Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Immunity ; 44(5): 1114-26, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27192577

ABSTRACT

Regulatory T (Treg) cells expressing Foxp3 transcripton factor are essential for immune homeostasis. They arise in the thymus as a separate lineage from conventional CD4(+)Foxp3(-) T (Tconv) cells. Here, we show that the thymic development of Treg cells depends on the expression of their endogenous cognate self-antigen. The formation of these cells was impaired in mice lacking this self-antigen, while Tconv cell development was not negatively affected. Thymus-derived Treg cells were selected by self-antigens in a specific manner, while autoreactive Tconv cells were produced through degenerate recognition of distinct antigens. These distinct modes of development were associated with the expression of T cell receptor of higher functional avidity for self-antigen by Treg cells than Tconv cells, a difference subsequently essential for the control of autoimmunity. Our study documents how self-antigens define the repertoire of thymus-derived Treg cells to subsequently endow this cell type with the capacity to undermine autoimmune attack.


Subject(s)
CTLA-4 Antigen/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Multiple Sclerosis/immunology , Myelin-Oligodendrocyte Glycoprotein/metabolism , T-Lymphocyte Subsets/physiology , T-Lymphocytes, Regulatory/physiology , Thymus Gland/immunology , Animals , Autoantigens/immunology , CTLA-4 Antigen/genetics , Cells, Cultured , Clonal Selection, Antigen-Mediated , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Myelin-Oligodendrocyte Glycoprotein/genetics , Myelin-Oligodendrocyte Glycoprotein/immunology , Peptide Fragments/genetics , Peptide Fragments/immunology , Peptide Fragments/metabolism , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , T-Cell Antigen Receptor Specificity/genetics
2.
J Biol Chem ; 299(4): 103065, 2023 04.
Article in English | MEDLINE | ID: mdl-36841486

ABSTRACT

The peptide spanning residues 35 to 55 of the protein myelin oligodendrocyte glycoprotein (MOG) has been studied extensively in its role as a key autoantigen in the neuroinflammatory autoimmune disease multiple sclerosis. Rodents and nonhuman primate species immunized with this peptide develop a neuroinflammatory condition called experimental autoimmune encephalomyelitis, often used as a model for multiple sclerosis. Over the last decade, the role of citrullination of this antigen in the disease onset and progression has come under increased scrutiny. We recently reported on the ability of these citrullinated MOG35-55 peptides to aggregate in an amyloid-like fashion, suggesting a new potential pathogenic mechanism underlying this disease. The immunodominant region of MOG is highly conserved between species, with the only difference between the murine and human protein, a polymorphism on position 42, which is serine in mice and proline for humans. Here, we show that the biophysical and biochemical behavior we previously observed for citrullinated murine MOG35-55 is fundamentally different for human and mouse MOG35-55. The citrullinated human peptides do not show amyloid-like behavior under the conditions where the murine peptides do. Moreover, we tested the ability of these peptides to stimulate lymphocytes derived from MOG immunized marmoset monkeys. While the citrullinated murine peptides did not produce a proliferative response, one of the citrullinated human peptides did. We postulate that this unexpected difference is caused by disparate antigen processing. Taken together, our results suggest that further study on the role of citrullination in MOG-induced experimental autoimmune encephalomyelitis is necessary.


Subject(s)
Citrullination , Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Myelin-Oligodendrocyte Glycoprotein , Animals , Humans , Mice , Amyloid , Amyloidogenic Proteins , Autoantigens/genetics , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Mice, Inbred C57BL , Multiple Sclerosis/genetics , Multiple Sclerosis/metabolism , Myelin-Oligodendrocyte Glycoprotein/genetics , Myelin-Oligodendrocyte Glycoprotein/chemistry , Peptide Fragments/chemistry
3.
Immunity ; 42(1): 95-107, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25601203

ABSTRACT

T cell receptor (TCR) cross-reactivity between major histocompatibility complex II (MHCII)-binding self and foreign peptides could influence the naive CD4(+) T cell repertoire and autoimmunity. We found that nonamer peptides that bind to the same MHCII molecule only need to share five amino acids to cross-react on the same TCR. This property was biologically relevant because systemic expression of a self peptide reduced the size of a naive cell population specific for a related foreign peptide by deletion of cells with cross-reactive TCRs. Reciprocally, an incompletely deleted naive T cell population specific for a tissue-restricted self peptide could be triggered by related microbial peptides to cause autoimmunity. Thus, TCR cross-reactivity between similar self and foreign peptides can reduce the size of certain foreign peptide-specific T cell populations and might allow T cell populations specific for tissue-restricted self peptides to cause autoimmunity after infection.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Multiple Sclerosis/immunology , Myelin-Oligodendrocyte Glycoprotein/immunology , Peptide Fragments/immunology , Animals , Autoimmunity , Cells, Cultured , Clonal Selection, Antigen-Mediated , Cross Reactions , Histocompatibility Antigens Class II/metabolism , Humans , Mice , Mice, Inbred C57BL , Mutagenesis, Site-Directed , Mutation/genetics , Myelin-Oligodendrocyte Glycoprotein/genetics , Peptide Fragments/genetics , Proteomics , Receptors, Antigen, T-Cell/metabolism
4.
J Immunol ; 207(6): 1513-1521, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34400521

ABSTRACT

B cells have been implicated in the pathogenesis of multiple sclerosis, but the mechanisms that guide B cell activation in the periphery and subsequent migration to the CNS remain incompletely understood. We previously showed that systemic inflammation induces an accumulation of B cells in the spleen in a CCR6/CCL20-dependent manner. In this study, we evaluated the role of CCR6/CCL20 in the context of myelin oligodendrocyte glycoprotein (MOG) protein-induced (B cell-dependent) experimental autoimmune encephalomyelitis (EAE). We found that CCR6 is upregulated on murine B cells that migrate into the CNS during neuroinflammation. In addition, human B cells that migrate across CNS endothelium in vitro were found to be CCR6+, and we detected CCL20 production by activated CNS-derived human endothelial cells as well as a systemic increase in CCL20 protein during EAE. Although mice that lack CCR6 expression specifically on B cells exhibited an altered germinal center reaction in response to MOG protein immunization, CCR6-deficient B cells did not exhibit any competitive disadvantage in their migration to the CNS during EAE, and the clinical and pathological presentation of EAE induced by MOG protein was unaffected. These data, to our knowledge, provide new information on the role of B cell-intrinsic CCR6 expression in a B cell-dependent model of neuroinflammation.


Subject(s)
B-Lymphocytes/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Germinal Center/immunology , Immunization/methods , Myelin-Oligodendrocyte Glycoprotein/administration & dosage , Receptors, CCR6/deficiency , Animals , B-Lymphocytes/metabolism , Blood Donors , Blood-Brain Barrier/cytology , Blood-Brain Barrier/immunology , Cell Movement/genetics , Cell Movement/immunology , Cells, Cultured , Chemokine CCL20/metabolism , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Endothelial Cells/immunology , Female , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Myelin-Oligodendrocyte Glycoprotein/genetics , Receptors, CCR6/genetics , Recombinant Proteins/administration & dosage
5.
Acta Neuropathol ; 141(1): 67-83, 2021 01.
Article in English | MEDLINE | ID: mdl-33242149

ABSTRACT

Aim of our study was to identify the target auto-antigen in the central nervous system recognized by the immune system of a unique patient, who died more than 60 years ago from a disease with pathological changes closely resembling multiple sclerosis (MS), following a misguided immunization with lyophilized calf brain tissue. Total mRNA was isolated from formaldehyde fixed and paraffin embedded archival brain tissue containing chronic active inflammatory demyelinating lesions with inflammatory infiltrates rich in B-lymphocytes and plasma cells. Analysis of the transcriptome by next generation sequencing and reconstruction of the dominant antibody by bioinformatic tools revealed the presence of one strongly expanded B-cell clone, producing an autoantibody against a conformational epitope of myelin oligodendrocytes glycoprotein (MOG), similar to that recognized by the well characterized monoclonal anti-MOG antibody 8-18C5. The reconstructed antibody induced demyelination after systemic or intrathecal injection into animals with T-cell mediated encephalomyelitis. Our study suggests that immunization with bovine brain tissue in humans may-in a small subset of patients-induce a disease with an intermediate clinical and pathological presentation between MS and MOG-antibody associated inflammatory demyelinating disease (MOGAD).


Subject(s)
Allergy and Immunology , Archaeology , Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , Encephalomyelitis/immunology , Encephalomyelitis/pathology , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , Neurology , Adult , Animals , Autoimmune Diseases/genetics , B-Lymphocytes/immunology , Computational Biology , Demyelinating Diseases/genetics , Demyelinating Diseases/immunology , Encephalomyelitis/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Multiple Sclerosis/genetics , Myelin-Oligodendrocyte Glycoprotein/genetics , Myelin-Oligodendrocyte Glycoprotein/immunology , Paraffin Embedding , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Rats , Tissue Fixation , Transcriptome
6.
Mol Biol Rep ; 48(2): 1055-1068, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33595783

ABSTRACT

Exact mechanisms of autoimmune disease development are still yet unknown. However, it is known that the development of autoimmune diseases is associated with defects in the immune system, namely, the violation of the bone marrow hematopoietic stem cells (HSCs) differentiation profiles. Different characteristics of autoimmune reaction development in experimental autoimmune encephalomyelitis (EAE) prone Th mice characterizing T-lymphocytes response were analyzed using standard approaches. Profiles of several HSCs differentiation of bone marrow (BFU-E, CFU-E, CFU-GM, CFU-GEMM, T- and B-lymphocytes) of Th male and female mice during spontaneous development of EAE were noticeably different. Patterns of total lymphocytes, B- and T-cells proliferation in several different organs (bone marrow, blood, spleen, thymus, and lymph nodes) were also remarkably different. In addition, there were in time noticeable differences in their changes for some organs of male and female mice. Characters of changes in the profiles of CD4 and CD8 cells proliferation in some organs not always coincide with those for total T lymphocytes. The changes in the differentiation profiles of HSCs and the level of lymphocytes proliferation in the bone marrow and other organs were associated with the increase in the concentration of antibodies against DNA, myelin basic protein, and myelin oligodendrocyte glycoprotein, and catalytic antibodies hydrolyzing these substrates. Despite some differences in changes in the analyzed parameters, in general, the spontaneous development of EAE in male and female mice occurs to some extent in a comparable way.


Subject(s)
Antibodies, Catalytic/immunology , Cell Differentiation/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Lymphocyte Activation/immunology , Lymphocytes/immunology , Animals , Antibodies, Catalytic/genetics , Bone Marrow Cells/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Proliferation/genetics , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/pathology , Hematopoietic Stem Cells/immunology , Hematopoietic Stem Cells/metabolism , Humans , Lymphocyte Activation/genetics , Lymphocyte Count , Mice , Myelin-Oligodendrocyte Glycoprotein/genetics , Myelin-Oligodendrocyte Glycoprotein/immunology , Spleen/immunology
7.
J Neuroinflammation ; 17(1): 68, 2020 Feb 19.
Article in English | MEDLINE | ID: mdl-32075650

ABSTRACT

BACKGROUND: CD8+ T lymphocytes are critical mediators of neuroinflammatory diseases. Understanding the mechanisms that govern the function of this T cell population is crucial to better understanding central nervous system autoimmune disease pathology. We recently identified a novel population of highly cytotoxic c-Met-expressing CD8+ T lymphocytes and found that hepatocyte growth factor (HGF) limits effective murine cytotoxic T cell responses in cancer models. Here, we examined the role of c-Met-expressing CD8+ T cells by using a MOG35-55 T cell-mediated EAE model. METHODS: Mice were subcutaneously immunized with myelin oligodendrocyte glycoprotein peptide (MOG)35-55 in complete Freund's adjuvant (CFA). Peripheral and CNS inflammation was evaluated at peak disease and chronic phase, and c-Met expression by CD8 was evaluated by flow cytometry and immunofluorescence. Molecular, cellular, and killing function analysis were performed by real-time PCR, ELISA, flow cytometry, and killing assay. RESULTS: In the present study, we observed that a fraction of murine effector CD8+ T cells expressed c-Met receptor (c-Met+CD8+) in an experimental autoimmune encephalitis (EAE) model. Phenotypic and functional analysis of c-Met+CD8+ T cells revealed that they recognize the encephalitogenic epitope myelin oligodendrocyte glycoprotein37-50. We demonstrated that this T cell population produces higher levels of interferon-γ and granzyme B ex vivo and that HGF directly restrains the cytolytic function of c-Met+CD8+ T cells in cell-mediated cytotoxicity reactions CONCLUSIONS: Altogether, our findings suggest that the HGF/c-Met pathway could be exploited to modulate CD8+ T cell-mediated neuroinflammation.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Receptor Protein-Tyrosine Kinases/biosynthesis , Amino Acid Sequence , Animals , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Encephalomyelitis, Autoimmune, Experimental/genetics , Female , Freund's Adjuvant/toxicity , Gene Expression , Humans , Mice , Mice, Inbred C57BL , Myelin-Oligodendrocyte Glycoprotein/genetics , Myelin-Oligodendrocyte Glycoprotein/toxicity , Receptor Protein-Tyrosine Kinases/genetics
8.
J Neurosci ; 38(32): 7058-7071, 2018 08 08.
Article in English | MEDLINE | ID: mdl-29959236

ABSTRACT

T cells continuously sample CNS-derived antigens in the periphery, yet it is unknown how they sample and respond to CNS antigens derived from distinct brain areas. We expressed ovalbumin (OVA) neoepitopes in regionally distinct CNS areas (Cnp-OVA and Nes-OVA mice) to test peripheral antigen sampling by OVA-specific T cells under homeostatic and neuroinflammatory conditions. We show that antigen sampling in the periphery is independent of regional origin of CNS antigens in both male and female mice. However, experimental autoimmune encephalomyelitis (EAE) is differentially influenced in Cnp-OVA and Nes-OVA female mice. Although there is the same frequency of CD45high CD11b+ CD11c+ CX3CL1+ myeloid cell-T-cell clusters in neoepitope-expressing areas, EAE is inhibited in Nes-OVA female mice and accelerated in CNP-OVA female mice. Accumulation of OVA-specific T cells and their immunomodulatory effects on EAE are CX3C chemokine receptor 1 (CX3CR1) dependent. These data show that despite similar levels of peripheral antigen sampling, CNS antigen-specific T cells differentially influence neuroinflammatory disease depending on the location of cognate antigens and the presence of CX3CL1/CX3CR1 signaling.SIGNIFICANCE STATEMENT Our data show that peripheral T cells similarly recognize neoepitopes independent of their origin within the CNS under homeostatic conditions. Contrastingly, during ongoing autoimmune neuroinflammation, neoepitope-specific T cells differentially influence clinical score and pathology based on the CNS regional location of the neoepitopes in a CX3CR1-dependent manner. Altogether, we propose a novel mechanism for how T cells respond to regionally distinct CNS derived antigens and contribute to CNS autoimmune pathology.


Subject(s)
CX3C Chemokine Receptor 1/physiology , Central Nervous System/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Myelin-Oligodendrocyte Glycoprotein/immunology , Neural Stem Cells/immunology , Neuroimmunomodulation/physiology , Oligodendroglia/immunology , T-Lymphocyte Subsets/immunology , 2',3'-Cyclic-Nucleotide Phosphodiesterases/genetics , Animals , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Chemokine CX3CL1/physiology , Female , Genes, Synthetic , Mice , Mice, Transgenic , Myelin-Oligodendrocyte Glycoprotein/genetics , Nestin/genetics , Organ Specificity , Peptide Fragments/genetics , Peptide Fragments/immunology , Promoter Regions, Genetic , Recombinant Proteins/genetics , Recombinant Proteins/immunology
9.
J Autoimmun ; 102: 38-49, 2019 08.
Article in English | MEDLINE | ID: mdl-31054941

ABSTRACT

Autoreactive CD4+ T-cells are believed to be a main driver of multiple sclerosis (MS). Myelin oligodendrocyte glycoprotein (MOG) is considered an autoantigen, yet doubted in recent years. The reason is in part due to low frequency and titers of MOG autoantibodies and the challenge to detect MOG-specific T-cells. In this study we aimed to analyze T-cell reactivity and frequency utilizing a novel method for detection of antigen-specific T-cells with bead-bound MOG as stimulant. Peripheral blood mononuclear cells (PBMCs) from natalizumab treated persons with MS (n = 52) and healthy controls (HCs) (n = 24) were analyzed by IFNγ/IL-22/IL-17A FluoroSpot. A higher number of IFNγ (P = 0.001), IL-22 (P = 0.003), IL-17A (P < 0.0001) as well as double and triple cytokine producing MOG-specific T-cells were detected in persons with MS compared to HCs. Of the patients, 46.2-59.6% displayed MOG-reactivity. Depletion of CD4+ T-cells or monocytes or blocking HLA-DR completely eliminated the MOG specific response. Anti-MOG antibodies did not correlate with T-cell MOG-responses. In conclusion, we present a sensitive method to detect circulating autoreactive CD4+ T-cells producing IFNγ, IL-22 or IL-17A using MOG as a model antigen. Further, we demonstrate that MOG-specific T-cells are present in approximately half of persons with MS.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Interferon-gamma/biosynthesis , Interleukin-17/biosynthesis , Interleukins/biosynthesis , Multiple Sclerosis/immunology , Myelin-Oligodendrocyte Glycoprotein/immunology , Adolescent , Adult , Autoantibodies/blood , Autoantibodies/immunology , Autoantigens/immunology , Female , HLA-DR Antigens/metabolism , Humans , Interferon-gamma/immunology , Interleukin-17/immunology , Interleukins/immunology , Male , Middle Aged , Multiple Sclerosis/drug therapy , Myelin-Oligodendrocyte Glycoprotein/genetics , Natalizumab/therapeutic use , Young Adult , Interleukin-22
10.
Int J Mol Sci ; 20(22)2019 Nov 19.
Article in English | MEDLINE | ID: mdl-31752329

ABSTRACT

The detection of IgG aquaporin-4 antibodies in the serum of patients with Neuromyelitis optica (NMO) has dramatically improved the diagnosis of this disease and its distinction from multiple sclerosis. Recently, a group of patients have been described who have an NMO spectrum disorder (NMOsd) and who are seronegative for AQP4 antibodies but positive for IgG aquaporin-1 (AQP1) or myelin oligodendrocyte glycoprotein (MOG) antibodies. The purpose of this study was to determine whether AQP1 and MOG could be considered new biomarkers of this disease; and if point mutations in the gDNA of AQP4, AQP1 and MOG genes could be associated with the etiology of NMOsd. We evaluated the diagnostic capability of ELISA and cell-based assays (CBA), and analyzed their reliability, specificity, and sensitivity in detecting antibodies against these three proteins. The results showed that both assays can recognize these antigen proteins under appropriate conditions, but only anti-AQP4 antibodies, and not AQP1 or MOG, appears to be a clear biomarker for NMOsd. CBA is the best method for detecting these antibodies; and serum levels of AQP4 antibodies do not correlate with the progression of this disease. So far, the sequencing analysis has not revealed a genetic basis for the etiology of NMOsd, but a more extensive analysis is required before definitive conclusions can be drawn.


Subject(s)
Antibodies/blood , Aquaporin 1/genetics , Aquaporin 4/genetics , Myelin-Oligodendrocyte Glycoprotein/genetics , Neuromyelitis Optica/blood , Neuromyelitis Optica/genetics , Point Mutation/genetics , Adult , Biomarkers/blood , Cohort Studies , Disease Progression , Female , Humans , Male , Middle Aged
11.
Inflamm Res ; 67(5): 371-374, 2018 May.
Article in English | MEDLINE | ID: mdl-29470604

ABSTRACT

OBJECTIVE: The objective of this study is to investigate the role of cathepsin H (CatH), a lysosomal cysteine protease, in the development of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. METHODS: EAE was induced in CatH-deficient mice (CatH-/-) and wild-type littermates (+/+) using myelin oligodendrocyte glycoprotein (MOG) 35-55. The effects of CatH deficiency were determined by clinical scoring, mRNA expression levels of Tbx21, Rorc and FoxP3, protein levels of poly(I:C)-induced toll-like receptor 3 (TLR3) and phosphorylation of IRF3, and secretion of interferon-ß (IFN-ß) by splenocytes. RESULTS AND CONCLUSIONS: CatH-/- showed a significantly earlier disease onset of EAE and increased Th1 cell differentiation in splenocytes. Splenocytes prepared from immunized CatH-/- showed a significant decrease in poly(I:C)-induced increased TLR3 expression, interferon regulatory factor 3 (IRF3) phospholylation and IFN-ß secretion. Therefore, CatH deficiency impaired TLR3-mediated activation of IRF3 and consequent secretion of IFN-ß from dendritic cells, leading to the enhancement of Th1 cell differentiation and consequent early disease onset of EAE.


Subject(s)
Cathepsin H/deficiency , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/pathology , Macrophage Activation/genetics , Th1 Cells , Toll-Like Receptor 3/genetics , Animals , Cathepsin H/genetics , Cell Differentiation/genetics , Interferon Regulatory Factor-3/biosynthesis , Interferon Regulatory Factor-3/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Myelin-Oligodendrocyte Glycoprotein/genetics , Peptide Fragments/genetics , Signal Transduction/genetics , Spleen/cytology
12.
J Proteome Res ; 16(1): 179-194, 2017 01 06.
Article in English | MEDLINE | ID: mdl-27728768

ABSTRACT

In the current study, we conducted a quantitative in-depth proteome and deglycoproteome analysis of cerebrospinal fluid (CSF) from relapsing-remitting multiple sclerosis (RRMS) and neurological controls using mass spectrometry and pathway analysis. More than 2000 proteins and 1700 deglycopeptides were quantified, with 484 proteins and 180 deglycopeptides significantly changed between pools of RRMS and pools of controls. Approximately 300 of the significantly changed proteins were assigned to various biological processes including inflammation, extracellular matrix organization, cell adhesion, immune response, and neuron development. Ninety-six significantly changed deglycopeptides mapped to proteins that were not found changed in the global protein study. In addition, four mapped to the proteins oligo-myelin glycoprotein and noelin, which were found oppositely changed in the global study. Both are ligands to the nogo receptor, and the glycosylation of these proteins appears to be affected by RRMS. Our study gives the most extensive overview of the RRMS affected processes observed from the CSF proteome to date, and the list of differential proteins will have great value for selection of biomarker candidates for further verification.


Subject(s)
Cerebrospinal Fluid Proteins/genetics , Extracellular Matrix/genetics , Multiple Sclerosis, Relapsing-Remitting/genetics , Myelin-Oligodendrocyte Glycoprotein/genetics , Proteome/genetics , Biomarkers/cerebrospinal fluid , Case-Control Studies , Cell Adhesion , Cerebrospinal Fluid Proteins/cerebrospinal fluid , Cerebrospinal Fluid Proteins/immunology , Extracellular Matrix/immunology , Extracellular Matrix Proteins/cerebrospinal fluid , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/immunology , Gene Expression , Glycoproteins/cerebrospinal fluid , Glycoproteins/genetics , Glycoproteins/immunology , Humans , Immunity, Innate , Inflammation , Multiple Sclerosis, Relapsing-Remitting/cerebrospinal fluid , Multiple Sclerosis, Relapsing-Remitting/immunology , Multiple Sclerosis, Relapsing-Remitting/pathology , Myelin-Oligodendrocyte Glycoprotein/cerebrospinal fluid , Myelin-Oligodendrocyte Glycoprotein/immunology , Neurogenesis/genetics , Neurogenesis/immunology , Nogo Receptor 1/genetics , Nogo Receptor 1/immunology , Nogo Receptor 1/metabolism , Protein Interaction Mapping , Proteome/immunology , Proteome/metabolism
13.
Eur J Immunol ; 46(9): 2247-59, 2016 09.
Article in English | MEDLINE | ID: mdl-27334749

ABSTRACT

T-cell polyspecificity, predicting that individual T cells recognize a continuum of related ligands, implies that multiple antigens can tolerize T cells specific for a given self-antigen. We previously showed in C57BL/6 mice that part of the CD4(+) T-cell repertoire specific for myelin oligodendrocyte glycoprotein (MOG) 35-55 also recognizes the neuronal antigen neurofilament medium (NF-M) 15-35. Such bi-specific CD4(+) T cells are frequent and produce inflammatory cytokines after stimulation. Since T cells recognizing two self-antigens would be expected to be tolerized more efficiently, this finding prompted us to study how polyspecificity impacts tolerance. We found that similar to MOG, NF-M is expressed in the thymus by medullary thymic epithelial cells, a tolerogenic population. Nevertheless, the frequency, phenotype, and capacity to transfer experimental autoimmune encephalomyelitis (EAE) of MOG35-55 -reactive CD4(+) T cells were increased in MOG-deficient but not in NF-M-deficient mice. We found that presentation of NF-M15-35 by I-A(b) on dendritic cells is of short duration, suggesting unstable MHC class II binding. Consistently, introducing an MHC-anchoring residue into NF-M15-35 (NF-M15-35 T20Y) increased its immunogenicity, activating a repertoire able to induce EAE. Our results show that in C57BL/6 mice bi-specific encephalitogenic T cells manage to escape tolerization due to inefficient exposure to two self-antigens.


Subject(s)
Autoantigens/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Immune Tolerance , Myelin Proteins/immunology , Myelin-Oligodendrocyte Glycoprotein/immunology , Neurons/immunology , Animals , Cytokines/biosynthesis , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Epithelial Cells/immunology , Epithelial Cells/metabolism , Gene Expression , Lymphocyte Activation/immunology , Mice , Mice, Knockout , Myelin-Oligodendrocyte Glycoprotein/genetics , Neurofilament Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , T-Cell Antigen Receptor Specificity/genetics , T-Cell Antigen Receptor Specificity/immunology , Thymus Gland/immunology , Thymus Gland/metabolism
14.
J Immunol ; 195(10): 4668-84, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26475926

ABSTRACT

TNF-α antagonists provide benefit to patients with inflammatory autoimmune disorders such as Crohn's disease, rheumatoid arthritis, and ankylosing spondylitis. However, TNF antagonism unexplainably exacerbates CNS autoimmunity, including multiple sclerosis and neuromyelitis optica. The underlying mechanisms remain enigmatic. We demonstrate that TNFR2 deficiency results in female-biased spontaneous autoimmune CNS demyelination in myelin oligodendrocyte glycoprotein-specific 2D2 TCR transgenic mice. Disease in TNFR2(-/-) 2D2 mice was associated with CNS infiltration of T and B cells as well as increased production of myelin oligodendrocyte glycoprotein-specific IL-17, IFN-γ, and IgG2b. Attenuated disease in TNF(-/-) 2D2 mice relative to TNFR2(-/-) 2D2 mice identified distinctive roles for TNFR1 and TNFR2. Oral antibiotic treatment eliminated spontaneous autoimmunity in TNFR2(-/-) 2D2 mice to suggest role for gut microbiota. Illumina sequencing of fecal 16S rRNA identified a distinct microbiota profile in male TNFR2(-/-) 2D2 that was associated with disease protection. Akkermansia muciniphila, Sutterella sp., Oscillospira sp., Bacteroides acidifaciens, and Anaeroplasma sp. were selectively more abundant in male TNFR2(-/-) 2D2 mice. In contrast, Bacteroides sp., Bacteroides uniformis, and Parabacteroides sp. were more abundant in affected female TNFR2(-/-) 2D2 mice, suggesting a role in disease causation. Overall, TNFR2 blockade appears to disrupt commensal bacteria-host immune symbiosis to reveal autoimmune demyelination in genetically susceptible mice. Under this paradigm, microbes likely contribute to an individual's response to anti-TNF therapy. This model provides a foundation for host immune-microbiota-directed measures for the prevention and treatment of CNS-demyelinating autoimmune disorders.


Subject(s)
Bacteria/immunology , Demyelinating Autoimmune Diseases, CNS/genetics , Demyelinating Autoimmune Diseases, CNS/microbiology , Gastrointestinal Microbiome/immunology , Receptors, Tumor Necrosis Factor, Type II/genetics , Animals , Bacteria/growth & development , Demyelinating Autoimmune Diseases, CNS/immunology , Female , Immunoglobulin G/biosynthesis , Immunoglobulin G/immunology , Interferon-gamma/biosynthesis , Interferon-gamma/immunology , Interleukin-17/biosynthesis , Interleukin-17/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myelin-Oligodendrocyte Glycoprotein/genetics , RNA, Ribosomal, 16S/genetics , Sex Factors , T-Lymphocytes, Regulatory/immunology , Th17 Cells/cytology , Th17 Cells/immunology
15.
J Appl Toxicol ; 37(4): 479-484, 2017 04.
Article in English | MEDLINE | ID: mdl-27610592

ABSTRACT

Evidence continues to increase linking autoimmunity and other complex diseases to the chemicals commonly found in our environment. Bisphenol A (BPA) is a synthetic monomer used widely in many forms, from food containers to toys, medical products and many others. The potential for BPA to participate as a triggering agent for autoimmune diseases is likely due to its known immunological influences. The goal of this research was to determine if immune reactivity to BPA has any correlation with neurological antibodies. BPA binds to a target enzyme called protein disulfide isomerase (PDI). Myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein (MOG) are neuronal antigens that are target sites for neuroinflammation and neuroautoimmunity. We determined the co-occurrence of anti-MBP and anti-MOG antibodies with antibodies made against BPA bound to human serum albumin in 100 healthy human subjects. Correlation between BPA to PDI, BPA to MOG, BPA to MBP, PDI to MBP and PDI to MOG were all highly statistically significant (P < 0.0001). The outcome of our study suggests that immune reactivity to BPA-human serum albumin and PDI has a high degree of statistical significance with substantial correlation with both MBP and MOG antibody levels. This suggests that BPA may be a trigger for the production of antibodies against PDI, MBP and MOG. Immune reactivity to BPA bound to human tissue proteins may be a contributing factor to neurological autoimmune disorders. Further research is needed to determine the exact relationship of these antibodies with neuroautoimmunities. Copyright © 2016 The Authors Journal of Applied Toxicology Published by John Wiley & Sons Ltd.


Subject(s)
Antibodies, Blocking/biosynthesis , Antibodies/metabolism , Benzhydryl Compounds/antagonists & inhibitors , Benzhydryl Compounds/immunology , Neurons/immunology , Phenols/antagonists & inhibitors , Phenols/immunology , Protein Disulfide-Isomerases/immunology , Adolescent , Adult , Aged , Antibodies/pharmacology , Antibodies, Blocking/analysis , Autoimmune Diseases/chemically induced , Autoimmune Diseases/immunology , Autoimmunity/drug effects , Autoimmunity/immunology , Humans , Middle Aged , Myelin Basic Protein/biosynthesis , Myelin Basic Protein/genetics , Myelin-Oligodendrocyte Glycoprotein/biosynthesis , Myelin-Oligodendrocyte Glycoprotein/genetics , Nervous System Diseases/chemically induced , Nervous System Diseases/immunology , Protein Disulfide-Isomerases/antagonists & inhibitors , Young Adult
16.
Biochim Biophys Acta ; 1853(9): 2115-21, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25541284

ABSTRACT

Myelin oligodendrocyte glycoprotein (MOG) is a type I integral membrane protein that is expressed in the central nervous system. MOG has a single N-glycosylation site within its extracellular domain. MOG has been linked with pathogenesis of multiple sclerosis; anti-MOG antibodies have been detected in the sera of multiple sclerosis patients. N-glycosylation is an important post-translational modification of protein that might impact their folding, localization and function. However, the role of sugar in the biology of MOG is not well understood. In this study, we created a mutant MOG lacking N-linked glycan and tested its properties. We concluded that the lack of sugar did not impact on MOG abundance in the absence of endoplasmic reticulum molecular chaperone calnexin. We also show that the absence of N-glycan did not interfere with MOG's subcellular localization and it did not result in activation of endoplasmic reticulum stress. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.


Subject(s)
Calnexin/metabolism , Mutation , Myelin-Oligodendrocyte Glycoprotein/metabolism , Polysaccharides/metabolism , Protein Folding , Animals , Calnexin/genetics , Cells, Cultured , Endoplasmic Reticulum Stress/genetics , Mice , Mice, Knockout , Myelin-Oligodendrocyte Glycoprotein/genetics , Polysaccharides/genetics , Protein Transport
17.
J Neuroinflammation ; 13(1): 279, 2016 09 26.
Article in English | MEDLINE | ID: mdl-27788675

ABSTRACT

BACKGROUND: Antibodies to myelin oligodendrocyte glycoprotein (MOG-IgG) have been suggested to play a role in a subset of patients with neuromyelitis optica and related disorders. OBJECTIVE: To assess (i) the frequency of MOG-IgG in a large and predominantly Caucasian cohort of patients with optic neuritis (ON) and/or myelitis; (ii) the frequency of MOG-IgG among AQP4-IgG-positive patients and vice versa; (iii) the origin and frequency of MOG-IgG in the cerebrospinal fluid (CSF); (iv) the presence of MOG-IgG at disease onset; and (v) the influence of disease activity and treatment status on MOG-IgG titers. METHODS: 614 serum samples from patients with ON and/or myelitis and from controls, including 92 follow-up samples from 55 subjects, and 18 CSF samples were tested for MOG-IgG using a live cell-based assay (CBA) employing full-length human MOG-transfected HEK293A cells. RESULTS: MOG-IgG was detected in 95 sera from 50 patients with ON and/or myelitis, including 22/54 (40.7 %) patients with a history of both ON and myelitis, 22/103 (21.4 %) with a history of ON but no myelitis and 6/45 (13.3 %) with a history of longitudinally extensive transverse myelitis but no ON, and in 1 control patient with encephalitis and a connective tissue disorder, all of whom were negative for AQP4-IgG. MOG-IgG was absent in 221 further controls, including 83 patients with AQP4-IgG-seropositive neuromyelitis optica spectrum disorders and 85 with multiple sclerosis (MS). MOG-IgG was found in 12/18 (67 %) CSF samples from MOG-IgG-seropositive patients; the MOG-IgG-specific antibody index was negative in all cases, indicating a predominantly peripheral origin of CSF MOG-IgG. Serum and CSF MOG-IgG belonged to the complement-activating IgG1 subclass. MOG-IgG was present already at disease onset. The antibodies remained detectable in 40/45 (89 %) follow-up samples obtained over a median period of 16.5 months (range 0-123). Serum titers were higher during attacks than during remission (p < 0.0001), highest during attacks of simultaneous myelitis and ON, lowest during acute isolated ON, and declined following treatment. CONCLUSIONS: To date, this is the largest cohort studied for IgG to human full-length MOG by means of an up-to-date CBA. MOG-IgG is present in a substantial subset of patients with ON and/or myelitis, but not in classical MS. Co-existence of MOG-IgG and AQP4-IgG is highly uncommon. CSF MOG-IgG is of extrathecal origin. Serum MOG-IgG is present already at disease onset and remains detectable in the long-term course. Serum titers depend on disease activity and treatment status.


Subject(s)
Aquaporin 4/immunology , Autoantibodies/blood , Myelin-Oligodendrocyte Glycoprotein/immunology , Myelitis/immunology , Neuromyelitis Optica/blood , Neuromyelitis Optica/immunology , Adult , Aquaporin 4/genetics , Autoantibodies/cerebrospinal fluid , Female , HEK293 Cells , Humans , Male , Myelin-Oligodendrocyte Glycoprotein/genetics , Neuromyelitis Optica/cerebrospinal fluid , Neuromyelitis Optica/physiopathology , Severity of Illness Index , Transfection
18.
J Neuroinflammation ; 13(1): 280, 2016 09 27.
Article in English | MEDLINE | ID: mdl-27793206

ABSTRACT

BACKGROUND: A subset of patients with neuromyelitis optica spectrum disorders (NMOSD) has been shown to be seropositive for myelin oligodendrocyte glycoprotein antibodies (MOG-IgG). OBJECTIVE: To describe the epidemiological, clinical, radiological, cerebrospinal fluid (CSF), and electrophysiological features of a large cohort of MOG-IgG-positive patients with optic neuritis (ON) and/or myelitis (n = 50) as well as attack and long-term treatment outcomes. METHODS: Retrospective multicenter study. RESULTS: The sex ratio was 1:2.8 (m:f). Median age at onset was 31 years (range 6-70). The disease followed a multiphasic course in 80 % (median time-to-first-relapse 5 months; annualized relapse rate 0.92) and resulted in significant disability in 40 % (mean follow-up 75 ± 46.5 months), with severe visual impairment or functional blindness (36 %) and markedly impaired ambulation due to paresis or ataxia (25 %) as the most common long-term sequelae. Functional blindess in one or both eyes was noted during at least one ON attack in around 70 %. Perioptic enhancement was present in several patients. Besides acute tetra-/paraparesis, dysesthesia and pain were common in acute myelitis (70 %). Longitudinally extensive spinal cord lesions were frequent, but short lesions occurred at least once in 44 %. Fourty-one percent had a history of simultaneous ON and myelitis. Clinical or radiological involvement of the brain, brainstem, or cerebellum was present in 50 %; extra-opticospinal symptoms included intractable nausea and vomiting and respiratory insufficiency (fatal in one). CSF pleocytosis (partly neutrophilic) was present in 70 %, oligoclonal bands in only 13 %, and blood-CSF-barrier dysfunction in 32 %. Intravenous methylprednisolone (IVMP) and long-term immunosuppression were often effective; however, treatment failure leading to rapid accumulation of disability was noted in many patients as well as flare-ups after steroid withdrawal. Full recovery was achieved by plasma exchange in some cases, including after IVMP failure. Breakthrough attacks under azathioprine were linked to the drug-specific latency period and a lack of cotreatment with oral steroids. Methotrexate was effective in 5/6 patients. Interferon-beta was associated with ongoing or increasing disease activity. Rituximab and ofatumumab were effective in some patients. However, treatment with rituximab was followed by early relapses in several cases; end-of-dose relapses occurred 9-12 months after the first infusion. Coexisting autoimmunity was rare (9 %). Wingerchuk's 2006 and 2015 criteria for NMO(SD) and Barkhof and McDonald criteria for multiple sclerosis (MS) were met by 28 %, 32 %, 15 %, 33 %, respectively; MS had been suspected in 36 %. Disease onset or relapses were preceded by infection, vaccination, or pregnancy/delivery in several cases. CONCLUSION: Our findings from a predominantly Caucasian cohort strongly argue against the concept of MOG-IgG denoting a mild and usually monophasic variant of NMOSD. The predominantly relapsing and often severe disease course and the short median time to second attack support the use of prophylactic long-term treatments in patients with MOG-IgG-positive ON and/or myelitis.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Autoantibodies/cerebrospinal fluid , Myelin-Oligodendrocyte Glycoprotein/immunology , Neuromyelitis Optica , Treatment Outcome , Adolescent , Adult , Age Distribution , Aged , Aquaporin 4/immunology , Brain/diagnostic imaging , Cardiolipins/immunology , Child , Cohort Studies , Female , HEK293 Cells , Humans , Male , Middle Aged , Myelin-Oligodendrocyte Glycoprotein/genetics , Neuromyelitis Optica/cerebrospinal fluid , Neuromyelitis Optica/diagnostic imaging , Neuromyelitis Optica/epidemiology , Neuromyelitis Optica/therapy , Optic Nerve/diagnostic imaging , Sex Factors , Vaccination/methods , Vision Disorders/etiology , Young Adult
20.
Acta Neuropathol ; 132(1): 43-58, 2016 07.
Article in English | MEDLINE | ID: mdl-27022743

ABSTRACT

In the pathogenesis of central nervous system (CNS) demyelinating disorders, antigen-specific B cells are implicated to act as potent antigen-presenting cells (APC), eliciting waves of inflammatory CNS infiltration. Here, we provide the first evidence that CNS-reactive antibodies (Ab) are similarly capable of initiating an encephalitogenic immune response by targeting endogenous CNS antigen to otherwise inert myeloid APC. In a transgenic mouse model, constitutive production of Ab against myelin oligodendrocyte glycoprotein (MOG) was sufficient to promote spontaneous experimental autoimmune encephalomyelitis (EAE) in the absence of B cells, when mice endogenously contained MOG-recognizing T cells. Adoptive transfer studies corroborated that anti-MOG Ab triggered activation and expansion of peripheral MOG-specific T cells in an Fc-dependent manner, subsequently causing EAE. To evaluate the underlying mechanism, anti-MOG Ab were added to a co-culture of myeloid APC and MOG-specific T cells. At otherwise undetected concentrations, anti-MOG Ab enabled Fc-mediated APC recognition of intact MOG; internalized, processed and presented MOG activated naïve T cells to differentiate in an encephalitogenic manner. In a series of translational experiments, anti-MOG Ab from two patients with an acute flare of CNS inflammation likewise facilitated detection of human MOG. Jointly, these observations highlight Ab-mediated opsonization of endogenous CNS auto-antigen as a novel disease- and/or relapse-triggering mechanism in CNS demyelinating disorders.


Subject(s)
Autoantibodies/immunology , B-Lymphocytes/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Multiple Sclerosis/immunology , Myelin-Oligodendrocyte Glycoprotein/antagonists & inhibitors , Myelin-Oligodendrocyte Glycoprotein/immunology , Neuromyelitis Optica/immunology , Animals , Coculture Techniques , Female , HEK293 Cells , Humans , Immunoglobulin G/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Myelin-Oligodendrocyte Glycoprotein/genetics , Myelin-Oligodendrocyte Glycoprotein/metabolism , Receptors, IgG/deficiency , Receptors, IgG/genetics , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL