Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 179
Filter
Add more filters

Publication year range
1.
J Biol Chem ; 300(9): 107649, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39122011

ABSTRACT

Amaryllidaceae alkaloids are a diverse group of alkaloids exclusively reported from the Amaryllidaceae plant family. In planta, their biosynthesis is still not fully characterized; however, a labeling study established 4'-O-methylnorbelladine as the key intermediate compound of the pathway. Previous reports have characterized O-methyltransferases from several Amaryllidaceae species. Nevertheless, the formation of the different O-methylnorbelladine derivatives (3'-O-methylnorbelladine, 4'-O-methylnorbelladine, and 3'4'-O-dimethylnorbelladine), the role, and the preferred substrates of O-methyltransferases are not clearly understood. In this study, we performed the biochemical characterization of an O-methyltransferase candidate from Narcissus papyraceus (NpOMT) in vitro and in vivo, following biotransformation of norbelladine in Nicotiana benthamiana having transient expression of NpOMT. Docking analysis was further used to investigate substrate preferences, as well as key interacting residues of NpOMT. Our study shows that NpOMT methylates norbelladine preferentially at the 4'-OH position in vitro and in planta. Interestingly, NpOMT also catalyzed the synthesis of 3',4'-O-dimethylnorbelladine from norbelladine and 4'-O-methylnorbelladine during in vitro enzymatic assay. Furthermore, we show that NpOMT methylates 3,4-dihydroxybenzylaldehyde and caffeic acid in a nonregiospecific manner to produce meta/para monomethylated products. This study reveals a novel catalytic potential of an Amaryllidaceae O-methyltransferase and its ability to regioselectively methylate norbelladine in the heterologous host N. benthamiana.


Subject(s)
Methyltransferases , Plant Proteins , Methyltransferases/metabolism , Methyltransferases/chemistry , Methyltransferases/genetics , Plant Proteins/metabolism , Plant Proteins/chemistry , Plant Proteins/genetics , Kinetics , Amaryllidaceae Alkaloids/metabolism , Amaryllidaceae Alkaloids/chemistry , Nicotiana/metabolism , Nicotiana/genetics , Narcissus/metabolism , Narcissus/chemistry , Narcissus/enzymology , Substrate Specificity , Molecular Docking Simulation
2.
J Exp Bot ; 74(21): 6505-6521, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37625033

ABSTRACT

Chinese narcissus (Narcissus tazetta var. chinensis cv. 'Jinzhanyintai') is one of the 10 most famous traditional flowers of China, having a beautiful and highly ornamental flower with a rich fragrance. However, the flower longevity affects its commercial appeal. While petal senescence in Narcissus is ethylene-independent and abscisic acid-dependent, the regulatory mechanism has yet to be determined. In this study, we identified a R2R3-MYB gene (NtMYB1) from Narcissus tazetta and generated oeNtMYB1 and Ntmyb1 RNA interference mutants in Narcissus as well as an oeNtMYB1 construct in Arabidopsis. Overexpressing NtMYB1 in Narcissus or Arabidopsis led to premature leaf yellowing, an elevated level of total carotenoid, a reduced level of chlorophyll b, and a decrease in photosystem II fluorescence (Fv/Fm). A dual-luciferase assay and chromatin immunoprecipitation-quantitative PCR revealed that NtMYB1 directly binds to the promoter of NtNCED1 or NtNCED2 and activates NtNCED1/2 gene expression both in vitro and in vivo. Moreover, overexpressing NtMYB1 accelerated abscisic acid biosynthesis, up-regulated the content of zeatin and abscisic acid, and down-regulated the level of ß-carotene and gibberellin A1, leading to petal senescence and leaf yellowing in Narcissus. This study revealed a regulatory process that is fundamentally different between non-photosynthetic organs and leaves.


Subject(s)
Abscisic Acid , Narcissus , Plant Proteins , Abscisic Acid/metabolism , Arabidopsis/genetics , Flowers/genetics , Flowers/metabolism , Narcissus/genetics , Narcissus/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
3.
Molecules ; 28(10)2023 May 12.
Article in English | MEDLINE | ID: mdl-37241796

ABSTRACT

The alkaloids are one of the most represented family of natural occurring biological active compounds. Amaryllidaceae are also very well known for their beautiful flower and are thus used as ornamental plants in historic and public gardens. The Amaryllidacea alkaloids constitute an important group that is subdivided into different subfamilies with different carbon skeletons. They are well known from ancient times for their long application in folk medicine, and in particular, Narcissus poeticus L. was known to Hippocrates of Cos (ca. B.C. 460-370), who treated uterine tumors with a formulate prepared from narcissus oil. To date, more than 600 alkaloids of 15 chemical groups exhibiting various biological activities have been isolated from the Amaryllidaceae plants. This plant genus is diffused in regions of Southern Africa, Andean South America and the Mediterranean basin. Thus, this review describes the chemical and biological activity of the alkaloids collected in these regions in the last two decades as weel those of isocarbostyls isolated from Amaryllidaceae in the same regions and same period.


Subject(s)
Alkaloids , Amaryllidaceae Alkaloids , Amaryllidaceae , Narcissus , Plant Extracts/chemistry , South Africa , Narcissus/chemistry , Amaryllidaceae Alkaloids/chemistry
4.
Molecules ; 28(3)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36770905

ABSTRACT

Amaryllidaceae alkaloids are secondary metabolites with interesting medicinal properties. Almost every Narcissus species can synthesize them and constitute an excellent source for their isolation and study. Several Amaryllidaceae alkaloids have shown acetylcholinesterase inhibitory activities and are a promising tool for treating cholinergic disorders such as Alzheimer's disease (AD). Indeed, three of the four palliative treatments approved for AD are acetylcholinesterase (AChE) inhibitors and one of them, galanthamine, is an Amaryllidaceae alkaloid itself. This molecule is currently isolated from natural sources. However, its production is insufficient to supply the increasing demand for the active principle. Our main aim is to discover tools to improve galanthamine production and to prospect for potential new and more efficient drugs for AD treatment. Furthermore, we seek to broaden the knowledge of plants of the genus Narcissus from a chemotaxonomic perspective. Hence, in this study, we evaluate the alkaloid content through GC-MS and the AChE inhibitory activity of ten autumn-flowering Narcissus, which have been less studied than their spring-flowering counterparts. A total of thirty Amaryllidaceae alkaloids have been found, twenty-eight properly identified. Two Narcissus contained galanthamine, and seven were able to inhibit AChE.


Subject(s)
Amaryllidaceae Alkaloids , Amaryllidaceae , Narcissus , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Amaryllidaceae/chemistry , Amaryllidaceae Alkaloids/pharmacology , Cholinesterase Inhibitors , Galantamine/pharmacology , Narcissus/chemistry
5.
Arch Virol ; 167(4): 1211-1214, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35247101

ABSTRACT

Narcissus (Narcissus albidus) imported from the United States exhibited leaf chlorosis during post-entry quarantine. We employed next-generation sequencing (NGS) on symptomatic leaf samples and detected vallota mosaic virus (ValMV), belonging to the genus Potyvirus, family Potyviridae, as the viral agent. Sanger sequencing of PCR products and rapid amplification of cDNA ends based on NGS contigs revealed that ValMV is 9,451 nucleotides (nt) in length, excluding the poly(A) tail. Nucleotide and amino acid (aa) sequences of the coat protein region had over 98% identity to previously reported ValMV isolates. In each of the 10 regions encoding mature proteins, however, the sequence identity to other potyviruses was 49.5-71.9% nt and 18.3-78.9% aa, values that are below the species demarcation thresholds for the family Potyviridae. Phylogenetic analysis revealed that our ValMV isolate is most closely related to known ValMV isolates and is grouped with other potyviruses. Taken together, our results indicate that the newly isolated ValMV belongs to a distinct species in the genus Potyvirus. This study provides the first report of the complete ValMV genome sequence and the first record of this virus in narcissus.


Subject(s)
Narcissus , Potyvirus , Genome, Viral , High-Throughput Nucleotide Sequencing , Japan , Open Reading Frames , Phylogeny , Plant Diseases , RNA, Viral/genetics , United States
6.
Planta Med ; 88(9-10): 814-825, 2022 08.
Article in English | MEDLINE | ID: mdl-35304734

ABSTRACT

The isolation of a compound from a natural source involves many organic and mostly toxic solvents for extraction and purification. Natural deep eutectic solvents have been shown to be efficient options for the extraction of natural products. They have the advantage of being composed of abundantly available common primary metabolites, being nontoxic and environmentally safe solvents. The aim of this study was to develop a natural deep eutectic solvent-based extraction method for galanthamine, an important therapeutic agent for the treatment of Alzheimer's disease. This alkaloid can be produced by synthesis or by extraction from Narcissus bulbs. To develop an efficient extraction method, a number of different natural deep eutectic solvents was first tested for their solubilization capacity of galanthamine bromide salt. Promising results were obtained for ionic liquids, as well as some amphoteric and acidic natural deep eutectic solvents. In a two-cycle extraction process, the best solvents were tested for the extraction of galanthamine from bulbs. The ionic liquids produced poor yields, and the best results were obtained with some acid and sugar mixtures, among which malic acid-sucrose-water (1 : 1 : 5) proved to be the best, showing similar yields to that of the exhaustive Soxhlet extraction with methanol. Furthermore, the natural deep eutectic solvent was more selective for galanthamine.


Subject(s)
Alkaloids , Ionic Liquids , Narcissus , Alkaloids/metabolism , Deep Eutectic Solvents , Galantamine/metabolism , Ionic Liquids/metabolism , Solvents/metabolism
7.
Molecules ; 27(2)2022 Jan 06.
Article in English | MEDLINE | ID: mdl-35056665

ABSTRACT

The flowers of Narcissus poeticus are used for the isolation of valuable fragrance substances. So far, as the majority of these substances consist of volatile and sensitive to heat compounds, there is a need of developing effective methods for their recovery. In this study, freeze-dried N. poeticus inflorescences were extracted with pure supercritical CO2 (SFE-CO2) and its mixture with 5% co-solvent ethanol (EtOH) at 40 °C. Extract yields varied from 1.63% (12 MPa) to 3.12% (48 MPa, 5% EtOH). In total, 116 volatile compounds were identified by GC-TOF/MS in the extracts, which were divided into 20 different groups. Benzyl benzoate (9.44-10.22%), benzyl linoleate (1.72-2.17%) and benzyl alcohol (0.18-1.00%) were the major volatiles among aromatic compounds. The amount of the recovered benzyl benzoate in N. poeticus SFE-CO2 extracts varied from 58.98 ± 2.61 (24 MPa) to 91.52 ± 1.36 (48 MPa) mg/kg plant dry weight (pdw). α-Terpineol dominated among oxygenated monoterpenes (1.08-3.42%); its yield was from 9.25 ± 0.63 (12 MPa) to 29.88 ± 1.25 (48 MPa/EtOH) mg/kg pdw. Limonene was the major monoterpene hydrocarbon; (3E)-hexenol and heneicosanol dominated among alcohols and phenols; dihydroactinidiolide and 4,8,12,16-tetramethyl heptadecan-4-olide were the most abundant lactones; heptanal, nonanal, (2E,4E)-decadienal and octadecanal were the most abundant aldehydes. The most important prenol lipids were triterpenoid squalene, from 0.86 ± 0.10 (24 MPa) to 7.73 ± 0.18 (48 MPa/EtOH) mg/kg pdw and D-α-tocopherol, from 1.20 ± 0.04 (12 MPa) to 15.39 ± 0.31 (48 MPa/EtOH) mg/kg pdw. Aliphatic hydrocarbons (waxes) constituted the main part (41.47 to 54.93%) in the extracts; while in case of a 5% EtOH the percentage of alkanes was the lowest. The fraction of waxes may be removed for the separation of higher value fragrance materials. In general, the results obtained are promising for a wider application of SFE-CO2 for the recovery of fragrance substances from N. poeticus flowers.


Subject(s)
Carbon Dioxide/chemistry , Flowers/chemistry , Narcissus/chemistry , Odorants/analysis , Oils, Volatile/isolation & purification , Phytochemicals/isolation & purification , Plant Extracts/isolation & purification , Perfume/analysis , Solvents/chemistry
8.
BMC Plant Biol ; 21(1): 275, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34134615

ABSTRACT

BACKGROUND: Flavonoid biosynthesis in plants is primarily regulated at the transcriptional level by transcription factors modulating the expression of genes encoding enzymes in the flavonoid pathway. One of the most studied transcription factor complexes involved in this regulation consists of a MYB, bHLH and WD40. However, in Chinese Narcissus (Narcissus tazetta L. var. chinensis), a popular monocot bulb flower, the regulatory mechanism of flavonoid biosynthesis remains unclear. RESULTS: In this work, genes related to the regulatory complex, NtbHLH1 and a R2R3-MYB NtMYB6, were cloned from Chinese Narcissus. Phylogenetic analysis indicated that NtbHLH1 belongs to the JAF13 clade of bHLH IIIf subgroup, while NtMYB6 was highly homologous to positive regulators of proanthocyanidin biosynthesis. Both NtbHLH1 and NtMYB6 have highest expression levels in basal plates of Narcissus, where there is an accumulation of proanthocyanidin. Ectopic over expression of NtbHLH1 in tobacco resulted in an increase in anthocyanin accumulation in flowers, and an up-regulation of expression of the endogenous tobacco bHLH AN1 and flavonoid biosynthesis genes. In contrast, the expression level of LAR gene was significantly increased in NtMYB6-transgenic tobacco. Dual luciferase assays showed that co-infiltration of NtbHLH1 and NtMYB6 significantly activated the promoter of Chinese Narcissus DFR gene. Furthermore, a yeast two-hybrid assay confirmed that NtbHLH1 interacts with NtMYB6. CONCLUSIONS: Our results suggest that NtbHLH1 may function as a regulatory partner by interacting directly with NtMYB6 to enhance proanthocyanidin accumulation in Chinese Narcissus.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Narcissus/metabolism , Plant Proteins/metabolism , Proanthocyanidins/biosynthesis , Cloning, Molecular , Gene Expression Profiling , Gene Expression Regulation, Plant , Narcissus/genetics , Protein Binding , RNA, Plant , RNA-Seq , Nicotiana/genetics
9.
Rapid Commun Mass Spectrom ; 35(14): e9116, 2021 Jul 31.
Article in English | MEDLINE | ID: mdl-33928691

ABSTRACT

RATIONALE: Narcissus cv. Hawera has been found to biosynthesize some Sceletium-type alkaloids with antidepressant and anxiolytic activities. This ornamental plant has been poorly studied as a source of bioactive alkaloids including some contraversive reports on in vitro and intact plants. In this study, a detailed GC-MS characterization of its alkaloid fractions is presented. METHODS: GC-MS was used for the identification of compounds in the alkaloid fractions. Both underivatized and silylated samples were analyzed simultaneously. Elevated plus maze and tail suspension tests were used to assay the anxiolytic and antidepressant activities. Ellman's and MTT-dye reduction assays were used to evaluate the acetylcholinesterase (AChE) inhibitory and cytotoxicity activities, respectively. RESULTS: Of the 29 alkaloids, 13 of Sceletium-type were detected. Two new alkaloids were identified as 2-oxo-mesembrine and 2-oxo-epi-mesembrenol. Lycorine was found as a major compound (43.5%) in the crude silylated methanol extract. After the elimination of lycorine by pre-crystallization, the major alkaloids were 40.8% 6-epi-mesembranol, 16.2% 6-epi-mesembrenol, and 13.8% sanguinine. This fraction showed anxiolytic and antidepressant-like activities as well as potent AChE inhibitory and antineoplastic activities. CONCLUSIONS: Silylation of the alkaloid fractions from Narcissus cv. Hawera provides better separation, structural information, and improved sensitivity for compounds with two and more hydroxyl groups. The lycorine-free alkaloid fraction shows a great potential for further pharmacological studies.


Subject(s)
Alkaloids , Gas Chromatography-Mass Spectrometry/methods , Narcissus/chemistry , Plant Extracts/chemistry , Aizoaceae , Alkaloids/analysis , Alkaloids/pharmacology , Alkaloids/toxicity , Amaryllidaceae , Animals , Anti-Anxiety Agents/analysis , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/toxicity , Behavior, Animal/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Female , Humans , Male , Mice , Mice, Inbred ICR
10.
Int J Mol Sci ; 22(15)2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34361014

ABSTRACT

A link between the scent and color of Narcissus tazetta flowers can be anticipated due to their biochemical origin, as well as their similar biological role. Despite the obvious aesthetic and ecological significance of these colorful and fragrant components of the flowers and the molecular profiles of their pigments, fragrant formation has addressed in some cases. However, the regulatory mechanism of the correlation of fragrant components and color patterns is less clear. We simultaneously used one way to address how floral color and fragrant formation in different tissues are generated during the development of an individual plant by transcriptome-based weighted gene co-expression network analysis (WGCNA). A spatiotemporal pattern variation of flavonols/carotenoids/chlorophyll pigmentation and benzenoid/phenylpropanoid/ monoterpene fragrant components between the tepal and corona in the flower tissues of Narcissus tazetta, was exhibited. Several candidate transcription factors: MYB12, MYB1, AP2-ERF, bZIP, NAC, MYB, C2C2, C2H2 and GRAS are shown to be associated with metabolite flux, the phenylpropanoid pathway to the production of flavonols/anthocyanin, as well as related to one branch of the phenylpropanoid pathway to the benzenoid/phenylpropanoid component in the tepal and the metabolite flux between the monoterpene and carotenoids biosynthesis pathway in coronas. It indicates that potential competition exists between floral pigment and floral fragrance during Narcissus tazetta individual plant development and evolutionary development.


Subject(s)
Flavonols/metabolism , Flowers/metabolism , Gene Regulatory Networks , Narcissus/genetics , Pigmentation , Transcriptome , Anthocyanins/genetics , Anthocyanins/metabolism , Flavonols/genetics , Flowers/genetics , Narcissus/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
11.
Plant J ; 99(2): 245-256, 2019 07.
Article in English | MEDLINE | ID: mdl-30888718

ABSTRACT

During daffodil flower development, chloroplasts differentiate into photosynthetically inactive chromoplasts having lost functional photosynthetic reaction centers. Chromoplasts exhibit a respiratory activity reducing oxygen to water and generating ATP. Immunoblots revealed the presence of the plastid terminal oxidase (PTOX), the NAD(P)H dehydrogenase (NDH) complex, the cytochrome b6 f complex, ATP synthase and several isoforms of ferredoxin-NADP+ oxidoreductase (FNR), and ferredoxin (Fd). Fluorescence spectroscopy allowed the detection of chlorophyll a in the cytochrome b6 f complex. Here we characterize the electron transport pathway of chromorespiration by using specific inhibitors for the NDH complex, the cytochrome b6 f complex, FNR and redox-inactive Fd in which the iron was replaced by gallium. Our data suggest an electron flow via two separate pathways, both reducing plastoquinone (PQ) and using PTOX as oxidase. The first oxidizes NADPH via FNR, Fd and cytochrome bh of the cytochrome b6 f complex, and does not result in the pumping of protons across the membrane. In the second, electron transport takes place via the NDH complex using both NADH and NADPH as electron donor. FNR and Fd are not involved in this pathway. The NDH complex is responsible for the generation of the proton gradient. We propose a model for chromorespiration that may also be relevant for the understanding of chlororespiration and for the characterization of the electron input from Fd to the cytochrome b6 f complex during cyclic electron transport in chloroplasts.


Subject(s)
Electron Transport , Narcissus/metabolism , Plastids/metabolism , Chlorophyll A/metabolism , Cytochrome b6f Complex/metabolism , Ferredoxins/metabolism , NADP/metabolism , Oxidation-Reduction , Photosynthesis , Photosynthetic Reaction Center Complex Proteins
12.
Planta ; 252(3): 33, 2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32761382

ABSTRACT

MAIN CONCLUSION: The developing Narcissus pseudonarcissus plant (daffodil) is shown to face towards a preferential direction (east, south, west, or north, in that order) before flowering. Said directionality is accomplished by stem bending, a phototropic response mechanism, which is sensitive to partial blocking of the available sunlight from the local environmental. Polar distribution diagrams show that with partial environmental shading from the north, east, south, or west, the developing daffodil plant always excludes facing in that direction, to absorb maximum available sunlight. Stem buckling experiments, equivalent to stem bending, are presented measuring the Euler buckling exponent n = - 2.1 for daffodil flower stems, in good agreement with theory, r = 0.99. Individual flower stems are capable of generating 2-3 lbf of vertical force, which explains the plants ability to penetrate frozen ground cover. Results from 193 daffodil flower stems are presented, showing that 61.7% face East [95% CI 54-70%], 17.1% face South, 15.0% face West, and only 6.2% face North [95% CI 2-10%], depending strongly on the partial shading effect of the surrounding environment.


Subject(s)
Flowers/growth & development , Narcissus/growth & development , Phototropism/physiology , Sunlight
13.
BMC Cancer ; 20(1): 192, 2020 Mar 06.
Article in English | MEDLINE | ID: mdl-32143591

ABSTRACT

BACKGROUND: Altered glycosylation associated with hepatocellular carcinoma (HCC) is well documented. However, few reports have investigated the association between dedifferentiation and glycosylation. Therefore, the aim of this study was to analyze glycosylation associated with dedifferentiation of HCC within the same nodule and to investigate glycosyltransferase related to the glycosylation. METHODS: We analyzed resected HCC specimens (n = 50) using lectin microarray to comprehensively and sensitively analyze glycan profiles, and identify changes to glycosylation between well- and moderately-differentiated components within the same nodule. Moreover, we performed immunohistochemical staining of mannosyl(α-1,3-)-glycoprotein ß-1,2-N-acetylglucosaminyltransferase (MGAT1), which is an essential glycosyltransferase that converts high-mannose glycans to complex- or hybrid-type N-glycans. RESULTS: Four lectins from Narcissus pseudonarcissus agglutinin (NPA), Concanavalin A, Galanthus nivalis agglutinin, and Calystegia sepium agglutinin were significantly elevated in moderately-differentiated components of HCC compared with well-differentiated components, and all lectins showed binding specificity to high-mannose glycans. Therefore, these structures were represented to a greater extent in moderately-differentiated components than in well-differentiated ones. Immunohistochemical staining revealed significantly increased NPA expression and decreased MGAT1 expression in moderately-differentiated components. Low MGAT1 expression in moderately-differentiated components of tumors was associated with intrahepatic metastasis and had tendency for poor prognosis. CONCLUSION: Dedifferentiation of well-differentiated HCC is associated with an increase in high-mannose glycans. MGAT1 may play a role in the dedifferentiation of HCC.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Concanavalin A/metabolism , Liver Neoplasms/metabolism , Mannose-Binding Lectins/metabolism , Plant Lectins/metabolism , Aged , Calystegia/chemistry , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/surgery , Disease-Free Survival , Female , Glycosylation , Humans , Immunohistochemistry/methods , Liver Neoplasms/pathology , Liver Neoplasms/surgery , Male , N-Acetylglucosaminyltransferases/metabolism , Narcissus/chemistry , Optical Imaging/methods , Polysaccharides/chemistry , Staining and Labeling/methods
14.
Molecules ; 25(19)2020 Sep 27.
Article in English | MEDLINE | ID: mdl-32992590

ABSTRACT

The daffodil Narcissus pseudonarcissus L. contains alkaloids of pharmaceutical interest. Wild daffodil populations have diverse genetic backgrounds and various genetic traits of possible importance. Developing protocols for plant production from seeds may ensure the availability of a large reservoir of individuals as well as being important for species with bulbs that are difficult to acquire. The closely related Narcissus pseudonarcissus subsp. munozii-garmendiae and subsp. nevadensis were investigated in this study because the alkaloids isolated from both are of high pharmacological interest. At the dispersal time, the seeds of both were dormant with underdeveloped embryos, i.e., morphophysiological dormancy (MPD). Experiments were conducted outdoors and under controlled laboratory conditions. Embryo growth and the percentages of radicle and seedling emergence were calculated under different temperature-light stratifications. In N. munozii-garmendiae, embryo growth occurred during warm stratification (28/14 °C or 25/10 °C) and the radicle then emerged when the temperature decreased, but the shoot was dormant. In N. nevadensis, the seeds germinated when cold stratified (5 °C) and then incubated at cool temperatures. Thus, N. munozii-garmendiae and N. nevadensis exhibit different levels of MPD, i.e., deep simple epicotyl and intermediate complex, respectively. Plant production protocols from seeds were established for both taxa in this study.


Subject(s)
Alkaloids/metabolism , Germination , Narcissus/growth & development , Plant Dormancy , Seedlings/growth & development , Seeds/growth & development , Narcissus/classification , Seedlings/classification
15.
Int J Mol Sci ; 20(21)2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31683873

ABSTRACT

R2R3-MYB transcription factors play important roles in the regulation of plant flavonoid metabolites. In the current study, NtMYB3, a novel R2R3-MYB transcriptional factor isolated from Chinese narcissus (Narcissus tazetta L. var. chinensis), was functionally characterized. Phylogenetic analysis indicated that NtMYB3 belongs to the AtMYB4-like clade, which includes repressor MYBs involved in the regulation of flavonoid biosynthesis. Transient assays showed that NtMYB3 significantly reduced red pigmentation induced by the potato anthocyanin activator StMYB-AN1 in agro-infiltrated leaves of tobacco. Over-expression of NtMYB3 decreased the red color of transgenic tobacco flowers, with qRT-PCR analysis showing that NtMYB3 repressed the expression levels of genes involved in anthocyanin and flavonol biosynthesis. However, the proanthocyanin content in flowers of transgenic tobacco increased as compared to wild type. NtMYB3 showed expression in all examined narcissus tissues; the expression level in basal plates of the bulb was highest. A 968 bp promoter fragment of narcissus FLS (NtFLS) was cloned, and transient expression and dual luciferase assays showed NtMYB3 repressed the promoter activity. These results reveal that NtMYB3 is involved in the regulation of flavonoid biosynthesis in narcissus by repressing the biosynthesis of flavonols, and this leads to proanthocyanin accumulation in the basal plate of narcissus.


Subject(s)
Flavonoids/biosynthesis , Gene Expression Regulation, Plant , Narcissus/genetics , Plant Proteins/genetics , Transcription Factors/genetics , Anthocyanins/biosynthesis , Flowers/genetics , Flowers/metabolism , Narcissus/metabolism , Phylogeny , Pigmentation/genetics , Plant Proteins/classification , Plant Proteins/metabolism , Plants, Genetically Modified , Nicotiana/genetics , Nicotiana/metabolism , Transcription Factors/classification , Transcription Factors/metabolism
16.
Arch Virol ; 163(5): 1383-1386, 2018 May.
Article in English | MEDLINE | ID: mdl-29392500

ABSTRACT

The complete sequence of a narcissus virus isolated from the Netherlands (Narv-NL) was determined to be 8172 nucleotides in length with an open reading frame encoding for 2624 amino acids. Phylogenetic analysis indicates that Narv-NL is clustered with high confidence among representative members from the genus Macluravirus, including artichoke latent virus (ArLV) and Chinese yam necrotic mosaic virus (CYNMV). Sequence analyses indicated Narv-NL shares 67%-69% nucleotide and 51%-68% amino acid sequence identity with ArLV and CYNMV either in the complete ORF or the coat protein (CP) gene, whereas it had 81%-99 % nucleotide and 80%-99 % amino acid sequence identity with the corresponding CP sequences of narcissus latent virus (NLV) isolates, suggesting that Narv-NL is a member of NLV. To our knowledge, this is the first report of the complete sequence of a NLV isolate.


Subject(s)
Genome, Viral , Narcissus/virology , Potyviridae/genetics , Capsid Proteins/genetics , Netherlands , Open Reading Frames , Phylogeny , Plant Diseases/virology , RNA, Viral/genetics , Sequence Analysis, DNA , Whole Genome Sequencing
17.
J Nat Prod ; 81(6): 1451-1459, 2018 06 22.
Article in English | MEDLINE | ID: mdl-29787267

ABSTRACT

An efficient protocol for the isolation of narciclasine from common Amaryllidaceae bulbs, separation from haemanthamine, and the occurrence of a trace alkaloid, 2- epi-narciclasine, are reported. Attempts to convert natural narciclasine to its C-2 epimer by Mitsunobu inversion or oxidation/reduction sequences were compromised by rearrangement and aromatization processes, through which a synthesis of the alkaloid narciprimine was achieved. The methylation of the 7-hydroxy group of natural narciclasine followed by protection of the 3,4-diol function and oxidation/reduction sequence provided the target C-2 epimer. A de novo chemoenzymatic synthesis of 2- epi-narciclasine from m-dibromobenzene is also described. Haemanthamine and narciprimine were readily detected in the crude extracts of Narcissus and Galanthus bulbs containing narciclasine, and the occurrence of 2- epi-narciclasine as a trace natural product in Galanthus sp. is reported for the first time.


Subject(s)
Amaryllidaceae Alkaloids/chemistry , Amaryllidaceae/chemistry , Galanthus/chemistry , Narcissus/chemistry , Phenanthridines/chemistry , Alkaloids/chemistry , Oxidation-Reduction , Phenanthrenes/chemistry , Plant Roots/chemistry
18.
Int J Mol Sci ; 19(12)2018 Dec 12.
Article in English | MEDLINE | ID: mdl-30545084

ABSTRACT

Narcissus pseudonarcissus is an important bulbous plant with white or yellow perianths and light yellow to orange-red coronas, but little is known regarding the biochemical and molecular basis related to flower color polymorphisms. To investigate the mechanism of color formation, RNA-Seq of flower of two widely cultured cultivars ('Slim Whitman' and 'Pinza') with different flower color was performed. A total of 84,463 unigenes were generated from the perianths and coronas. By parallel metabolomic and transcriptomic analyses, we provide an overview of carotenoid biosynthesis, degradation, and accumulation in N. pseudonarcissus. The results showed that the content of carotenoids in the corona was higher than that in the perianth in both cultivars. Accordingly, phytoene synthase (PSY) transcripts have a higher abundance in the coronas than that in perianths. While the expression levels of carotenoid biosynthetic genes, like GGPPS, PSY, and LCY-e, were not significantly different between two cultivars. In contrast, the carotenoid degradation gene NpCCD4 was highly expressed in white-perianth cultivars, but was hardly detected in yellow-perianth cultivars. Silencing of NpCCD4 resulted in a significant increase in carotenoid accumulation, especially in all-trans-ß-carotene. Therefore, we presume that NpCCD4 is a crucial factor that causes the low carotenoid content and color fading phenomenon of 'Slim Whitman' by mediating carotenoid turnover. Our findings provide mass RNA-seq data and new insights into carotenoid metabolism in N. pseudonarcissus.


Subject(s)
Flowers/genetics , Narcissus/genetics , Pigmentation/genetics , Sequence Analysis, RNA , Transcriptome/genetics , Biosynthetic Pathways/genetics , Carotenoids/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Molecular Sequence Annotation , Phenotype , Transcription, Genetic
19.
Int J Mol Sci ; 19(11)2018 Oct 26.
Article in English | MEDLINE | ID: mdl-30373163

ABSTRACT

Since the skin is the major protective barrier of the body, it is affected by intrinsic and extrinsic factors. Environmental influences such as ultraviolet (UV) irradiation, pollution or dry/cold air are involved in the generation of radical oxygen species (ROS) and impact skin aging and dermal health. Assessment of human skin gene expression and other biomarkers including epigenetic factors are used to evaluate the biological/molecular activities of key compounds in cosmetic formulas. The objective of this study was to quantify human gene expression when epidermal full-thickness skin equivalents were exposed to: (a) a mixture of betaine, pentylene glycol, Saccharomyces cerevisiae and Rhodiola rosea root extract (BlendE) for antioxidant, skin barrier function and oxidative stress (with hydrogen peroxide challenge); and (b) a mixture of Narcissus tazetta bulb extract and Schisandra chinensis fruit extract (BlendIP) for various biomarkers and microRNA analysis. For BlendE, several antioxidants, protective oxidative stress biomarkers and many skin barrier function parameters were significantly increased. When BlendE was evaluated, the negative impact of the hydrogen peroxide was significantly reduced for the matrix metalloproteinases (MMP 3 and MMP 12), the skin aging and oxidative stress biomarkers, namely FBN2, ANXA1 and HGF. When BlendIP was tested for cell proliferation and dermal structural components to enhance the integrity of the skin around the eyes: 8 growth factors, 7 signaling, 7 structural/barrier function and 7 oxidative stress biomarkers were significantly increased. Finally, when BlendIP was tested via real-time RT-PCR for microRNA expression: miR-146a, miR-22, miR155, miR16 and miR21 were all significantly increased over control levels. Therefore, human skin gene expression studies are important tools to assess active ingredient compounds such as plant extract blends to advance dermal hypotheses toward validating cosmetic formulations with botanical molecules.


Subject(s)
Antioxidants/pharmacology , Gene Expression Regulation/drug effects , Plant Extracts/pharmacology , Plants, Medicinal , Skin Aging/drug effects , Skin/drug effects , Antioxidants/chemistry , Epigenesis, Genetic/drug effects , Humans , MicroRNAs/genetics , Narcissus/chemistry , Oxidative Stress/drug effects , Plant Extracts/chemistry , Plants, Medicinal/chemistry , Rhodiola/chemistry , Schisandra/chemistry , Skin/metabolism , Skin/radiation effects , Skin Aging/radiation effects , Ultraviolet Rays/adverse effects
20.
Molecules ; 23(4)2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29597321

ABSTRACT

R2R3 MYB transcription factors play key functions in the regulation of secondary metabolites. In the present study, a R2R3 MYB transcriptional factor NtMYB2 was identified from Chinese narcissus (Narcissus tazetta L. var. Chinensis Roem) and functionally characterized. NtMYB2 belongs to subgroup 4 of the R2R3 MYB transcription factor family that are related to repressor MYBs involved in the regulation of anthocyanin and flavonoids. Transient expression confirmed that NtMYB2 strongly reduced the red pigmentation induced by MYB- anthocyanin activators in agro-infiltrated tobacco leaves. Ectopic expression of NtMYB2 in tobacco significantly reduced the pigmentation and altered the floral phenotypes in transgenic tobacco flowers. Gene expression analysis suggested that NtMYB2 repressed the transcript levels of structural genes involved in anthocyanin biosynthesis pathway, especially the UFGT gene. NtMYB2 gene is expressed in all examined narcissus tissues; the levels of transcription in petals and corona is higher than other tissues and the transcription level at the bud stage was highest. These results show that NtMYB2 is involved in the regulation of anthocyanin biosynthesis pathway and may act as a repressor by down regulating the transcripts of key enzyme genes in Chinese narcissus.


Subject(s)
Anthocyanins , Flowers , Narcissus/genetics , Nicotiana , Pigmentation/genetics , Plants, Genetically Modified , Trans-Activators , Anthocyanins/biosynthesis , Anthocyanins/genetics , Flowers/genetics , Flowers/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Trans-Activators/biosynthesis , Trans-Activators/genetics
SELECTION OF CITATIONS
SEARCH DETAIL