Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 163
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Pharmacol Sci ; 155(2): 52-62, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677786

ABSTRACT

The ubiquitin-proteasome system (UPS) is a major proteolytic system that plays an important role in the regulation of various cell processes, such as cell cycle, stress response, and transcriptional regulation, especially in neurons, and dysfunction of UPS is considered to be a cause of neuronal cell death in neurodegenerative diseases. However, the mechanism of neuronal cell death caused by UPS dysfunction has not yet been fully elucidated. In this study, we investigated the mechanism of neuronal cell death induced by proteasome inhibitors using human neuroblastoma SH-SY5Y cells. Z-Leu-D-Leu-Leu-al (MG132), a proteasome inhibitor, induced apoptosis in SH-SY5Y cells in a concentration- and time-dependent manner. Antioxidants N-acetylcysteine and EUK-8 attenuated MG132-induced apoptosis. Apocynin and diphenyleneiodonium, inhibitors of NADPH oxidase (NOX), an enzyme that produces superoxide anions, also attenuated MG132-induced apoptosis. It was also found that MG132 treatment increased the expression of NOX5, a NOX family member, and that siRNA-mediated silencing of NOX5 and BAPTA-AM, which inhibits NOX5 by chelating calcium, suppressed MG132-induced apoptosis and production of reactive oxygen species in SH-SY5Y cells. These results suggest that MG132 induces apoptosis in SH-SY5Y cells through the production of superoxide anion by NOX5.


Subject(s)
Apoptosis , Leupeptins , NADPH Oxidase 5 , NADPH Oxidases , Neuroblastoma , Proteasome Inhibitors , Superoxides , Humans , Apoptosis/drug effects , Apoptosis/genetics , Proteasome Inhibitors/pharmacology , Superoxides/metabolism , Cell Line, Tumor , Neuroblastoma/pathology , Neuroblastoma/metabolism , Leupeptins/pharmacology , NADPH Oxidases/metabolism , NADPH Oxidases/genetics , NADPH Oxidase 5/genetics , NADPH Oxidase 5/metabolism , Antioxidants/pharmacology , Dose-Response Relationship, Drug , Acetylcysteine/pharmacology , Neurons/metabolism , Neurons/drug effects
2.
Int J Mol Sci ; 25(11)2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38892326

ABSTRACT

The occurrence of ovarian dysfunction is often due to the imbalance between the formation of reactive oxygen species (ROS) and the ineffectiveness of the antioxidative defense mechanisms. Primary sources of ROS are respiratory electron transfer and the activity of NADPH oxidases (NOX) while superoxide dismutases (SOD) are the main key regulators that control the levels of ROS and reactive nitrogen species intra- and extracellularly. Because of their central role SODs are the subject of research on human ovarian dysfunction but sample acquisition is low. The high degree of cellular and molecular similarity between Drosophila melanogaster ovaries and human ovaries provides this model organism with the best conditions for analyzing the role of ROS during ovarian function. In this study we clarify the localization of the ROS-producing enzyme dNox within the ovaries of Drosophila melanogaster and by a tissue-specific knockdown we show that dNox-derived ROS are involved in the chorion hardening process. Furthermore, we analyze the dSod3 localization and show that reduced activity of dSod3 impacts egg-laying behavior but not the chorion hardening process.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Ovary , Reactive Oxygen Species , Superoxide Dismutase , Animals , Drosophila melanogaster/genetics , Female , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , Reactive Oxygen Species/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Ovary/metabolism , NADPH Oxidases/metabolism , NADPH Oxidases/genetics , Reproduction , NADPH Oxidase 5/metabolism , NADPH Oxidase 5/genetics , Oviposition , Chorion/metabolism
3.
PLoS Biol ; 18(11): e3000885, 2020 11.
Article in English | MEDLINE | ID: mdl-33170835

ABSTRACT

Hypertension is the most important cause of death and disability in the elderly. In 9 out of 10 cases, the molecular cause, however, is unknown. One mechanistic hypothesis involves impaired endothelium-dependent vasodilation through reactive oxygen species (ROS) formation. Indeed, ROS forming NADPH oxidase (Nox) genes associate with hypertension, yet target validation has been negative. We re-investigate this association by molecular network analysis and identify NOX5, not present in rodents, as a sole neighbor to human vasodilatory endothelial nitric oxide (NO) signaling. In hypertensive patients, endothelial microparticles indeed contained higher levels of NOX5-but not NOX1, NOX2, or NOX4-with a bimodal distribution correlating with disease severity. Mechanistically, mice expressing human Nox5 in endothelial cells developed-upon aging-severe systolic hypertension and impaired endothelium-dependent vasodilation due to uncoupled NO synthase (NOS). We conclude that NOX5-induced uncoupling of endothelial NOS is a causal mechanism and theragnostic target of an age-related hypertension endotype. Nox5 knock-in (KI) mice represent the first mechanism-based animal model of hypertension.


Subject(s)
Hypertension/physiopathology , NADPH Oxidase 5/genetics , Nitric Oxide/metabolism , Adult , Age Factors , Aged , Animals , Endothelial Cells , Endothelium, Vascular , Female , Gene Knock-In Techniques/methods , Humans , Hypertension/genetics , Hypertension/metabolism , Male , Membrane Proteins/genetics , Mice , Middle Aged , NADPH Oxidase 5/metabolism , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Nitric Oxide/genetics , Nitric Oxide Synthase/genetics , Nitric Oxide Synthase/metabolism , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Reactive Oxygen Species
4.
Circ Res ; 127(7): 911-927, 2020 09 11.
Article in English | MEDLINE | ID: mdl-32564697

ABSTRACT

RATIONALE: Vascular calcification, the formation of calcium phosphate crystals in the vessel wall, is mediated by vascular smooth muscle cells (VSMCs). However, the underlying molecular mechanisms remain elusive, precluding mechanism-based therapies. OBJECTIVE: Phenotypic switching denotes a loss of contractile proteins and an increase in migration and proliferation, whereby VSMCs are termed synthetic. We examined how VSMC phenotypic switching influences vascular calcification and the possible role of the uniquely calcium-dependent reactive oxygen species (ROS)-forming Nox5 (NADPH oxidase 5). METHODS AND RESULTS: In vitro cultures of synthetic VSMCs showed decreased expression of contractile markers CNN-1 (calponin 1), α-SMA (α-smooth muscle actin), and SM22-α (smooth muscle protein 22α) and an increase in synthetic marker S100A4 (S100 calcium binding protein A4) compared with contractile VSMCs. This was associated with increased calcification of synthetic cells in response to high extracellular Ca2+. Phenotypic switching was accompanied by increased levels of ROS and Ca2+-dependent Nox5 in synthetic VSMCs. Nox5 itself regulated VSMC phenotype as siRNA knockdown of Nox5 increased contractile marker expression and decreased calcification, while overexpression of Nox5 decreased contractile marker expression. ROS production in synthetic VSMCs was cytosolic Ca2+-dependent, in line with it being mediated by Nox5. Treatment of VSMCs with Ca2+ loaded extracellular vesicles (EVs) lead to an increase in cytosolic Ca2+. Inhibiting EV endocytosis with dynasore blocked the increase in cytosolic Ca2+ and VSMC calcification. Increased ROS production resulted in increased EV release and decreased phagocytosis by VSMCs. CONCLUSIONS: We show here that contractile VSMCs are resistant to calcification and identify Nox5 as a key regulator of VSMC phenotypic switching. Additionally, we describe a new mechanism of Ca2+ uptake via EVs and show that Ca2+ induces ROS production in VSMCs via Nox5. ROS production is required for release of EVs, which promote calcification. Identifying molecular pathways that control Nox5 and VSMC-derived EVs provides potential targets to modulate vascular remodeling and calcification in the context of mineral imbalance. Graphic Abstract: A graphic abstract is available for this article.


Subject(s)
Cell Movement , Cell Proliferation , Extracellular Vesicles/enzymology , Muscle, Smooth, Vascular/enzymology , Myocytes, Smooth Muscle/enzymology , NADPH Oxidase 5/metabolism , Reactive Oxygen Species/metabolism , Vascular Calcification/enzymology , Aged , Aged, 80 and over , Animals , Cells, Cultured , Extracellular Vesicles/genetics , Extracellular Vesicles/pathology , Female , Humans , Male , Middle Aged , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , NADPH Oxidase 5/genetics , Phagocytosis , Phenotype , Signal Transduction , Sus scrofa , Vascular Calcification/genetics , Vascular Calcification/pathology
5.
Andrologia ; 54(8): e14470, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35679508

ABSTRACT

NOX5 is introduced as a new therapeutic target for infertility treatment. This study aimed to compare the basal and stimulated reactive oxygen species (ROS) production and sperm function in human teratozoospermic (n = 15) and normozoospermic (n = 17) semen samples following calcium overload and NOX5 activation. Washed spermatozoa incubated for 1 h under five various conditions: control group, adding a calcium ionophore A23187, phorbol myristate acetate (PMA), A23187 + PMA, and diphenylene iodonium (DPI) + A23187 + PMA. ROS generation was measured immediately after treatment for 30 min. Motility, viability, acrosome reaction, and apoptosis were evaluated after 1-h incubation. ROS production significantly increased when A23187 or PMA was added to the sperm medium. DPI had suppressive effects on ROS generation. Progressive and total motility significantly decreased following calcium elevation and NOX5 activation, which was somewhat returned by DPI. Necrotic and live cells in teratozoospermia was, respectively, higher and lower than normozoospermia samples. Incubation with A23187 significantly increased the percentage of early and late apoptosis. Teratozoosperm are more vulnerable than normal spermatozoa, and produce more basal and stimulated ROS. It seems that calcium overload induces apoptosis in spermatozoa and loss of viability through MPT pore opening and increased intracellular ROS.


Subject(s)
Calcium , NADPH Oxidase 5 , Reactive Oxygen Species , Spermatozoa , Calcimycin/pharmacology , Calcium/metabolism , Humans , Male , NADPH Oxidase 5/genetics , NADPH Oxidase 5/metabolism , Reactive Oxygen Species/metabolism , Semen/drug effects , Semen/metabolism , Sperm Motility/drug effects , Sperm Motility/genetics , Sperm Motility/physiology , Spermatozoa/drug effects , Spermatozoa/metabolism
6.
Biochem Biophys Res Commun ; 580: 107-112, 2021 11 26.
Article in English | MEDLINE | ID: mdl-34638028

ABSTRACT

Peroxynitrite is a reactive intermediate formed in vivo through uncatalysed reaction of superoxide and nitric oxide radicals. Despite significant interest in detecting peroxynitrite in vivo and understanding its production, little attention has been given to the evolutionary origins of peroxynitrite signalling. Herein we focus on two enzymes that are key to the biosynthesis of superoxide and nitric oxide, NADPH oxidase 5 (NOX5) and endothelial nitric oxide synthase (eNOS), respectively. Multiple sequence alignments of both enzymes including homologues from all domains of life, coupled with a phylogenetic analysis of NOX5, suggest eNOS and NOX5 are present in animals as the result of horizontal gene transfer from ancestral cyanobacteria to ancestral eukaryotes. Therefore, biochemical studies from other laboratories on a NOX5 homologue in Cylindrospermum stagnale and an eNOS homologue in Synechococcus sp. PCC 7335 are likely to be of relevance to human NOX5 and eNOS and to the production of superoxide, nitric oxide and peroxynitrite in humans.


Subject(s)
Peroxynitrous Acid/metabolism , Signal Transduction , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cyanobacteria/genetics , Cyanobacteria/metabolism , Evolution, Molecular , Humans , NADPH Oxidase 5/genetics , NADPH Oxidase 5/metabolism , Nitric Oxide/genetics , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Peroxynitrous Acid/genetics , Phylogeny , Superoxides/metabolism
7.
Clin Sci (Lond) ; 135(15): 1845-1858, 2021 08 13.
Article in English | MEDLINE | ID: mdl-34269800

ABSTRACT

OBJECTIVE: The mechanisms involved in NOX5 activation in atherosclerotic processes are not completely understood. The present study tested the hypothesis that lysophosphatidylcholine (LPC), a proatherogenic component of oxLDL, induces endothelial calcium influx, which drives NOX5-dependent reactive oxygen species (ROS) production, oxidative stress, and endothelial cell dysfunction. APPROACH: Human aortic endothelial cells (HAEC) were stimulated with LPC (10-5 M, for different time points). Pharmacological inhibition of NOX5 (Melittin, 10-7 M) and NOX5 gene silencing (siRNA) was used to determine the role of NOX5-dependent ROS production in endothelial oxidative stress induced by LPC. ROS production was determined by lucigenin assay and electron paramagnetic spectroscopy (EPR), calcium transients by Fluo4 fluorimetry, and NOX5 activity and protein expression by pharmacological assays and immunoblotting, respectively. RESULTS: LPC increased ROS generation in endothelial cells at short (15 min) and long (4 h) stimulation times. LPC-induced ROS was abolished by a selective NOX5 inhibitor and by NOX5 siRNA. NOX1/4 dual inhibition and selective NOX1 inhibition only decreased ROS generation at 4 h. LPC increased HAEC intracellular calcium, important for NOX5 activation, and this was blocked by nifedipine and thapsigargin. Bapta-AM, selective Ca2+ chelator, prevented LPC-induced ROS production. NOX5 knockdown decreased LPC-induced ICAM-1 mRNA expression and monocyte adhesion to endothelial cells. CONCLUSION: These results suggest that NOX5, by mechanisms linked to increased intracellular calcium, is key to early LPC-induced endothelial oxidative stress and pro-inflammatory processes. Since these are essential events in the formation and progression of atherosclerotic lesions, the present study highlights an important role for NOX5 in atherosclerosis.


Subject(s)
Atherosclerosis/enzymology , Endothelial Cells/drug effects , Lysophosphatidylcholines/toxicity , NADPH Oxidase 5/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Atherosclerosis/pathology , Calcium/metabolism , Calcium Signaling , Cell Adhesion , Cells, Cultured , Coculture Techniques , Endothelial Cells/enzymology , Endothelial Cells/pathology , Enzyme Activation , Enzyme Inhibitors/pharmacology , Humans , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Monocytes/metabolism , NADPH Oxidase 5/antagonists & inhibitors , NADPH Oxidase 5/genetics , RNA Interference
8.
Exp Cell Res ; 388(2): 111849, 2020 03 15.
Article in English | MEDLINE | ID: mdl-31954110

ABSTRACT

Diabetic nephropathy (DN) is a major microvascular complication of diabetes that can lead to end-stage renal disease. Podocytes constitute the last barrier of glomerular filtration, whose damage are the direct cause of proteinuria. Dopamine receptors are involved in the regulation of diabetes-induced glomerular hyperfiltration, and only dopamine 1 receptor (D1R) can be amplified in cultured mouse podocytes. However, the exact effect of D1R on diabetic podocytes remains unclear. This study aims to investigate the protective role of D1R activation on diabetic podocytes injury in vivo and vitro as well as its potential mechanism. We observed D1R protective effect respectively in streptozotocin (STZ)-induced type 1 diabetes (T1D) mice as well as mouse podocytes (MPC5) cultured in high glucose (HG, 40 mM) medium. It showed that D1R and podocyte-associated proteins (Podocin, CD2AP and Nephrin) expression were significantly decreased both in the T1D mice (fed for 8 and 12 weeks) and HG-cultured MPC5 cells, while the NOX-5 expression increased. In T1D mice, the levels of 24-h urine protein, serum creatinine and urinary 8-OHdG were increased in a time-dependent manner, at the same time, hematoxylin-eosin (HE) staining and electron microscope observed the kidney lesion and podocytes injury. In vitro, HG induced podocytes oxidative stress and apoptosis, which could be inhibited by SKF38393 (a D1R agonist) and N-acetyl-l-cysteine (NAC, a reactive oxygen species scavenger). Furthermore, there was a decreasing Podocin expression and a significant increasing NOX-5 expression in podocytes transfected with D1R-small interfering RNA (siRNA). More importantly, the expression of phospho-CREB (the PKA downstream transcription factor) was decreased and phospho-p38 MAPK was increased in HG-induced podocytes, which can respectively be activated or blocked by SKF38393, 8-Bromo-CAMP (a PKA activator), NAC, and SB20380 (a p38 MAPK inhibitor). In conclusion, D1R activation can protect diabetic podocytes from apoptosis and oxidative damage, in part through the PKA/NOX-5/p38 MAPK pathway.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Diabetes Mellitus, Experimental/complications , Diabetic Nephropathies/prevention & control , NADPH Oxidase 5/metabolism , Podocytes/metabolism , Receptors, Dopamine D1/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Apoptosis , Cyclic AMP-Dependent Protein Kinases/genetics , Diabetic Nephropathies/etiology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Gene Expression Regulation , Glucose/metabolism , Male , Mice , Mice, Inbred C57BL , NADPH Oxidase 5/genetics , Podocytes/pathology , Protective Agents , Reactive Oxygen Species/metabolism , Receptors, Dopamine D1/genetics , Signal Transduction , p38 Mitogen-Activated Protein Kinases/genetics
9.
BMC Pediatr ; 21(1): 153, 2021 03 30.
Article in English | MEDLINE | ID: mdl-33784990

ABSTRACT

BACKGROUND: Hirschsprung disease (HSCR) is a congenital disorder characterized by the absence of intramural ganglion cells in the distal gastrointestinal tract (GI), which results in tonic contraction of the aganglionic gut segment and functional intestinal obstruction. Recent studies have suggested NADPH oxidase 5 (NOX5) as a candidate risk gene for HSCR. In this study, we examined the function of NOX5 to verify its role in the development of the enteric nervous system (ENS). METHODS: HSCR tissue specimens (n = 10) were collected at the time of pull-through surgery and control specimens (n = 10) were obtained at the time of colostomy closure in patients. The NOX5 expression in aganglionic and ganglionic segments of HSCR colon and normal colon were analyzed by immunohistochemistry (IHC), western blot and real-time quantitative PCR (qPCR). The gene expression levels and spatiotemporal expression spectrum of NOX5 in different development stages of zebrafish embryo were determined using qPCR and in-situ hybridization (ISH). The enteric nervous system in NOX5 Morpholino (MO) knockdown and wild type (WT) zebrafish embryo was analyzed by whole-mount immunofluorescence (IF). Intestinal transit assay was performed to analyze the gastrointestinal motility in NOX5 knockdown and control larvae. RESULTS: NOX5 is strongly expressed in the ganglion cells in the proximal segment of HSCR colons and all segments of normal colons. Moreover, the expression of NOX5 is markedly decreased in the aganglionic segment of HSCR colon compared to the ganglionic segment. In zebrafish, NOX5 mRNA level is the highest in the one cell stage embryos and it is decreased overtime with the development of the embryos. Interestingly, the expression of NOX5 appears to be enriched in the nervous system. However, the number of neurons in the GI tract and the GI motility were not affected upon NOX5 knockdown. CONCLUSIONS: Our study shows that NOX5 markedly decreased in the aganglionic segment of HSCR but didn't involve in the ENS development of zebrafish. It implies that absence of intestinal ganglion cells may lead to down-regulation of NOX5.


Subject(s)
Hirschsprung Disease , Animals , Ganglia , Hirschsprung Disease/genetics , Humans , NADPH Oxidase 5 , Zebrafish
10.
Int J Mol Sci ; 22(5)2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33800461

ABSTRACT

Obesity is a global health issue associated with insulin resistance and altered lipid homeostasis. It has been described that reactive oxygen species (ROS) derived from nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) activity are involved in the development of these pathologies. The present study describes the role of endothelial NOX5 expression over adipose tissue by using two experimental systems: NOX5 conditional knock-in mice fed with a high-fat diet and 3T3-L1 adipocytes cultured with conditioned media of NOX5-expressing endothelial cells previously treated with glucose and palmitic acid. Animals expressing NOX5 presented lower body weight gain and less mesenteric and epididymal adipose mass compared to control mice fed with the same diet. NOX5-expressing mice also showed significantly lower glycaemia and improved insulin-induced glucose uptake. In addition, Glut4 and Caveolin 1 (Cav1) expression were significantly increased in the adipose tissue of these animals. Likewise, 3T3-L1 adipocytes treated with conditioned media from NOX5-expressing endothelial cells, incubated with high glucose and palmitic acid, presented a reduction in lipid accumulation and an increase in glucose uptake. Moreover, a significant increase in the expression of Glut4 and Cav1 was also detected in these cells. Taken together, all these data support that, in response to a highly caloric diet, NOX5 endothelial activity may regulate glucose sensitivity and lipid homeostasis in the adipose tissue.


Subject(s)
Adipocytes/metabolism , Diet, High-Fat/adverse effects , Endothelium, Vascular/metabolism , Gene Expression Regulation, Enzymologic/drug effects , Glucose , Lipogenesis/drug effects , NADPH Oxidase 5/biosynthesis , Palmitic Acid/pharmacology , 3T3-L1 Cells , Animals , Glucose/metabolism , Glucose/pharmacology , Lipogenesis/genetics , Mice , Mice, Transgenic , NADPH Oxidase 5/genetics
11.
Apoptosis ; 25(9-10): 763-782, 2020 10.
Article in English | MEDLINE | ID: mdl-32894380

ABSTRACT

The head and neck squamous cell carcinoma (HNSCC) constitute about 90% of all head and neck cancers. HNSCC falls in the top 10 cancers in men globally. Epoxyazadiradione (EPA) and Azadiradione (AZA) are the limonoids derived from the medicinal plant Azadirachta indica (popularly known as Neem). Whether or not the limonoids exhibit activities against HNSCC and the associated mechanism remains elusive. Herein, we demonstrate that EPA exhibits stronger activity in HNSCC in comparison to AZA. The limonoids obeyed the Lipinski's rule of 5. EPA exhibited activities in a variety of HNSCC lines like suppression of the proliferation and the induction of apoptosis. The limonoid suppressed the level of proteins associated with anti-apoptosis (survivin, Bcl-2, Bcl-xL), proliferation (cyclin D1), and invasion (MMP-9). Further, the expression of proapoptotic Bax and caspase-9 cleavage was induced by the limonoid. Exposure of EPA induced reactive oxygen species (ROS) generation in the FaDu cells. N-acetyl-L-cysteine (ROS scavenger) abrogated the down-regulation of tumorigenic proteins caused by EPA exposure. EPA induced NOX-5 while suppressing the expression of programmed death-ligand 1 (PD-L1). Further, hydrogen peroxide induced NF-κB-p65 nuclear translocation and EPA inhibited the translocation. Finally, EPA modulated the expression of lncRNAs in HNSCC lines. Overall, these results have shown that EPA exhibit activities against HNSCC by targeting multiple cancer related signalling molecules. Currently, we are evaluating the efficacy of this molecule in mice models.


Subject(s)
B7-H1 Antigen/genetics , Limonins/pharmacology , NADPH Oxidase 5/genetics , Squamous Cell Carcinoma of Head and Neck/drug therapy , Transcription Factor RelA/genetics , Animals , Apoptosis/drug effects , Azadirachta/chemistry , Cell Proliferation/drug effects , Cyclin D1/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Matrix Metalloproteinase 9/genetics , Mice , Proto-Oncogene Proteins c-bcl-2/genetics , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Survivin/genetics
12.
Biochem Biophys Res Commun ; 521(4): 984-990, 2020 01 22.
Article in English | MEDLINE | ID: mdl-31727371

ABSTRACT

Diabetic nephropathy (DN) is among the common complications of diabetes and is a major cause of end-stage kidney disease. Emerging data indicate that renal inflammation is involved in DN progression and aggravation. Still, the exact cellular mechanisms remain unclear. Dysregulated expression of microRNAs (miRNAs) is associated with multiple diseases, including DN. The relationship between miRNAs and inflammation in DN is also unexplored. Here, we evaluated the role of miR-485 in mediating the response of human mesangial cells (HMCs) to a high glucose (HG) concentration, and the potential underlying mechanism. We found that miR-485 expression is significantly decreased in HG-stimulated HMCs. Overexpression of miR-485 suppressed HG-induced proliferation of HMCs. Lower production of proinflammatory cytokines (i.e., TNF-α, IL-1ß, and IL-6) was observed in miR-485-overexpressing HMCs. Overexpression of miR-485 markedly suppressed the overexpression of extracellular-matrix proteins, e.g., collagen IV (Col IV) and fibronectin (FN), in HG-stimulated HMCs. Furthermore, miR-485 suppressed the expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 5 (NOX5), restrained the HG-induced HMC proliferation, downregulated the expression of proinflammatory cytokines, and inhibited the production of extracellular-matrix proteins in HMCs. These results provide new insights into the involvement of the miR-485-NOX5 signaling pathway in DN progression.


Subject(s)
Diabetic Nephropathies/genetics , Inflammation/genetics , Inflammation/pathology , Mesangial Cells/metabolism , Mesangial Cells/pathology , MicroRNAs/metabolism , Models, Biological , NADPH Oxidase 5/metabolism , Base Sequence , Cell Proliferation/drug effects , Cell Proliferation/genetics , Diabetic Nephropathies/pathology , Down-Regulation/drug effects , Down-Regulation/genetics , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Gene Expression Regulation/drug effects , Glucose/toxicity , HEK293 Cells , Humans , Mesangial Cells/drug effects , MicroRNAs/genetics , Oxidative Stress/drug effects
13.
Med Sci Monit ; 26: e919399, 2020 Feb 03.
Article in English | MEDLINE | ID: mdl-32012145

ABSTRACT

BACKGROUND The aim of this study was to explore the effects of NADPH oxidase 5 (NOX5) in high glucose-stimulated human glomerular mesangial cells (HMCs). MATERIAL AND METHODS Cells were cultured under normal glucose (NG) or high glucose (HG) conditions. Then, NOX5 siRNA was transfected into HG-treated HMCs. A Cell Counting Kit-8 assay, colony formation assay and 5-ethynyl-20-deoxyuridine (EDU) incorporation assay were applied to measure cell proliferative ability. In addition, the levels of oxidative stress factors including reactive oxygen species (ROS), malonaldehyde (MDA), NADPH, superoxide dismutase (SOD), and glutathione peroxidase (GSH-PX), inflammatory cytokines including tumor necrosis factor-alpha (TNF-alpha), interleukin (IL)-6, IL-1ß, and monocyte chemoattractant protein-1 (MCP-1) in HMCs were detected by kits. Moreover, the expression of TLR4/NF-kappaB signaling and extracellular matrix (ECM) associated genes were evaluated by western blotting. RESULTS The results revealed that the NOX5 was overexpressed in HG-treated HMCs. Silencing of NOX5 decreased proliferation of HMCs induced by HG. And NOX5 silencing alleviated the production of MDA and NADPH accompanied by an increase of SOD and GSH-PX levels. Additionally, the contents of TNF-alpha, IL-6, IL-1ß, and MCP-1 were reduced after transfection with NOX5 siRNA. Furthermore, silencing of NOX5 deceased the expression of collagen I, collagen IV, TGF-ß1, and fibronectin induced by HG stimulation. TLR4, MyD88, and phospho-NF-kappaB p65 expression were downregulated notably in NOX5 silencing group. CONCLUSIONS Taken together, these findings demonstrated that inhibition of NOX5 attenuated HG-induced HMCs oxidative stress, inflammation, and ECM accumulation, suggesting that NOX5 may serve as a potential therapeutic target for diabetic nephropathy (DN) treatment.


Subject(s)
Extracellular Matrix/metabolism , Glucose/toxicity , Inflammation/pathology , Mesangial Cells/enzymology , Mesangial Cells/pathology , NADPH Oxidase 5/antagonists & inhibitors , Oxidative Stress , Cell Proliferation/drug effects , Cytokines/metabolism , Extracellular Matrix/drug effects , Gene Silencing , Glutathione Peroxidase/metabolism , Humans , Inflammation Mediators/metabolism , Malondialdehyde/metabolism , Mesangial Cells/drug effects , NADP/metabolism , NADPH Oxidase 5/genetics , NADPH Oxidase 5/metabolism , NF-kappa B/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Superoxide Dismutase/metabolism , Toll-Like Receptor 4/metabolism , Transforming Growth Factor beta1/metabolism , Up-Regulation/drug effects , Up-Regulation/genetics
14.
Cell Tissue Bank ; 21(4): 675-684, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32607683

ABSTRACT

Sperm cryopreservation leads to various structural and functional damages, some of which induce by oxidative stress. The reactive oxygen species (ROS) generates by mitochondria and membrane NADPH oxidases (NOXs). Among the NOXs, only NOX5 has been identified in the cell membrane of human sperm. This study was designed to clarify the possible role of NOX5 on sperm cryoinjury. Forty human semen samples were washed and randomly divided into fresh and cryopreserved groups. Each group was divided into 4 subgroups containing Ham's F10 (control), 0.1% DMSO (vehicle), 100 nM of PMA (phorbol 12-myristate 13-acetate) and 1 µM of DPI (diphenyleneiodonium), as NOX5 activator and inhibitor. The samples of cryopreserved groups were preserved in liquid nitrogen for 1 month. The sperm kinematics, membrane integrity, ROS production, apoptosis rate, mitochondrial membrane potential (MMP), intracellular ATP and calcium concentration [Ca2+]i were evaluated. The percent of sperm with intact membrane and motile sperm reduced significantly after thawing (p ≤ 0.01). The ROS production (p ≤ 0.01) and the apoptotic rate increased, MMP dissipated, and the percentage of live cells with high [Ca2+]i decreased significantly in the cryopreserved control group relative to the fresh control group. DPI, in contrast to PMA, improved sperm progressive motility (p ≤ 0.01), membrane integrity in fresh and cryopreserved groups and reduced the ROS amount in cryopreserved group (p ≤ 0.01). Apoptotic rate, [Ca2+]i, ATP, and MMP did not change with DPI and PMA in cryopreserved groups. We conclude that NOX5 activity in fresh sperm is low, and it increases during cryopreservation. NOX5 inhibition improves the cryopreserved sperm quality.


Subject(s)
Cryopreservation , NADPH Oxidase 5/metabolism , Spermatozoa/enzymology , Spermatozoa/pathology , Adenosine Triphosphate/metabolism , Adult , Apoptosis/drug effects , Calcium/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Survival/drug effects , Enzyme Activation/drug effects , Humans , Intracellular Space/metabolism , Male , Membrane Potential, Mitochondrial/drug effects , Onium Compounds/pharmacology , Reactive Oxygen Species/metabolism , Sperm Motility/drug effects , Tetradecanoylphorbol Acetate/pharmacology , Young Adult
15.
Diabetologia ; 62(9): 1712-1726, 2019 09.
Article in English | MEDLINE | ID: mdl-31222503

ABSTRACT

AIMS/HYPOTHESIS: Excessive production of reactive oxygen species (ROS) plays a detrimental role in the progression of diabetic kidney disease (DKD). Renal oxidative stress activates proinflammatory cytokines, chemokines and profibrotic factors in DKD. Increased expression of the prooxidant enzyme NADPH oxidase (NOX) 5 in kidneys of diabetic individuals has been hypothesised to correlate with renal injury and progression of DKD. Since the gene encoding NOX5 is not expressed in the mouse genome, we examined the effect of inducible human NOX5 expression in renal cells, selectively in either endothelial cells or vascular smooth muscle cells (VSMCs)/mesangial cells in a model of insulin-deficient diabetes, the Akita mouse. METHODS: Renal structural injury, including glomerulosclerosis, mesangial expansion and extracellular matrix protein accumulation, as well as renal inflammation, ROS formation and albuminuria, were examined in the NOX5 transgenic Akita mouse model of DKD. RESULTS: Expression of NOX5 in either endothelial cells or VSMCs/mesangial cells in diabetic Akita mice was associated with increased renal inflammation (monocyte chemoattractant protein-1, NF-κB and toll-like receptor-4) and glomerulosclerosis, as well as upregulation of protein kinase C-α and increased expression of extracellular matrix genes (encoding collagen III, fibronectin and α-smooth muscle actin) and proteins (collagen IV), most likely mediated via enhanced renal ROS production. The effect of VSMC/mesangial cell-specific NOX5 expression resulted in more pronounced renal fibrosis in comparison with endothelial cell-specific NOX5 expression in diabetic mice. In addition, albuminuria was significantly increased in diabetic VEcad+NOX5+ mice (1192 ± 194 µg/24 h) when compared with diabetic VEcad+NOX5- mice (770 ± 98 µg/24 h). Furthermore, the regulatory components of NOX5 activation, including heat shock protein 90 and transient receptor potential cation channel subfamily C member 6, were upregulated only in the presence of both NOX5 and diabetes. CONCLUSIONS/INTERPRETATION: The findings from this study highlight the importance of NOX5 in promoting diabetes-related renal injury and provide the rationale for the development of a selective NOX5 inhibitor for the prevention and/or treatment of DKD.


Subject(s)
Albuminuria/metabolism , Fibrosis/metabolism , Inflammation/metabolism , Kidney/metabolism , Albuminuria/pathology , Animals , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetic Nephropathies/metabolism , Disease Models, Animal , Fibrosis/pathology , Humans , Inflammation/pathology , Kidney/pathology , Mice , Mice, Transgenic , Muscle, Smooth, Vascular/metabolism , NADPH Oxidase 5/metabolism , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism
16.
Genes Cells ; 23(6): 480-493, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29718541

ABSTRACT

Transmembrane glycoproteins, synthesized at the endoplasmic reticulum (ER), generally reach the Golgi apparatus in COPII-coated vesicles en route to the cell surface. Here, we show that the bona fide nonglycoprotein Nox5, a transmembrane superoxide-producing NADPH oxidase, is transported to the cell surface in a manner resistant to co-expression of Sar1 (H79G), a GTP-fixed mutant of the small GTPase Sar1, which blocks COPII vesicle fission from the ER. In contrast, Sar1 (H79G) effectively inhibits ER-to-Golgi transport of glycoproteins including the Nox5-related oxidase Nox2. The trafficking of Nox2, but not that of Nox5, is highly sensitive to over-expression of syntaxin 5 (Stx5), a t-SNARE required for COPII ER-to-Golgi transport. Thus, Nox2 and Nox5 mainly traffic via the Sar1/Stx5-dependent and -independent pathways, respectively. Both participate in Nox1 trafficking, as Nox1 advances to the cell surface in two differentially N-glycosylated forms, one complex and one high mannose, in a Sar1/Stx5-dependent and -independent manner, respectively. Nox2 and Nox5 also can use both pathways: a glycosylation-defective mutant Nox2 is weakly recruited to the plasma membrane in a less Sar1-dependent manner; N-glycosylated Nox5 mutants reach the cell surface in part as the complex form Sar1-dependently, albeit mainly as the high-mannose form in a Sar1-independent manner.


Subject(s)
Cell Membrane/metabolism , Monomeric GTP-Binding Proteins/metabolism , NADPH Oxidase 5/metabolism , Superoxides/metabolism , Amino Acid Sequence , Endoplasmic Reticulum/metabolism , Glycosylation , Golgi Apparatus/metabolism , HeLa Cells , Humans , Mutation , NADPH Oxidase 1/genetics , NADPH Oxidase 1/metabolism , NADPH Oxidase 2/genetics , NADPH Oxidase 2/metabolism , Protein Transport , Sequence Homology
17.
Blood ; 130(15): 1734-1745, 2017 10 12.
Article in English | MEDLINE | ID: mdl-28830888

ABSTRACT

Dendritic cells (DCs) are a heterogeneous population of professional antigen-presenting cells and are key cells of the immune system, acquiring different phenotypes in accordance with their localization during the immune response. A subset of inflammatory DCs is derived from circulating monocytes (Mo) and has a key role in inflammation and infection. The pathways controlling Mo-DC differentiation are not fully understood. Our objective was to investigate the possible role of nicotinamide adenine dinucleotide phosphate reduced form oxidases (NOXs) in Mo-DC differentiation. In this study, we revealed that Mo-DC differentiation was inhibited by NOX inhibitors and reactive oxygen species scavengers. We show that the Mo-DC differentiation was dependent on p22phox, and not on gp91phox/NOX2, as shown by the reduced Mo-DC differentiation observed in chronic granulomatous disease patients lacking p22phox. Moreover, we revealed that NOX5 expression was strongly increased during Mo-DC differentiation, but not during Mo-macrophage differentiation. NOX5 was expressed in circulating myeloid DC, and at a lower level in plasmacytoid DC. Interestingly, NOX5 was localized at the outer membrane of the mitochondria and interacted with p22phox in Mo-DC. Selective inhibitors and small interfering RNAs for NOX5 indicated that NOX5 controlled Mo-DC differentiation by regulating the JAK/STAT/MAPK and NFκB pathways. These data demonstrate that the NOX5-p22phox complex drives Mo-DC differentiation, and thus could be critical for immunity and inflammation.


Subject(s)
Cell Differentiation , Dendritic Cells/cytology , Membrane Proteins/metabolism , Monocytes/cytology , NADPH Oxidases/metabolism , Cell Differentiation/drug effects , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Enzyme Inhibitors/pharmacology , Free Radical Scavengers/pharmacology , Humans , Membrane Glycoproteins/metabolism , Membrane Proteins/antagonists & inhibitors , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondrial Membranes/drug effects , Mitochondrial Membranes/metabolism , Models, Biological , Monocytes/drug effects , Monocytes/metabolism , NADPH Oxidase 2 , NADPH Oxidase 5 , NADPH Oxidases/antagonists & inhibitors , NF-kappa B/metabolism , Protein Binding/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects
18.
Exp Physiol ; 104(5): 605-616, 2019 05.
Article in English | MEDLINE | ID: mdl-30801870

ABSTRACT

NEW FINDINGS: What is the topic of this review? This review provides a comprehensive overview of Nox5 from basic biology to human disease and highlights unique features of this Nox isoform What advances does it highlight? Major advances in Nox5 biology relate to crystallization of the molecule and new insights into the pathophysiological role of Nox5. Recent discoveries have unravelled the crystal structure of Nox5, the first Nox isoform to be crystalized. This provides new opportunities to develop drugs or small molecules targeted to Nox5 in an isoform-specific manner, possibly for therapeutic use. Moreover genome wide association studies (GWAS) identified Nox5 as a new blood pressure-associated gene and studies in mice expressing human Nox5 in a cell-specific manner have provided new information about the (patho) physiological role of Nox5 in the cardiovascular system and kidneys. Nox5 seems to be important in the regulation of vascular contraction and kidney function. In cardiovascular disease and diabetic nephropathy, Nox5 activity is increased and this is associated with increased production of reactive oxygen species and oxidative stress implicated in tissue damage. ABSTRACT: Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Nox), comprise seven family members (Nox1-Nox5 and dual oxidase 1 and 2) and are major producers of reactive oxygen species in mammalian cells. Reactive oxygen species are crucially involved in cell signalling and function. All Noxs share structural homology comprising six transmembrane domains with two haem-binding regions and an NADPH-binding region on the intracellular C-terminus, whereas their regulatory systems, mechanisms of activation and tissue distribution differ. This explains the diverse function of Noxs. Of the Noxs, NOX5 is unique in that rodents lack the gene, it is regulated by Ca2+ , it does not require NADPH oxidase subunits for its activation, and it is not glycosylated. NOX5 localizes in the perinuclear and endoplasmic reticulum regions of cells and traffics to the cell membrane upon activation. It is tightly regulated through numerous post-translational modifications and is activated by vasoactive agents, growth factors and pro-inflammatory cytokines. The exact pathophysiological significance of NOX5 remains unclear, but it seems to be important in the physiological regulation of sperm motility, vascular contraction and lymphocyte differentiation, and NOX5 hyperactivation has been implicated in cardiovascular disease, kidney injury and cancer. The field of NOX5 biology is still in its infancy, but with new insights into its biochemistry and cellular regulation, discovery of the NOX5 crystal structure and genome-wide association studies implicating NOX5 in disease, the time is now ripe to advance NOX5 research. This review provides a comprehensive overview of our current understanding of NOX5, from basic biology to human disease, and highlights the unique characteristics of this enigmatic Nox isoform.


Subject(s)
NADPH Oxidase 5/genetics , Animals , Gene Expression Regulation, Enzymologic , Genome-Wide Association Study , Humans , Hydrogen-Ion Concentration , Isoenzymes , NADPH Oxidase 5/biosynthesis , NADPH Oxidase 5/metabolism , Proton Pumps , Reactive Oxygen Species
19.
J Endocrinol Invest ; 42(10): 1181-1189, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30963466

ABSTRACT

PURPOSE: NADPH oxidase 5 (NOX5), the main isoform of NOX in spermatozoa, has been recognized as the main active generators of reactive oxygen species (ROS), including superoxide anion (O 2 -. ) and hydrogen peroxide (H2O2). ROS have been shown to play important roles in many physiological and pathological conditions in spermatozoa. The present study aims to investigate the alterations of NOX5 protein expression and oxidative stress (OS) status in asthenozoospermic men compared to normozoospermic men. METHODS: Semen samples were collected from 25 asthenozoospermic men and 28 normozoospermic men. In this study, NOX5 protein expression was evaluated by Western blotting. An OS status was evaluated by measuring of ROS (O 2 -. and H2O2), DNA damage and plasma membrane integrity in spermatozoa. RESULTS: The protein expression of NOX5 (p < 0.0001) was remarkably higher in asthenozoospermic men in comparison to normozoospermic men. In addition, the percentages of intracellular O 2 -. (p < 0.0001), H2O2 (p < 0.0001) in viable spermatozoa, apoptotic sperm cells with altered plasma membrane (p < 0.001) and DNA damage (p = 0.001) were significantly increased in asthenozoospermic men compared to normozoospermic men. CONCLUSIONS: The present study provides evidence that the overexpression of NOX5 protein may induce excessive ROS production and oxidative stress damages to DNA and plasma membrane integrity in asthenozoospermic men.


Subject(s)
Asthenozoospermia/genetics , Asthenozoospermia/metabolism , NADPH Oxidase 5/genetics , Oxidative Stress/physiology , Spermatozoa/metabolism , Adult , Case-Control Studies , Cell Membrane/metabolism , DNA Damage/genetics , DNA Fragmentation , Gene Expression Regulation, Enzymologic , Humans , Infertility, Male/genetics , Infertility, Male/metabolism , Male , Reactive Oxygen Species/metabolism , Semen/metabolism , Semen Analysis
SELECTION OF CITATIONS
SEARCH DETAIL