre). The resulting litters had a delay in Speg excision consistent with cre expression starting in early postnatal life and, therefore, an extended lifespan up to a few months. KO mice were significantly smaller and weaker than their littermate-matched controls. Histopathological skeletal muscle analysis revealed smaller myofibers, marked fiber-size variability, and poor integrity and low number of triads. Further, SPEG-deficient muscle fibers were weaker by physiological and in vitro studies and exhibited abnormal Ca2+ handling and excitation-contraction (E-C) coupling. Overall, SPEG deficiency in skeletal muscle is associated with fewer and abnormal triads, and defective calcium handling and excitation-contraction coupling, suggesting that therapies targeting calcium signaling may be beneficial in such patients.


Subject(s)
Calcium/metabolism , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Myopathies, Structural, Congenital/metabolism , Myopathies, Structural, Congenital/pathology , Myosin-Light-Chain Kinase/metabolism , Animals , Calcium Signaling/physiology , Female , Mice , Muscle Proteins/deficiency , Muscle Proteins/genetics , Myosin-Light-Chain Kinase/deficiency , Myosin-Light-Chain Kinase/genetics
19.
Biochem Biophys Res Commun ; 523(1): 105-111, 2020 02 26.
Article in English | MEDLINE | ID: mdl-31836140

ABSTRACT

BACKGROUND: Mutations in the four and-a-half LIM domain protein 1 (FHL1) gene or FHL1 protein deletion have been identified as the cause of rare hereditary myopathies or cardiomyopathies. In our previous study, autophagy activation was associated with myofibrillar abnormalities in FHL1 knockout (KO) mice. P2RX7 induces cell death, such as autophagy, pyroptosis or apoptosis via cell-specific downstream signaling; however, the roles of P2RX7 in pyroptosis or apoptosis in myofibrillar abnormalities in FHL1 KO mice have not been well elucidated. METHODS: In this study, skeletal muscle and heart of 2.5 months old WT and FHL1 KO male mice histomorphology were examined by hematoxylin and eosin staining. The indicators for pyroptosis (NLRP3; ASC; cleaved-caspase1; IL-1ß), apoptosis (Apaf-1; Bcl-2; caspase9; cleaved-caspase3), and P2RX7 were detected in the triceps (Tri), tibialis anterior muscles (TA), and heart by western blot and/or immunohistochemistry in WT and FHL1 KO male mice. RESULTS: Indicators for pyroptosis (ASC; cleaved-caspase1; IL-1ß) and apoptosis (Apaf-1 and cleaved-caspase3), as well as P2RX7 were upregulated in Tri, tibialis TA, and heart in FHL1 KO mice, indicating pyroptosis and apoptosis play important roles in myofibrillar abnormalities in FHL1 KO mice. CONCLUSIONS: P2RX7 may participate in myofibrillar abnormalities by activating pyroptosis and apoptosis in FHL1 KO mice. These findings have basic implications for the understanding of myopathies induced by FHL1 deficiency and provide new avenues for the treatment of these hereditary myopathies by modulating P2RX7.


Subject(s)
Apoptosis , Intracellular Signaling Peptides and Proteins/deficiency , Intracellular Signaling Peptides and Proteins/metabolism , LIM Domain Proteins/deficiency , LIM Domain Proteins/metabolism , Muscle Proteins/deficiency , Muscle Proteins/metabolism , Muscular Diseases/metabolism , Animals , Male , Mice , Mice, Knockout , Muscle, Skeletal/metabolism , Muscular Diseases/pathology , Receptors, Purinergic P2X7/metabolism
20.
Biochem Biophys Res Commun ; 529(4): 1086-1093, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32819569

ABSTRACT

Non-small cell lung cancer (NSCLC) is the leading cause of tumor mortality worldwide. However, the mechanisms underlying NSCLC tumorigenesis are incompletely understood. TAGLN, also named SM22, as a member of the calponin family, is highly expressed in many types of tumors. Nevertheless, its effects on NSCLC progression remain unclear. In this study, we found that TAGLN was over-expressed in tumor tissues of NSCLC patients and cell lines. Additionally, NSCLC patients with high expression showed worse overall survival rate. Then, gene silencing results indicated that TAGLN knockdown markedly inhibited proliferation and induced apoptosis in NSCLC cells, while rescue study exhibited opposite results. Moreover, suppressing TAGLN significantly reduced migration and invasion of NSCLC cells, and its over-expression promoted the migratory and invasive activities of NSCLC cells. The in vivo studies confirmed the oncogenic roles of TAGLN in NSCLC, along with clearly elevated metastasis. Notably, these effects were abrogated in mice with TAGLN deletion. Finally, we found that TAGLN knockdown could improve the sensitivity of NSCLC cells to sorafenib (SFB) and 5-FU treatment, further suppressing the proliferation, migration and invasion of NSCLC cells. Consistently, TAGLN deletion attenuated tumor xenografts growth and metastasis of NSCLC in mouse models by enhancing the anti-cancer effects of SFB and 5-FU. Altogether, these findings demonstrated that TAGLN functioned as an oncogene as well as a chemotherapeutic regulator during NSCLC development, which suggested a potential therapeutic strategy for NSCLC treatment mainly through repressing TAGLN expression.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Microfilament Proteins/deficiency , Muscle Proteins/deficiency , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/genetics , Cell Proliferation , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Gene Expression Regulation, Neoplastic/drug effects , Gene Knockdown Techniques , Humans , Lung Neoplasms/genetics , Male , Mice, Inbred BALB C , Microfilament Proteins/metabolism , Muscle Proteins/metabolism , Neoplasm Invasiveness , Neoplasm Metastasis , Sorafenib/pharmacology , Sorafenib/therapeutic use , Up-Regulation/drug effects , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL