Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
Add more filters

Publication year range
1.
Emerg Infect Dis ; 30(9): 1922-1925, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39174030

ABSTRACT

We investigated a fatal case of primary amoebic meningoencephalitis from an indoor surfing center in Taiwan. The case was detected through encephalitis syndromic surveillance. Of 56 environmental specimens, 1 was positive for Naegleria fowleri ameba. This report emphasizes the risk for N. fowleri infection from inadequately disinfected recreational waters, even indoors.


Subject(s)
Central Nervous System Protozoal Infections , Naegleria fowleri , Humans , Naegleria fowleri/isolation & purification , Naegleria fowleri/genetics , Taiwan/epidemiology , Central Nervous System Protozoal Infections/parasitology , Central Nervous System Protozoal Infections/diagnosis , Central Nervous System Protozoal Infections/epidemiology , Fatal Outcome , Male , Meningoencephalitis/parasitology , Meningoencephalitis/diagnosis , Amebiasis/diagnosis , Amebiasis/parasitology , Adult
2.
Parasitol Res ; 122(10): 2451-2452, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37555856

ABSTRACT

This case report describes a 62-year-old male fisherman who presented with persistent vomiting, headache, and behavior changes. Despite initial antibiotic and corticosteroid treatment, his condition worsened, leading to coma and subsequent death. Macro-genome sequencing of cerebrospinal fluid (CSF) revealed the presence of Naegleria fowleri infection, which had been missed during initial laboratory tests. The patient's exposure history included sea-swimming near Zhoushan Island.


Subject(s)
Amebiasis , Central Nervous System Protozoal Infections , Meningoencephalitis , Naegleria fowleri , Male , Humans , Middle Aged , Central Nervous System Protozoal Infections/diagnosis , Amebiasis/diagnosis , Swimming , Naegleria fowleri/genetics , Fatal Outcome , Seawater , Meningoencephalitis/diagnosis
3.
Parasitol Res ; 121(11): 3287-3303, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36125528

ABSTRACT

Naegleria fowleri causes primary amoebic meningoencephalitis in humans and experimental animals. It has been suggested that cysteine proteases of parasites play key roles in metabolism, nutrient uptake, host tissue invasion, and immune evasion. The aim of this work was to evaluate the presence, expression, and role of cathepsin B from N. fowleri in vitro and during PAM. Rabbit-specific polyclonal antibodies against cathepsin B were obtained from rabbit immunization with a synthetic peptide obtained by bioinformatic design. In addition, a probe was designed from mRNA for N. fowleri cathepsin B. Both protein and messenger were detected in fixed trophozoites, trophozoites interacted with polymorphonuclear and histological sections of infected mice. The main cathepsin B distribution was observed in cytoplasm or membrane mainly pseudopods and food-cups while messenger was in nucleus and cytoplasm. Surprisingly, both the messenger and enzyme were observed in extracellular medium. To determine cathepsin B release, we used trophozoites supernatant recovered from nasal passages or brain of infected mice. We observed the highest release in supernatant from recovered brain amoebae, and when we analyzed molecular weight of secreted proteins by immunoblot, we found 30 and 37 kDa bands which were highly immunogenic. Finally, role of cathepsin B during N. fowleri infection was determined; we preincubated trophozoites with E-64, pHMB or antibodies with which we obtained 60%, 100%, and 60% of survival, respectively, in infected mice. These results suggest that cathepsin B plays a role during pathogenesis caused by N. fowleri mainly in adhesion and contributes to nervous tissue damage.


Subject(s)
Central Nervous System Protozoal Infections , Cysteine Proteases , Meningoencephalitis , Naegleria fowleri , Animals , Cathepsin B/genetics , Central Nervous System Protozoal Infections/parasitology , Cysteine Proteases/metabolism , Humans , Meningoencephalitis/parasitology , Mice , Naegleria fowleri/genetics , RNA, Messenger , Rabbits , Trophozoites/metabolism
4.
BMC Biol ; 19(1): 142, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34294116

ABSTRACT

BACKGROUND: The opportunistic pathogen Naegleria fowleri establishes infection in the human brain, killing almost invariably within 2 weeks. The amoeba performs piece-meal ingestion, or trogocytosis, of brain material causing direct tissue damage and massive inflammation. The cellular basis distinguishing N. fowleri from other Naegleria species, which are all non-pathogenic, is not known. Yet, with the geographic range of N. fowleri advancing, potentially due to climate change, understanding how this pathogen invades and kills is both important and timely. RESULTS: Here, we report an -omics approach to understanding N. fowleri biology and infection at the system level. We sequenced two new strains of N. fowleri and performed a transcriptomic analysis of low- versus high-pathogenicity N. fowleri cultured in a mouse infection model. Comparative analysis provides an in-depth assessment of encoded protein complement between strains, finding high conservation. Molecular evolutionary analyses of multiple diverse cellular systems demonstrate that the N. fowleri genome encodes a similarly complete cellular repertoire to that found in free-living N. gruberi. From transcriptomics, neither stress responses nor traits conferred from lateral gene transfer are suggested as critical for pathogenicity. By contrast, cellular systems such as proteases, lysosomal machinery, and motility, together with metabolic reprogramming and novel N. fowleri proteins, are all implicated in facilitating pathogenicity within the host. Upregulation in mouse-passaged N. fowleri of genes associated with glutamate metabolism and ammonia transport suggests adaptation to available carbon sources in the central nervous system. CONCLUSIONS: In-depth analysis of Naegleria genomes and transcriptomes provides a model of cellular systems involved in opportunistic pathogenicity, uncovering new angles to understanding the biology of a rare but highly fatal pathogen.


Subject(s)
Naegleria fowleri , Animals , Disease Models, Animal , Genomics , Mice , Naegleria fowleri/genetics , Transcriptome , Trogocytosis
5.
Emerg Infect Dis ; 27(1): 271-274, 2021 01.
Article in English | MEDLINE | ID: mdl-33350926

ABSTRACT

Naegleria fowleri is a free-living ameba that causes primary amebic meningoencephalitis (PAM), a rare but usually fatal disease. We analyzed trends in recreational water exposures associated with PAM cases reported during 1978-2018 in the United States. Although PAM incidence remained stable, the geographic range of exposure locations expanded northward.


Subject(s)
Amebiasis , Amoeba , Central Nervous System Protozoal Infections , Meningoencephalitis , Naegleria fowleri , Central Nervous System Protozoal Infections/epidemiology , Central Nervous System Protozoal Infections/etiology , Humans , Meningoencephalitis/epidemiology , Meningoencephalitis/etiology , Naegleria fowleri/genetics , United States/epidemiology , Water
6.
BMC Infect Dis ; 21(1): 1251, 2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34906097

ABSTRACT

BACKGROUND: Primary amoebic meningoencephalitis (PAM) is a rare, acute and fatal disease of the central nervous system caused by infection with Naegleria fowleri (Heggie, in Travel Med Infect Dis 8:201-6, 2010). Presently, the majority of reported cases in the literature have been diagnosed through pathogen detection pathogens in the cerebrospinal fluid (CSF). This report highlights the first case of pediatric PAM diagnosed with amoeba infiltration within CSF and bloodstream of an 8-year-old male child, validated through meta-genomic next-generation sequencing (mNGS). CASE PRESENTATION: An 8-year-old male child was admitted to hospital following 24 h of fever, headache and vomiting and rapidly entered into a coma. CSF examination was consistent with typical bacterial meningitis. However, since targeted treatment for this condition proved to be futile, the patient rapidly progressed to brain death. Finally, the patient was referred to our hospital where he was confirmed with brain death. CSF and blood samples were consequently analyzed through mNGS. N. fowleri was detected in both samples, although the sequence copy number in the blood was lower than for CSF. The pathogen diagnosis was further verified by PCR and Sanger sequencing. CONCLUSIONS: This is the first reported case of pediatric PAM found in mainland China. The results indicate that N. fowleri may spread outside the central nervous system through a damaged blood-brain barrier.


Subject(s)
Amebiasis , Central Nervous System Protozoal Infections , Meningoencephalitis , Naegleria fowleri , Amebiasis/diagnosis , Central Nervous System Protozoal Infections/diagnosis , Cerebrospinal Fluid , Child , Coma , High-Throughput Nucleotide Sequencing , Humans , Male , Meningoencephalitis/diagnosis , Naegleria fowleri/genetics , Polymerase Chain Reaction
7.
Parasitol Res ; 119(7): 2351-2358, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32451717

ABSTRACT

Naegleria fowleri causes a deadly infection known as primary amoebic meningoencephalitis (PAM). To our knowledge, there are very few transcriptome studies conducted on these brain-eating amoebae, despite rise in the number of cases. Although the Naegleria genome has been sequenced, currently, it is not well annotated. Transcriptome level studies are needed to help understand the pathology and biology of this fatal parasitic infection. Recently, we showed that nanoparticles loaded with the flavonoid Hesperidin (HDN) are potential novel antimicrobial agents. N. fowleri trophozoites were treated with and without HDN-conjugated with silver nanoparticles (AgNPs) and silver only, and then, 50% minimum inhibitory concentration (MIC) was determined. The results revealed that the MIC of HDN-conjugated AgNPs was 12.5 microg/mL when treated for 3 h. As no reference genome exists for N. fowleri, de novo RNA transcriptome analysis using RNA-Seq and differential gene expression analysis was performed using the Trinity software. Analysis revealed that more than 2000 genes were differentially expressed in response to N. fowleri treatment with HDN-conjugated AgNPs. Some of the genes were linked to oxidative stress response, DNA repair, cell division, cell signalling and protein synthesis. The downregulated genes were linked with processes such as protein modification, synthesis of aromatic amino acids, when compared with untreated N. fowleri. Further transcriptome studies will lead to understanding of genetic mechanisms of the biology and pathogenesis and/or the identification of much needed drug candidates.


Subject(s)
Central Nervous System Protozoal Infections/parasitology , Hesperidin/pharmacokinetics , Naegleria fowleri/genetics , Silver/pharmacology , Transcriptome/genetics , Animals , Cell Division/genetics , DNA Repair/genetics , Gene Expression Profiling , Hesperidin/metabolism , Humans , Metal Nanoparticles , Oxidative Stress/genetics , Parasitic Sensitivity Tests , RNA-Seq , Silver/metabolism
8.
Parasite Immunol ; 41(8): e12631, 2019 08.
Article in English | MEDLINE | ID: mdl-31077592

ABSTRACT

Free-living amoeba, Naegleria fowleri, destroys target cells through contact-dependent mechanisms, such as phagocytosis and/or trogocytosis. A previous experiment showed that the nf-actin gene consisted of 1.2 kbp, produced a 50.1 kDa recombinant protein (Nf-actin), and was localized on the cytoskeleton, pseudopodia and amoebastome. In this study, cellular characterization of the nf-actin gene concerned with contact-dependent mechanisms in N fowleri was performed. The nf-actin gene was amplified from a gene-cloned vector, pEXQP5-T7/NT TOPO. The nf-actin gene was introduced into the Ubi-pEGFP-C2 vector, and Ubi-pEGFP-C2/nf-actin was transfected into N fowleri trophozoites. Strong GFP fluorescence was detected in N fowleri trophozoites transfected with Ubi-pEGFP-C2/nf-actin. Expression of EGFP-Nf-actin protein was detected by Western blot analysis. The nf-actin-overexpressing N fowleri showed significantly increased adhesion activity against extracellular matrix components, fibronectin, collagen I and fibrinogen, compared with wild-type N fowleri. Moreover, nf-actin-overexpressing N fowleri showed increased phagocytic activity and cytotoxicity in comparison with wild-type N fowleri. In summary, the overexpressed nf-actin gene has an important function in ability to increase cell adhesion, cytotoxicity and phagocytosis by N fowleri.


Subject(s)
Actins/metabolism , Central Nervous System Protozoal Infections/parasitology , Naegleria fowleri/metabolism , Actins/genetics , Animals , CHO Cells , Central Nervous System Protozoal Infections/genetics , Central Nervous System Protozoal Infections/metabolism , Cloning, Molecular , Cricetinae , Cricetulus , Fibronectins/genetics , Fibronectins/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Naegleria fowleri/genetics , Naegleria fowleri/growth & development , Protein Transport , Trophozoites/genetics , Trophozoites/growth & development , Trophozoites/metabolism
9.
Korean J Parasitol ; 57(3): 291-294, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31284352

ABSTRACT

Primary amebic encephalitis (PAM) is a devastating central nervous system infection caused by Naegleria fowleri, a free-living amoeba, which can survive in soil and warm fresh water. Here, a 43-year-old healthy male was exposed to warm freshwater 5 days before the symptom onset. He rapidly developed severe cerebral edema before the diagnosis of PAM and was treated with intravenous conventional amphotericin B while died of terminal cerebral hernia finally. Comparing the patients with PAM who has similar clinical symptoms to those with other common types of meningoencephalitis, this infection is probably curable if treated early and aggressively. PAM should be considered in the differential diagnosis of purulent meningoencephalitis, especially in patients with recent freshwater-related activities during the hot season.


Subject(s)
Meningoencephalitis/parasitology , Adult , Fatal Outcome , Fresh Water/parasitology , Humans , Male , Meningoencephalitis/diagnosis , Meningoencephalitis/mortality , Naegleria fowleri/genetics , Naegleria fowleri/isolation & purification , Naegleria fowleri/physiology
11.
Clin Infect Dis ; 66(4): 548-553, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29401275

ABSTRACT

Background: Naegleria fowleri is a thermophilic ameba found in freshwater that causes primary amebic meningoencephalitis (PAM) when it enters the nose and migrates to the brain. Patient exposure to water containing the ameba typically occurs in warm freshwater lakes and ponds during recreational water activities. In June 2016, an 18-year-old woman died of PAM after traveling to North Carolina, where she participated in rafting on an artificial whitewater river. Methods: We conducted an epidemiologic and environmental investigation to determine the water exposure that led to the death of this patient. Results: The case patient's most probable water exposure occurred while rafting on an artificial whitewater river during which she was thrown out of the raft and submerged underwater. The approximately 11.5 million gallons of water in the whitewater facility were partially filtered, subjected to ultraviolet light treatment, and occasionally chlorinated. Heavy algal growth was noted. Eleven water-related samples were collected from the facility; all were positive for N. fowleri. Of 5 samples collected from the nearby natural river, 1 sediment sample was positive for N. fowleri. Conclusions: This investigation documents a novel exposure to an artificial whitewater river as the likely exposure causing PAM in this case. Conditions in the whitewater facility (warm, turbid water with little chlorine and heavy algal growth) rendered the water treatment ineffective and provided an ideal environment for N. fowleri to thrive. The combination of natural and engineered elements at the whitewater facility created a challenging environment to control the growth of N. fowleri.


Subject(s)
Amoeba/isolation & purification , Brain/parasitology , Central Nervous System Protozoal Infections/diagnosis , Meningoencephalitis/diagnosis , Meningoencephalitis/etiology , Rivers/parasitology , Acanthamoeba/genetics , Acanthamoeba/isolation & purification , Adolescent , Amoeba/genetics , Balamuthia mandrillaris/genetics , Balamuthia mandrillaris/isolation & purification , Central Nervous System Protozoal Infections/etiology , Environment , Fatal Outcome , Female , Humans , Meningoencephalitis/parasitology , Naegleria fowleri/genetics , Naegleria fowleri/isolation & purification , North Carolina , Parks, Recreational , Polymerase Chain Reaction
12.
BMC Infect Dis ; 18(1): 349, 2018 07 28.
Article in English | MEDLINE | ID: mdl-30055569

ABSTRACT

BACKGROUND: Primary amoebic meningoencephalitis (PAM), caused by Naegleria fowleri, is a rare protozoan infectious disease in China. A fatality rate of over 95% had been reported due to extremely rapid disease progression in the USA and other countries. Rapid and precise identification of the causative agent is very important to clinicians for guiding their choices for administering countermeasures in the clinic. In this report, we applied the next-generation sequencing (NGS) method to rapidly show that N. fowleri was the causative agent of a fatal case involving a 42-year-old man with severe PAM disease, the first reported in mainland China. CASE PRESENTATION: A 42-year old male in a deep coma was admitted to Shenzhen Third People's Hospital, a special medical care unit with expertise in infectious diseases. Increased intracranial pressure was detected. The cerebrospinal fluid (CSF) sample was found to be red and cloudy with increased leukocyte and protein levels. While bacterial cultures with CSF were negative, N. fowleri was determined to be the causative agent with NGS. Amphotericin B (AmB), a drug with anti-amoeba activity, was used immediately, but the treatment came too late and the patient died 2 days after the NGS confirmation. CONCLUSION: In this paper, we reported a case of PAM disease for the first time in mainland China. NGS was used for rapid diagnosis and provided guidance for prescribing medications. However, the patient died due to a late admission amid advanced PAM disease. Early detection of N. fowleri is necessary in order to select effective drug treatments and control the disease progression. Despite the negative survival outcome, NGS was shown to be a promising method of rapid and precise identification of N. fowleri.


Subject(s)
Central Nervous System Protozoal Infections/diagnosis , High-Throughput Nucleotide Sequencing , Naegleria fowleri/genetics , Adult , Central Nervous System Protozoal Infections/parasitology , China , Coma/diagnosis , Coma/parasitology , Fatal Outcome , Humans , Male , Naegleria fowleri/isolation & purification , Naegleria fowleri/pathogenicity
13.
Exp Parasitol ; 187: 1-11, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29501696

ABSTRACT

Naegleria fowleri is a pathogenic amoeboflagellate most prominently known for its role as the etiological agent of the Primary Amoebic Meningoencephalitis (PAM), a disease that afflicts the central nervous system and is fatal in more than 95% of the reported cases. Although being fatal and with potential risks for an increase in the occurrence of the pathogen in populated areas, the organism receives little public health attention. A great underestimation in the number of PAM cases reported is assumed, taking into account the difficulty in obtaining an accurate diagnosis. In this review, we summarize different techniques and methods used in the identification of the protozoan in clinical and environmental samples. Since it remains unclear whether the protozoan infection can be successfully treated with the currently available drugs, we proceed to discuss the current PAM therapeutic strategies and its effectiveness. Finally, novel compounds for potential treatments are discussed as well as research on vaccine development against PAM.


Subject(s)
Central Nervous System Protozoal Infections/therapy , Naegleria fowleri/physiology , Antiprotozoal Agents/therapeutic use , Central Nervous System Protozoal Infections/diagnosis , Central Nervous System Protozoal Infections/prevention & control , Drinking Water/parasitology , Drinking Water/standards , Humans , Naegleria fowleri/genetics , Risk Factors , Vaccination
14.
Exp Parasitol ; 195: 54-58, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30393165

ABSTRACT

Little is known about the prevalence of Balamuthia mandrillaris within the environment due to its difficult isolation, but once an axenic culture is established, it is relatively easy to maintain. As most of the time researchers are interested mainly in isolating B. mandrillaris from environmental samples, the flora that accompanies it becomes second in importance. Therefore, this study aimed to determine which potentially pathogenic free-living amoebae, in addition to B. mandrillaris, could be found co-inhabiting a source of natural thermal water called "Agua Caliente" (Mexico), where this amoeba has previously been detected twice by molecular methods. A third sampling from this same source was carried out to try to isolate B. mandrillaris and other free-living amoebae using 37 and 45 °C as isolation temperatures. For PCR techniques, specific primers were used for B. mandrillaris, Naegleria fowleri, and Acanthamoeba species, plus a universal primer set for the eukaryotic 18S SSU rRNA gene for other isolated amoebae. PCR products were sequenced for final identification. 42 strains of the primary isolate were obtained, but only 34 could be kept in culture. Of them, 23 strains were identified as Naegleria lovaniensis, eight strains as Acanthamoeba jacobsi, two strains as Stenamoeba sp. and only one was identified as Vermamoeba vermiformis. The isolation of B. mandrillaris was once again not successful, but the presence of potentially pathogenic and nonpathogenic free-living amoebae is reported for the first time in this type of water in Mexico thanks to molecular methodology.


Subject(s)
Amoeba/pathogenicity , Hot Springs/parasitology , Acanthamoeba/classification , Acanthamoeba/genetics , Acanthamoeba/isolation & purification , Acanthamoeba/pathogenicity , Amoeba/classification , Amoeba/genetics , Amoeba/isolation & purification , Balamuthia mandrillaris/classification , Balamuthia mandrillaris/genetics , Balamuthia mandrillaris/isolation & purification , Balamuthia mandrillaris/pathogenicity , DNA, Protozoan/chemistry , DNA, Protozoan/isolation & purification , Genotype , Hot Springs/chemistry , Hydrogen-Ion Concentration , Mexico , Naegleria fowleri/classification , Naegleria fowleri/genetics , Naegleria fowleri/isolation & purification , Naegleria fowleri/pathogenicity , Phylogeny , Polymerase Chain Reaction , Spectrophotometry , Temperature
15.
Lett Appl Microbiol ; 67(4): 322-328, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30007064

ABSTRACT

Naegleria fowleri in recreational waters is a serious health threat. A rapid and accurate method to determine this pathogen in water is vital to develop effective control strategies. In this study, we compared two molecular methods: droplet digital polymerase chain reaction (ddPCR) and quantitative PCR (qPCR) assays in identifying N. fowleri from clinical and environmental samples. Strong agreement between ddPCR and qPCR methods over clinical DNA samples was observed. The limit of detection (LOD) for ddPCR and qPCR assays were 2·5 and 25 N. fowleri per reaction respectively. In the comparative analysis using N. fowleri genomic DNA, quantitative results obtained from ddPCR and qPCR assays showed no significant difference. The assay specificity for ddPCR and qPCR assays were 100 and 86% respectively. Results from both PCR assays indicated N. fowleri was present in surface water samples from Lake Pontchartrain during our study period. In general, the ddPCR performance demonstrated in this study on clinical and environmental samples lead to greater confidence of ddPCR technology on field application. For precise quantification using qPCR, we recommend using ddPCR to quantify the standard materials before qPCR application. SIGNIFICANCE AND IMPACT OF THE STUDY: This study explored the application of ddPCR and qPCR methods in identifying Naegleria fowleri from both clinical and environmental water samples. Strong agreement between ddPCR and qPCR methods over clinical DNA samples was observed. Naegleria fowleri was present in surface water samples from Lake Pontchartrain during our study period. The ability of N. fowleri to survive in brackish water is therefore a potential risk factor for people who engage in water-related recreational activities. The ddPCR performance demonstrated in this study on clinical and environmental samples lead to greater confidence of ddPCR technology on field application.


Subject(s)
DNA, Protozoan/analysis , Lakes/parasitology , Naegleria fowleri/genetics , Naegleria fowleri/isolation & purification , Real-Time Polymerase Chain Reaction/methods , Humans , Limit of Detection , Parks, Recreational , Saline Waters , Sensitivity and Specificity , Water/parasitology
16.
Parasitol Res ; 117(6): 1801-1811, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29675682

ABSTRACT

Brain-eating amoebae (Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri) have gained increasing attention owing to their capacity to produce severe human and animal infections involving the brain. Early detection is a pre-requisite in successful prognosis. Here, we developed a nanoPCR assay for the rapid detection of brain-eating amoebae using various nanoparticles. Graphene oxide, copper and alumina nanoparticles used in this study were characterized using Raman spectroscopy measurements through excitation with a He-Ne laser, while powder X-ray diffraction patterns were taken on a PANanalytical, X'Pert HighScore diffractometer and the morphology of the materials was confirmed using high-resolution transmission electron microscopy (HRTEM). Using nanoparticle-assisted PCR, the results revealed that graphene oxide, copper oxide and alumina nanoparticles significantly enhanced PCR efficiency in the detection of pathogenic free-living amoebae using genus-specific probes. The optimal concentration of graphene oxide, copper oxide and alumina nanoparticles for Acanthamoeba spp. was determined at 0.4, 0.04 and 0.4 µg per mL respectively. For B. mandrillaris, the optimal concentration was determined at 0.4 µg per mL for graphene oxide, copper oxide and alumina nanoparticles, and for Naegleria, the optimal concentration was 0.04, 4.0 and 0.04 µg per mL respectively. Moreover, combinations of these nanoparticles proved to further enhance PCR efficiency. The addition of metal oxide nanoparticles leads to excellent surface effect, while thermal conductivity property of the nanoparticles enhances PCR productivity. These findings suggest that nanoPCR assay has tremendous potential in the clinical diagnosis of parasitic infections as well as for studying epidemiology and pathology and environmental monitoring of other microbes.


Subject(s)
Acanthamoeba/genetics , Aluminum Oxide/chemistry , Balamuthia mandrillaris/genetics , Copper/chemistry , Graphite/chemistry , Metal Nanoparticles/chemistry , Naegleria fowleri/genetics , Polymerase Chain Reaction/methods , Acanthamoeba/isolation & purification , Animals , Balamuthia mandrillaris/isolation & purification , Biological Assay , Brain/parasitology , Cell Line, Tumor , Early Diagnosis , HeLa Cells , Humans , Naegleria fowleri/isolation & purification , Protozoan Infections/diagnosis , Protozoan Infections/parasitology
17.
Microbiology (Reading) ; 163(10): 1436-1444, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28954644

ABSTRACT

Naegleria fowleri is a free-living amoeba found in freshwater lakes and ponds and is the causative agent of primary amoebic meningoencephalitis (PAM), a rapidly fatal disease of the central nervous system (CNS). PAM occurs when amoebae attach to the nasal epithelium and invade the CNS, a process that involves binding to, and degradation of, extracellular matrix (ECM) components. This degradation is mediated by matrix metalloproteinases (MMPs), enzymes that have been described in other pathogenic protozoa, and that have been linked to their increased motility and invasive capability. These enzymes also are upregulated in tumorigenic cells and have been implicated in metastasis of certain tumours. In the present study, in vitro experiments linked MMPs functionally to the degradation of the ECM. Gelatin zymography demonstrated enzyme activity in N. fowleri whole cell lysates, conditioned media and media collected from invasion assays. Western immunoblotting indicated the presence of the metalloproteinases MMP-2 (gelatinase A), MMP-9 (gelatinase B) and MMP-14 [membrane type-1 matrix metalloproteinase (MT1-MMP)]. Highly virulent mouse-passaged amoebae expressed higher levels of MMPs than weakly virulent axenically grown amoebae. The functional relevance of MMPs in media was indicated through the use of the MMP inhibitor, 1,10-phenanthroline. The collective in vitro results suggest that MMPs play a critical role in vivo in invasion of the CNS and that these enzymes may be amenable targets for limiting PAM.


Subject(s)
Central Nervous System Protozoal Infections/parasitology , Gene Expression , Matrix Metalloproteinases/genetics , Naegleria fowleri/genetics , Naegleria fowleri/pathogenicity , Protozoan Proteins/genetics , Adolescent , Animals , Humans , Matrix Metalloproteinase 14/genetics , Matrix Metalloproteinase 14/metabolism , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinases/metabolism , Mice , Naegleria fowleri/drug effects , Naegleria fowleri/ultrastructure , Phenanthrolines/pharmacology , Protease Inhibitors/pharmacology , Protozoan Proteins/metabolism
18.
Microbiology (Reading) ; 163(7): 940-949, 2017 07.
Article in English | MEDLINE | ID: mdl-28721850

ABSTRACT

Naegleria fowleri and Naegleria gruberi belong to the free-living amoebae group. It is widely known that the non-pathogenic species N. gruberi is usually employed as a model to describe molecular pathways in this genus, mainly because its genome has been recently described. However, N. fowleri is an aetiological agent of primary amoebic meningoencephalitis, an acute and fatal disease. Currently, the most widely used drug for its treatment is amphotericin B (AmB). It was previously reported that AmB has an amoebicidal effect in both N. fowleri and N. gruberi trophozoites by inducing morphological changes that resemble programmed cell death (PCD). PCD is a mechanism that activates morphological, biochemical and genetic changes. However, PCD has not yet been characterized in the genus Naegleria. The aim of the present work was to evaluate the typical markers to describe PCD in both amoebae. These results showed that treated trophozoites displayed several parameters of apoptosis-like PCD in both species. We observed ultrastructural changes, an increase in reactive oxygen species, phosphatidylserine externalization and a decrease in intracellular potassium, while DNA degradation was evaluated using the TUNEL assay and agarose gels, and all of these parameters are related to PCD. Finally, we analysed the expression of apoptosis-related genes, such as sir2 and atg8, in N. gruberi. Taken together, our results showed that AmB induces the morphological, biochemical and genetic changes of apoptosis-like PCD in the genus Naegleria.


Subject(s)
Amphotericin B/pharmacology , Antiprotozoal Agents/pharmacology , Apoptosis/drug effects , Central Nervous System Protozoal Infections/parasitology , Naegleria fowleri/drug effects , Naegleria/drug effects , Naegleria/cytology , Naegleria/genetics , Naegleria/growth & development , Naegleria fowleri/cytology , Naegleria fowleri/genetics , Naegleria fowleri/growth & development , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Reactive Oxygen Species/metabolism , Trophozoites/drug effects , Trophozoites/growth & development
19.
BMC Infect Dis ; 17(1): 532, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28764655

ABSTRACT

BACKGROUND: Primary amoebic meningoencephalitis (PAM) is a fulminant disease of the brain caused by Naegleria fowleri. Although the disease is rare, the case fatality rate is very high. In this report, we describe the first case of PAM in Zambia. CASE PRESENTATION: The patient presented with sudden onset of seizures and fever on admission. On physical examination he was febrile, comatose and with a stiff neck. Cerebral spinal fluid (CSF) collected on admission did not reveal any organism on microscopy or culture but showed elevated white cell count. A working diagnosis of severe septicemia with acute meningoencephalitis was then made and the patient was started on IV Cephtriaxone (2 g) twice daily. Despite receiving treatment, his condition deteriorated. A second CSF sample collected on day 3 was also negative for bacteria and other organisms. However, a repeat CSF sample collected on day 8 revealed numerous motile organisms that were identified as Naegleria on microscopy and confirmed to be N. fowleri on polymerase chain reaction. The patient died on day 8 of hospital admission after having received one dose of Amphotericin B (50 mg). Features consistent with PAM were detected on autopsy. CONCLUSION: The isolation of N. fowleri in this patient calls for increased awareness among clinical and laboratory staff on suspected PAM cases to promptly diagnose and effectively manage the disease.


Subject(s)
Central Nervous System Protozoal Infections/diagnosis , Naegleria fowleri/isolation & purification , Amphotericin B/therapeutic use , Animals , Anti-Bacterial Agents/therapeutic use , Cefuroxime/therapeutic use , Central Nervous System Protozoal Infections/complications , Central Nervous System Protozoal Infections/drug therapy , Central Nervous System Protozoal Infections/parasitology , Fatal Outcome , Fever/drug therapy , Humans , Male , Naegleria fowleri/genetics , Sepsis/complications , Sepsis/drug therapy , Young Adult , Zambia
20.
Korean J Parasitol ; 55(3): 233-238, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28719947

ABSTRACT

Pathogenic Naegleria fowleri, Acanthamoeba castellanii, and Acanthamoeba polyphaga, are distributed worldwide. They are causative agents of primary amoebic meningoencephalitis or acanthamoebic keratitis in humans, respectively. Trophozoites encyst in unfavorable environments, such as exhausted food supply and desiccation. Until recently, the method of N. fowleri encystation used solid non-nutrient agar medium supplemented with heat-inactivated Escherichia coli; however, for the amoebic encystment of Acanthamoeba spp., a defined, slightly modified liquid media is used. In this study, in order to generate pure N. fowleri cysts, a liquid encystment medium (buffer 1) modified from Page's amoeba saline was applied for encystation of N. fowleri. N. fowleri cysts were well induced after 24 hr with the above defined liquid encystment medium (buffer 1). This was confirmed by observation of a high expression of differential mRNA of nfa1 and actin genes in trophozoites. Thus, this liquid medium can replace the earlier non-nutrient agar medium for obtaining pure N. fowleri cysts. In addition, for cyst formation of Acanthamoeba spp., buffer 2 (adjusted to pH 9.0) was the more efficient medium. To summarize, these liquid encystment media may be useful for further studies which require axenic and pure amoebic cysts.


Subject(s)
Acanthamoeba castellanii/physiology , Culture Media , Mimiviridae/physiology , Naegleria fowleri/physiology , Parasite Encystment , Acanthamoeba castellanii/genetics , Buffers , Culture Media/chemistry , Hydrogen-Ion Concentration , Mimiviridae/genetics , Naegleria fowleri/genetics , RNA, Messenger , RNA, Protozoan , Sodium Chloride
SELECTION OF CITATIONS
SEARCH DETAIL