Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters

Publication year range
1.
Mol Psychiatry ; 29(3): 847-857, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38228892

ABSTRACT

Alzheimer's disease (AD) is currently constrained by limited clinical treatment options. The initial pathophysiological event, which can be traced back to decades before the clinical symptoms become apparent, involves the excessive accumulation of amyloid-beta (Aß), a peptide comprised of 40-42 amino acids, in extraneuronal plaques within the brain. Biochemical and histological studies have shown that overaccumulation of Aß instigates an aberrant escalation in the phosphorylation and secretion of tau, a microtubule-binding axonal protein. The accumulation of hyperphosphorylated tau into intraneuronal neurofibrillary tangles is in turn correlated with microglial dysfunction and reactive astrocytosis, culminating in synaptic dysfunction and neurodegeneration. As neurodegeneration progresses, it gives rise to mild clinical symptoms of AD, which may eventually evolve into overt dementia. Synaptic loss in AD may develop even before tau alteration and in response to possible elevations in soluble oligomeric forms of Aß associated with early AD. These findings largely rely on post-mortem autopsy examinations, which typically involve a limited number of patients. Over the past decade, a range of fluid biomarkers such as neurogranin, α-synuclein, visinin-like protein 1 (VILIP-1), neuronal pentraxin 2, and ß-synuclein, along with positron emission tomography (PET) markers like synaptic vesicle glycoprotein 2A, have been developed. These advancements have facilitated the exploration of how synaptic markers in AD patients correlate with cognitive impairment. However, fluid biomarkers indicating synaptic loss have only been validated in cerebrospinal fluid (CSF), not in plasma, with the exception of VILIP-1. The most promising PET radiotracer, [11C]UCB-J, currently faces significant challenges hindering its widespread clinical use, primarily due to the necessity of a cyclotron. As such, additional research geared toward the exploration of synaptic pathology biomarkers is crucial. This will not only enable their extensive clinical application, but also refine the optimization process of AD pharmacological trials.


Subject(s)
Alzheimer Disease , Biomarkers , Positron-Emission Tomography , Humans , alpha-Synuclein/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Biomarkers/metabolism , Brain/metabolism , Brain/pathology , Brain/diagnostic imaging , C-Reactive Protein , Nerve Tissue Proteins , Neurocalcin/metabolism , Neurofibrillary Tangles/metabolism , Neurofibrillary Tangles/pathology , Neurogranin/metabolism , Positron-Emission Tomography/methods , Synapses/metabolism , Synapses/pathology , tau Proteins/metabolism
2.
Synapse ; 78(5): e22307, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39171546

ABSTRACT

To present the expression of calsyntenin-1 (Clstn1) in the brain and investigate the potential mechanism of Clstn1 in lithium-pilocarpine rat seizure models. Thirty-five male SD adult rats were induced to have seizures by intraperitoneal injection of lithium chloride pilocarpine. Rats exhibiting spontaneous seizures were divided into the epilepsy (EP) group (n = 15), whereas those without seizures were divided into the control group (n = 14). Evaluate the expression of Clstn1 in the temporal lobe of two groups using Western blotting, immunohistochemistry, and immunofluorescence. Additionally, 55 male SD rats were subjected to status epilepticus (SE) using the same induction method. Rats experiencing seizures exceeding Racine's level 4 (n = 48) were randomly divided into three groups: SE, SE + control lentivirus (lentiviral vector expressing green fluorescent protein [LV-GFP]), and SE + Clstn1-targeted RNA interference lentivirus (LV-Clstn1-RNAi). The LV-GFP group served as a control for the lentiviral vector, whereas the LV-Clstn1-RNAi group received a lentivirus designed to silence Clstn1 expression. These lentiviral treatments were administered via hippocampal stereotactic injection 2 days after SE induction. Seven days after SE, Western blot analysis was performed to evaluate the expression of Clstn1 in the hippocampus and temporal lobe. Meanwhile, we observed the latency of spontaneous seizures and the frequency of spontaneous seizures within 8 weeks among the three groups. The expression of Clstn1 in the cortex and hippocampus of the EP group was significantly increased compared to the control group (p < .05). Immunohistochemistry and immunofluorescence showed that Clstn1 was widely distributed in the cerebral cortex and hippocampus of rats, and colocalization analysis revealed that it was mainly co expressed with neurons in the cytoplasm. Compared with the SE group (11.80 ± 2.17 days) and the SE + GFP group (12.40 ± 1.67 days), there was a statistically significant difference (p < .05) in the latency period of spontaneous seizures (15.14 ± 2.41 days) in the SE + Clstn1 + RNAi group rats. Compared with the SE group (4.60 ± 1.67 times) and the SE + GFP group (4.80 ± 2.05 times), the SE + Clstn1 + RNAi group (2.0 ± .89 times) showed a significant reduction in the frequency of spontaneous seizures within 2 weeks of chronic phase in rats (p < .05). Elevated Clstn1 expression in EP group suggests its role in EP onset. Targeting Clstn1 may be a potential therapeutic approach for EP management.


Subject(s)
Disease Models, Animal , Pilocarpine , Rats, Sprague-Dawley , Seizures , Animals , Male , Pilocarpine/toxicity , Rats , Seizures/metabolism , Seizures/chemically induced , Seizures/genetics , Status Epilepticus/chemically induced , Status Epilepticus/metabolism , Neurocalcin/metabolism , Neurocalcin/genetics , Hippocampus/metabolism , Lithium Chloride , Temporal Lobe/metabolism , Brain/metabolism
3.
Pathobiology ; 91(2): 121-131, 2024.
Article in English | MEDLINE | ID: mdl-37797604

ABSTRACT

INTRODUCTION: We have previously reported that overexpression of visinin-like protein 1 (VSNL1) is frequently observed in advanced colorectal adenocarcinomas and correlates with poorer prognosis. In this study, we determined the levels of VSNL1 expression in the earlier stages of colorectal tumors including adenomas and adenocarcinomas, and attempted to clarify the functional significance of VSNL1 overexpression in colorectal carcinogenesis. METHODS: Levels of VSNL expression in colorectal tumor tissues were analyzed using immunohistochemistry. The effects of VSNL1 downregulation and overexpression on cell proliferation, resistance to apoptosis, and invasiveness were determined using two VSNL1-overexpressing colorectal cancer cell lines, CW-2 and HCT-116 and VSNL1 inducibly expressing SNU-C5, respectively. Gene expression signatures in VSNL1-downregulated CW-2 and HCT-116 were identified using transcriptome and gene set enrichment analyses. RESULTS: VSNL1 expression was restricted to only a few crypt cells in the non-tumorous epithelium, whereas it became enhanced in adenomas and adenocarcinomas with the progression of tumorigenesis. Downregulation of VSNL1 in CW-2 and HCT-116 cells suppressed their proliferation through induction of apoptosis. Conversely, overexpression of VSNL1 in SNU-C5 cells enhanced resistance to anoikis. Transcriptome and gene set enrichment analyses revealed that downregulation of VSNL1 altered the expression level of the apoptosis-related gene set in CW-2 and HCT-116 cells. CONCLUSION: VSNL1 plays a role in both the development and progression of colorectal tumors by enhancing cell viability.


Subject(s)
Adenocarcinoma , Adenoma , Colorectal Neoplasms , Humans , Carcinogenesis/genetics , Apoptosis/genetics , Cell Proliferation , HCT116 Cells , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Adenocarcinoma/genetics , Adenoma/genetics , Gene Expression Regulation, Neoplastic , Neurocalcin/genetics , Neurocalcin/metabolism
4.
Breast Cancer Res ; 25(1): 109, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37770991

ABSTRACT

BACKGROUND: Triple-negative breast cancer (TNBC) is a subtype of breast cancer with higher aggressiveness and poorer outcomes. Recently, long non-coding RNAs (lncRNAs) have become the crucial gene regulators in the progression of human cancers. However, the function and underlying mechanisms of lncRNAs in TNBC remains unclear. METHODS: Based on public databases and bioinformatics analyses, the low expression of lncRNA MIDEAS-AS1 in breast cancer tissues was detected and further validated in a cohort of TNBC tissues. The effects of MIDEAS-AS1 on proliferation, migration, invasion were determined by in vitro and in vivo experiments. RNA pull-down assay and RNA immunoprecipitation (RIP) assay were carried out to reveal the interaction between MIDEAS-AS1 and MATR3. Luciferase reporter assay, Chromatin immunoprecipitation (ChIP) and qRT-PCR were used to evaluate the regulatory effect of MIDEAS-AS1/MATR3 complex on NCALD. RESULTS: LncRNA MIDEAS-AS1 was significantly downregulated in TNBC, which was correlated with poor overall survival (OS) and progression-free survival (PFS) in TNBC patients. MIDEAS-AS1 overexpression remarkably inhibited tumor growth and metastasis in vitro and in vivo. Mechanistically, MIDEAS-AS1 mainly located in the nucleus and interacted with the nuclear protein MATR3. Meanwhile, NCALD was selected as the downstream target, which was transcriptionally regulated by MIDEAS-AS1/MATR3 complex and further inactivated NF-κB signaling pathway. Furthermore, rescue experiment showed that the suppression of cell malignant phenotype caused by MIDEAS-AS1 overexpression could be reversed by inhibition of NCALD. CONCLUSIONS: Collectively, our results demonstrate that MIDEAS-AS1 serves as a tumor-suppressor in TNBC through modulating MATR3/NCALD axis, and MIDEAS-AS1 may function as a prognostic biomarker for TNBC.


Subject(s)
MicroRNAs , Neurocalcin , RNA, Long Noncoding , Triple Negative Breast Neoplasms , Humans , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Neurocalcin/genetics , Neurocalcin/metabolism , Nuclear Matrix-Associated Proteins/genetics , Nuclear Matrix-Associated Proteins/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA-Binding Proteins/genetics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
5.
Molecules ; 26(1)2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33466232

ABSTRACT

S100B is a calcium-binding protein that governs calcium-mediated responses in a variety of cells-especially neuronal and glial cells. It is also extensively investigated as a potential biomarker for several disease conditions, especially neurodegenerative ones. In order to establish S100B as a viable pharmaceutical target, it is critical to understand its mechanistic role in signaling pathways and its interacting partners. In this report, we provide evidence to support a calcium-regulated interaction between S100B and the neuronal calcium sensor protein, neurocalcin delta both in vitro and in living cells. Membrane overlay assays were used to test the interaction between purified proteins in vitro and bimolecular fluorescence complementation assays, for interactions in living cells. Added calcium is essential for interaction in vitro; however, in living cells, calcium elevation causes translocation of the NCALD-S100B complex to the membrane-rich, perinuclear trans-Golgi network in COS7 cells, suggesting that the response is independent of specialized structures/molecules found in neuronal/glial cells. Similar results are also observed with hippocalcin, a closely related paralog; however, the interaction appears less robust in vitro. The N-terminal region of NCALD and HPCA appear to be critical for interaction with S100B based on in vitro experiments. The possible physiological significance of this interaction is discussed.


Subject(s)
Calcium/metabolism , Neurocalcin/metabolism , Neuroglia/metabolism , Neurons/metabolism , S100 Calcium Binding Protein beta Subunit/metabolism , Humans , Protein Transport , Signal Transduction
6.
J Cell Biochem ; 121(11): 4470-4483, 2020 11.
Article in English | MEDLINE | ID: mdl-32030795

ABSTRACT

Drug resistance, an impenetrable barrier in the treatment of ovarian cancer (OC), is often associated with poor outcomes. Hence, it is urgent to discover new factors controlling drug resistance and survival. The association between neurocalcin delta (NCALD) and cancer drug resistance is poorly understood. Here, we reveal that NCALD messenger RNA expression, probably regulated by DNA methylation and microRNAs, was significantly downregulated in at least three independent microarrays covering 633 ovarian carcinomas and 16 normal controls, which includes the Cancer Genome Atlas (TCGA) ovarian cohort. In the sub-groups of the TCGA cohort, NCALD was suppressed in 90 platinum-resistant tissues vs in 197 sensitive tissues. It is consistent with the quantitative reverse transcription polymerase chain reaction results revealing gene downregulation in carboplatin-resistant SKOV3 and HeyA8 OC cells as compared with that in controls. Low expression of NCALD predicted poor overall survival (OS) in sub-groups of 1656 patients, progression-free survival (PFS) in 1435 patients, and post-progression survival (PPS) in 782 patients according to Kaplan-Meier plotter covering 1815 OC patients. Comprehensive bioinformatic analyses strongly implicated NCALD in the regulation of drug resistance, probably via competing for endogenous RNA (ceRNA) interactions with CX3CL1 and tumor immune-microenvironment. NCALD acted as a ceRNA for CX3CL1 in 21 different cancers includes OC according to Starbase. These two genes negatively correlated with tumor purity and positively correlated with infiltration levels of neutrophils and dendritic cells in OC. The combined low expression of NCALD and CX3CL1 showed better prognosis potential for OS, PFS, and PPS in the 1815 OC patients than any of the individually tested genes. In summary, NCALD acts as a ceRNA for CX3CL1, and its downregulation may affect drug resistance and prognosis in OC. Thus, NCALD could be a new therapeutic target for anticancer therapy and a new biomarker for survival prediction in OC.


Subject(s)
Chemokine CX3CL1/metabolism , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Neurocalcin/metabolism , Ovarian Neoplasms/pathology , RNA, Long Noncoding/genetics , Tumor Microenvironment/immunology , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Movement , Cell Proliferation , Chemokine CX3CL1/genetics , Cohort Studies , Female , Humans , Neurocalcin/genetics , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Prognosis , Survival Rate , Tumor Cells, Cultured
7.
Am J Hum Genet ; 100(2): 297-315, 2017 02 02.
Article in English | MEDLINE | ID: mdl-28132687

ABSTRACT

Homozygous SMN1 loss causes spinal muscular atrophy (SMA), the most common lethal genetic childhood motor neuron disease. SMN1 encodes SMN, a ubiquitous housekeeping protein, which makes the primarily motor neuron-specific phenotype rather unexpected. SMA-affected individuals harbor low SMN expression from one to six SMN2 copies, which is insufficient to functionally compensate for SMN1 loss. However, rarely individuals with homozygous absence of SMN1 and only three to four SMN2 copies are fully asymptomatic, suggesting protection through genetic modifier(s). Previously, we identified plastin 3 (PLS3) overexpression as an SMA protective modifier in humans and showed that SMN deficit impairs endocytosis, which is rescued by elevated PLS3 levels. Here, we identify reduction of the neuronal calcium sensor Neurocalcin delta (NCALD) as a protective SMA modifier in five asymptomatic SMN1-deleted individuals carrying only four SMN2 copies. We demonstrate that NCALD is a Ca2+-dependent negative regulator of endocytosis, as NCALD knockdown improves endocytosis in SMA models and ameliorates pharmacologically induced endocytosis defects in zebrafish. Importantly, NCALD knockdown effectively ameliorates SMA-associated pathological defects across species, including worm, zebrafish, and mouse. In conclusion, our study identifies a previously unknown protective SMA modifier in humans, demonstrates modifier impact in three different SMA animal models, and suggests a potential combinatorial therapeutic strategy to efficiently treat SMA. Since both protective modifiers restore endocytosis, our results confirm that endocytosis is a major cellular mechanism perturbed in SMA and emphasize the power of protective modifiers for understanding disease mechanism and developing therapies.


Subject(s)
Endocytosis/genetics , Muscular Atrophy, Spinal/genetics , Neurocalcin/metabolism , Animals , Caenorhabditis elegans/genetics , Cell Line , Cloning, Molecular , Disease Models, Animal , Female , Gene Expression Regulation , Genetic Loci , Genome-Wide Association Study , Homozygote , Humans , Male , Mice , Mice, Inbred C57BL , Motor Neurons/pathology , Muscular Atrophy, Spinal/therapy , Neurocalcin/genetics , PC12 Cells , Pedigree , Rats , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 1 Protein/metabolism , Survival of Motor Neuron 2 Protein/genetics , Survival of Motor Neuron 2 Protein/metabolism , Transcriptome , Zebrafish/genetics
8.
Acta Neuropathol ; 139(3): 583-596, 2020 03.
Article in English | MEDLINE | ID: mdl-31781912

ABSTRACT

Medulloblastoma with extensive nodularity (MBEN) is one of the few central nervous system (CNS) tumor entities occurring in infants which is traditionally associated with good to excellent prognosis. Some MBEN, however, have been reported with an unfavorable clinical course. We performed an integrated DNA/RNA-based molecular analysis of a multi-institutional MBEN cohort (n = 41) to identify molecular events which might be responsible for variability in patients' clinical outcomes. RNA sequencing analysis of this MBEN cohort disclosed two clear transcriptome clusters (TCL) of these CNS tumors: "TCL1 MBEN" and "TCL2 MBEN" which were associated with various gene expression signatures, mutational landscapes and, importantly, prognosis. Thus, the clinically unfavorable "TCL1 MBEN" subset revealed transcriptome signatures composed of cancer-associated signaling pathways and disclosed a high frequency of clinically relevant germline PTCH1/SUFU alterations. In contrast, gene expression profiles of tumors from the clinically favorable "TCL2 MBEN" subgroup were associated with activation of various neurometabolic and neurotransmission signaling pathways, and germline SHH-pathway gene mutations were extremely rare in this transcriptome cluster. "TCL2 MBEN" also revealed strong and ubiquitous expression of VSNL1 (visinin-like protein 1) both at the mRNA and protein level, which was correlated with a favorable clinical course. Thus, combining mutational and epigenetic profiling with transcriptome analysis including VSNL1 immunohistochemistry, MBEN patients could be stratified into clinical risk groups of potential value for subsequent treatment planning.


Subject(s)
Biomarkers, Tumor/metabolism , Cerebellar Neoplasms/genetics , Medulloblastoma/genetics , Neurocalcin/metabolism , Adolescent , Cerebellar Neoplasms/pathology , Child , Child, Preschool , Female , Gene Expression Profiling , Humans , Infant , Infant, Newborn , Male , Medulloblastoma/pathology , Prognosis , Transcriptome
9.
Int J Mol Sci ; 21(21)2020 Nov 06.
Article in English | MEDLINE | ID: mdl-33172069

ABSTRACT

Neurogranin (Ng) and visinin-like protein 1 (VILIP-1) are promising candidates for Alzheimer's Disease (AD) biomarkers closely related to synaptic and neuronal degeneration. Both proteins are involved in calcium-mediated pathways. The meta-analysis was performed in random effects based on the ratio of means (RoM) with calculated pooled effect size. The diagnostic utility of these proteins was examined in cerebrospinal fluid (CSF) of patients in different stages of AD compared to control (CTRL). Ng concentration was also checked in various groups with positive (+) and negative (-) amyloid beta (Aß). Ng highest levels of RoM were observed in the AD (n = 1894) compared to CTRL (n = 2051) group (RoM: 1.62). Similarly, the VILIP-1 highest values of RoM were detected in the AD (n = 706) compared to CTRL (n = 862) group (RoM: 1.34). Concentrations of both proteins increased in more advanced stages of AD. However, Ng seems to be an earlier biomarker for the assessment of cognitive impairment. Ng appears to be related with amyloid beta, and the highest levels of Ng in CSF was observed in the group with pathological Aß+ status. Our meta-analysis confirms that Ng and VILIP-1 can be useful CSF biomarkers in differential diagnosis and monitoring progression of cognitive decline. Although, an additional advantage of the protein concentration Ng is the possibility of using it to predict the risk of developing cognitive impairment in normal controls with pathological levels of Aß1-42. Analyses in larger cohorts are needed, particularly concerning Aß status.


Subject(s)
Alzheimer Disease/physiopathology , Neurocalcin/metabolism , Neurogranin/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Cognitive Dysfunction/cerebrospinal fluid , Diagnosis, Differential , Disease Progression , Humans , Neurocalcin/cerebrospinal fluid , Neurocalcin/physiology , Neurodegenerative Diseases/physiopathology , Neurogranin/cerebrospinal fluid , Neurogranin/physiology , Peptide Fragments/cerebrospinal fluid , ROC Curve , tau Proteins/cerebrospinal fluid
10.
J Cell Mol Med ; 23(5): 3108-3117, 2019 05.
Article in English | MEDLINE | ID: mdl-30843345

ABSTRACT

Glioblastoma (GBM) is the most prevalent primary malignancy of the central nervous system with obvious aggressiveness, and is associated with poor clinical outcome. Studies have indicated that calcium ion (Ca2+ ) can positively regulate the initiation of malignancy with regard to GBM by modulating quiescence, proliferation, migration and maintenance. Hippocalcin like-1 protein (HPCAL1) serves as a sensor of Ca2+ . However, the understanding of HPCAL1 activity in GBM is limited. The present study revealed that the gene HPCAL1 was up-regulated by Ca2+ in the tissues and cells of GBM. Ectopic expression of HPCAL1 promoted proliferation of cells. Exhaustion of HPCAL1 inhibited cell growth not only in vivo, but also in vitro. In addition, HPCAL1 enhanced the Wnt pathway by stimulating ß-catenin accumulation and nuclear translocation in GBM cells, while ß-catenin silencing significantly inhibited the proliferation and growth of the GBM cells. Our results showed that Ser9 phosphorylation of GSK3ß was significantly decreased after HPCAL1 knockdown in GBM cells, and knockdown of the gene GSK3ß in GBM cells enhanced cell proliferation and promoted transcription of the genes CCND1 and c-Myc. Furthermore, the phosphorylation of ERK was decreased in the cells with HPCAL1 knockdown, while it was promoted via overexpression of HPCAL1. The suppression or depletion of the gene ERK decreased proliferation triggered by overexpression of HPCAL1 and impaired transcription of the genes c-Myc and CCND1. These studies elucidate the tumour-promoting activity of HPCAL1. They also offer an innovative therapeutic strategy focusing on the HPCAL1-Wnt/ß-catenin axis to regulate proliferation and development of GBM.


Subject(s)
Calcium/metabolism , Cell Proliferation/genetics , Glioblastoma/genetics , Neurocalcin/genetics , Animals , Cell Line, Tumor , Cell Movement/genetics , Cyclin D1 , Gene Expression Regulation, Neoplastic , Glioblastoma/metabolism , Glioblastoma/pathology , Heterografts , Humans , Mice , Neurocalcin/metabolism , Proto-Oncogene Proteins c-myc/genetics , Wnt Signaling Pathway/genetics , beta Catenin/genetics
11.
J Transl Med ; 17(1): 166, 2019 05 20.
Article in English | MEDLINE | ID: mdl-31109331

ABSTRACT

BACKGROUND: Acute myeloid leukemia (AML) is a heterogeneous disease in terms of genetic basis, clinical, biological and prognostic, and is a malignant clonal disease of leukemia stem cells (LSCs). Nearly half of adult AML patients exhibit a cytogenetic normal acute myeloid leukemia (CN-AML). The expression level of NCALD gene was associated with the prognosis of ovarian cancer and non-small cell lung cancer (NSCLC). The expression level of NCALD gene is still unclear in the prognosis of patients with AML. METHOD: We integrated 5 independent datasets totally 665 AML patients (497 CN-AML patients) to analyzed relation between NCALD gene expression and the clinical FAB classification, gene mutation, therapy, prognosis of CN-AML. We analyzed the NCALD gene expression with the prognosis and LSC of 165 AML patients from The Cancer Genome Atlas (TCGA) dataset and 78 AML patients from GEO dataset. RESULTS: High NCALD-expressing CN-AML patients were associated with poor event-free survival (EFS) and overall survival (OS) compared to low NCALD expression (EFS, P < 0.0001, OS, P < 0.0001). In AML patients of allogeneic hematopoietic stem cell transplantation (allo-HSCT), high NCALD expression was associated with poor survival prognosis in EFS and OS (EFS, P < 0.0051, OS, P = 0.028). Post-chemotherapy in AML patients, high NCALD expression led a worse prognosis in EFS and OS (EFS, P = 0.011; OS, P = 0.0056). In multivariate analysis, high NCALD expression was an independent prognostic factor that predicts shorter EFS and OS (EFS, P = 3.84E-05, OS, P = 8.53E-05) of CN-AML. CONCLUSION: Our results indicate that high expression of NCALD gene is a poor prognostic factor for CN-AML. NCALD can be considered as independent predictors of CN-AML patients and can be used as a biomarker for the prognosis of CN-AML.


Subject(s)
Cytogenetic Analysis , Leukemia, Myeloid, Acute/genetics , Neurocalcin/genetics , Biomarkers, Tumor/metabolism , Disease-Free Survival , Female , Gene Expression Regulation, Leukemic , Humans , Leukemia, Myeloid, Acute/pathology , Male , Middle Aged , Multivariate Analysis , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Neurocalcin/metabolism , Prognosis , ROC Curve
12.
Hepatology ; 63(3): 880-97, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26659654

ABSTRACT

UNLABELLED: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death. However, the underlying mechanism during hepatocarcinogenesis remains unclarified. Stable isotope labeling by amino acids in cell culture (SILAC) is a powerful quantitative strategy for proteome-wide discovery of novel biomarkers in cancers. Hippocalcin-like 1 (HPCAL1) is a calcium sensor protein. However, the biological function of HPCAL1 is poorly understood in cancers, including HCC. Herein, HPCAL1 was identified by SILAC as a novel hepatocarcinogenesis suppressor down-regulated in HCC cell lines and tissues. Importantly, lost expression of HPCAL1 was associated with worse prognosis of HCC patients. Interestingly, secreted HPCAL1 protein in the plasma dropped dramatically in HCC patients compared with healthy donors. Receiver operating characteristic curve analysis showed that serum HPCAL1 at a concentration of 8.654 ng/mL could better predict HCC. Furthermore, ectopic expression of HPCAL1 suppresses cell proliferation, while depletion of HPCAL1 led to increased cell growth both in vitro and in vivo. Mechanistically, HPCAL1 directly interacted with p21(Waf/Cip1) in the nucleus, which requires the EF-hand 4 motif of HPCAL1 and the Cy1 domain of p21. This interaction stabilized p21(Waf/Cip1) in an extracellular signal-regulated kinase 1/2-mitogen-activated protein kinase-dependent manner, which subsequently prevented p21(Waf/Cip1) proteasomal degradation by disrupting SCF(Skp2) and CRL4(Cdt2) E3 ligase complexes, resulting in increased protein stability and inhibitory effect of p21(Waf/Cip1). Notably, the tumor suppressive function of HPCAL1 was dependent on p21 in vitro and in vivo. Consistent with this observation, expression of HPCAL1 and p21(Waf/Cip1) was positively correlated in HCC tissues. CONCLUSION: These findings highlight a novel tumor suppressor upstream of p21(Waf/Cip1) in attenuating cell cycle progression and provide a promising diagnostic and prognostic factor, as well as a potential therapeutic target for HCC.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Liver Neoplasms/metabolism , Neurocalcin/metabolism , Animals , Case-Control Studies , Cell Cycle , Cell Line, Tumor , HEK293 Cells , Humans , Isotope Labeling/methods , MAP Kinase Signaling System , Male , Mice, Inbred BALB C , Mice, Nude , Neoplasm Transplantation , Nuclear Proteins/metabolism , Proteomics/methods , S-Phase Kinase-Associated Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism
13.
Biochim Biophys Acta ; 1838(10): 2698-707, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25019684

ABSTRACT

VIsinin-LIke Proteins (VILIPs) are a subfamily of the Neuronal Calcium Sensor (NCS) proteins, which possess both N-myristoylation and EF-hand motifs allowing for a putative 'calcium-myristoyl switch' regulation mechanism. It has previously been established that myristoyl conjugation increases the affinity of proteins for membranes, but, in many cases, a second feature such as a cluster of positively-charged residues is needed for stable membrane binding. The interaction of two members of this family, VILIP-1 and VILIP-3, with Langmuir monolayers as membrane models has been investigated in order to study the effects of both myristoylation and the highly basic region containing conserved poly-lysine residues on membrane association kinetics and binding properties. Results show that in the presence of calcium, N-myristoylation significantly increases the kinetic rate of VILIP adsorption to the membrane. Additionally, the proteins bind to negatively charged phospholipids independently of the conjugated myristate moiety. Besides the regulatory effect of calcium on the rate of binding presumably due to exposure of the myristoyl moiety ascribed to their putative 'calcium-myristoyl switch', VILIP-1 and -3 also engage specific interactions with biomimetic membranes containing phosphatidylinositol 4,5-bisphosphate (PIP2). The presence of PIP2 increases the membrane association rates of both VILIPs. Taken together, these results show the major kinetic role of N-myristoylation for membrane binding, and highlight the critical role of specific phosphoinositide interactions for membrane association of members of the VILIP family.


Subject(s)
Calcium/metabolism , Cell Membrane/metabolism , Lipoylation , Membranes, Artificial , Neurocalcin/metabolism , Phosphatidylinositol Phosphates/metabolism , Calcium/chemistry , Cell Membrane/chemistry , Humans , Neurocalcin/chemistry , Phosphatidylinositol Phosphates/chemistry
14.
J Biol Chem ; 287(1): 504-513, 2012 Jan 02.
Article in English | MEDLINE | ID: mdl-22074920

ABSTRACT

CaV2.1 channels, which conduct P/Q-type Ca2+ currents, initiate synaptic transmission at most synapses in the central nervous system. Ca2+/calmodulin-dependent facilitation and inactivation of these channels contributes to short-term facilitation and depression of synaptic transmission, respectively. Other calcium sensor proteins displace calmodulin (CaM) from its binding site, differentially regulate CaV2.1 channels, and contribute to the diversity of short-term synaptic plasticity. The neuronal calcium sensor protein visinin-like protein 2 (VILIP-2) inhibits inactivation and enhances facilitation of CaV2.1 channels. Here we examine the molecular determinants for differential regulation of CaV2.1 channels by VILIP-2 and CaM by construction and functional analysis of chimeras in which the functional domains of VILIP-2 are substituted in CaM. Our results show that the N-terminal domain, including its myristoylation site, the central α-helix, and the C-terminal lobe containing EF-hands 3 and 4 of VILIP-2 are sufficient to transfer its regulatory properties to CaM. This regulation by VILIP-2 requires binding to the IQ-like domain of CaV2.1 channels. Our results identify the essential molecular determinants of differential regulation of CaV2.1 channels by VILIP-2 and define the molecular code that these proteins use to control short-term synaptic plasticity.


Subject(s)
Calcium Channels, N-Type/metabolism , Neurocalcin/metabolism , Amino Acid Motifs , Calmodulin/metabolism , HEK293 Cells , Humans , Neurocalcin/chemistry , Protein Structure, Tertiary
15.
J Neurosci ; 31(46): 16716-30, 2011 Nov 16.
Article in English | MEDLINE | ID: mdl-22090499

ABSTRACT

ATP-gated ionotropic P2X2 receptors are widely expressed in neurons. Although the electrophysiological properties of P2X2 receptors have been extensively studied, little is known about the plasma membrane lateral mobility of P2X2 receptors or whether receptor mobility is regulated by ATP. Here we used single-molecule imaging with simultaneous whole-cell voltage-clamp recordings to track quantum dot-labeled P2X2 receptors in the dendrites of rat hippocampal neurons to explore P2X2 receptor mobility and its regulation. We find that plasma membrane P2X2 receptor lateral mobility in dendrites is heterogeneous but mostly Brownian in nature, consisting of mobile and slowly mobile receptor pools. Moreover, lateral mobility is P2X2 subunit and cell specific, is increased in an activation-dependent manner, and is regulated by cytosolic VILIP1, a calcium binding protein. Our data provide the first direct measures of P2X receptor mobility and show that P2X2 receptors are mobile ATP sensors, sampling more of the dendritic plasma membrane in response to ATP.


Subject(s)
Cell Membrane/metabolism , Neurons/metabolism , Receptors, Purinergic P2/metabolism , Adenosine Triphosphate/pharmacology , Animals , Animals, Newborn , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Calcium/metabolism , Cell Membrane/drug effects , Cell Membrane/genetics , Cells, Cultured , Dendrites/drug effects , Dendrites/metabolism , Dose-Response Relationship, Drug , Fluorescence Recovery After Photobleaching/methods , Hippocampus/cytology , Humans , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Membrane Potentials/drug effects , Membrane Potentials/genetics , Models, Molecular , Neurocalcin/metabolism , Neurons/cytology , Neurons/drug effects , Patch-Clamp Techniques , Protein Transport/drug effects , Protein Transport/genetics , Rats , Receptors, Purinergic P2/genetics , Transfection/methods
16.
J Biol Chem ; 286(8): 6354-66, 2011 Feb 25.
Article in English | MEDLINE | ID: mdl-21169352

ABSTRACT

Visinin-like protein 1 (VILIP-1) belongs to the neuronal calcium sensor family of Ca(2+)-myristoyl switch proteins that regulate signal transduction in the brain and retina. Here we analyze Ca(2+) and Mg(2+) binding, characterize metal-induced conformational changes, and determine structural effects of myristoylation and dimerization. Mg(2+) binds functionally to VILIP-1 at EF3 (ΔH = +1.8 kcal/mol and K(D) = 20 µM). Unmyristoylated VILIP-1 binds two Ca(2+) sequentially at EF2 and EF3 (K(EF3) = 0.1 µM and K(EF2) = 1-4 µM), whereas myristoylated VILIP-1 binds two Ca(2+) with lower affinity (K(D) = 1.2 µM) and positive cooperativity (Hill slope = 1.5). NMR assignments and structural analysis indicate that Ca(2+)-free VILIP-1 contains a sequestered myristoyl group like that of recoverin. NMR resonances of the attached myristate exhibit Ca(2+)-dependent chemical shifts and NOE patterns consistent with Ca(2+)-induced extrusion of the myristate. VILIP-1 forms a dimer in solution independent of Ca(2+) and myristoylation. The dimerization site is composed of residues in EF4 and the loop region between EF3 and EF4, confirmed by mutagenesis. We present the structure of the VILIP-1 dimer and a Ca(2+)-myristoyl switch to provide structural insights into Ca(2+)-induced trafficking of nicotinic acetylcholine receptors.


Subject(s)
Calcium/chemistry , Lipoylation/physiology , Magnesium/chemistry , Myristic Acid/chemistry , Neurocalcin/chemistry , Protein Multimerization/physiology , Brain/metabolism , Calcium/metabolism , Humans , Magnesium/metabolism , Myristic Acid/metabolism , Neurocalcin/genetics , Neurocalcin/metabolism , Protein Binding , Protein Structure, Secondary , Protein Transport/physiology , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/genetics , Receptors, Nicotinic/metabolism , Retina/metabolism , Signal Transduction/physiology
17.
Biomark Med ; 16(14): 1029-1041, 2022 10.
Article in English | MEDLINE | ID: mdl-36444691

ABSTRACT

Aim: Since reliable response predictors to platinum-based chemotherapy in ovarian cancer (OC) are scarce, we characterize NCALD as a predictive biomarker. Materials & methods: NCALD mRNA (n = 100) and protein (n = 102) expression was analyzed in OC samples and associated with patient outcome. A stable OC cell line knockdown was generated and cellular response to platinum was explored. Results: High NCALD mRNA and protein expression was significantly associated with longer overall patient survival (p = 0.037/0.002). Knockdown experiments revealed a significant association between cisplatin sensitivity and NCALD expression. Conclusion: Low NCALD expression was associated with reduced sensitivity to platinum-based chemotherapy. NCALD may be a new biomarker candidate to identify patients who might benefit from platinum-based chemotherapy.


Subject(s)
Ovarian Neoplasms , Platinum , Humans , Female , Platinum/therapeutic use , Prognosis , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Cisplatin/therapeutic use , Biomarkers , Drug Resistance, Neoplasm/genetics , Neurocalcin/genetics , Neurocalcin/metabolism
18.
Cell Oncol (Dordr) ; 45(1): 179-191, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35102488

ABSTRACT

BACKGROUND: Hippocalcin-like 1 (HPCAL1), a neuronal calcium sensor protein family member, has been reported to regulate cancer growth. As yet, however, the biological functions of HPCAL1 and its molecular mechanisms have not been investigated in non-small cell lung carcinoma (NSCLC). METHODS: HPCAL1 expression in NSCLC samples was detected using immunohistochemistry, Western blotting and RT-PCR. The anticancer effects of HPCAL1 knockdown were determined by MTT, soft agar, cell cycle, oxygen consumption and reactive oxygen species assays. The effect of HPCAL1 knockdown on in vivo tumor growth was assessed using NSCLC cancer patient-derived xenograft models. Potentially interacting protein partners of HPCAL1 were identified using IP-MS/MS, immunoprecipitation and Western blotting assays. Metabolic alterations resulting from HPCAL1 knockdown were investigated using non-targeted metabolomics and RNA sequencing analyses. RESULTS: We found that HPCAL1 is highly expressed in NSCLC tissues and is positively correlated with low survival rates and AJCC clinical staging in lung cancer patients. Knockdown of HPCAL1 strongly increased oxygen consumption rates and the production of reactive oxygen species. HPCAL1 knockdown also inhibited NSCLC cell growth and patient-derived NSCLC tumor growth in vivo. Mechanistically, we found that HPCAL1 can directly bind to LDHA and enhance SRC-mediated phosphorylation of LDHA at tyrosine 10. The metabolomics and RNA sequencing analyses indicated that HPCAL1 knockdown reduces amino acid levels and induces fatty acid synthesis through regulating the expression of metabolism-related genes. Additionally, rescued cells expressing wild-type or mutant LDHA in HPCAL1 knockdown cells suggest that LDHA may serve as the main substrate of HPCAL1. CONCLUSIONS: Our data indicate that the effect of HPCAL1 knockdown on reducing SRC-mediated LDHA activity attenuates NSCLC growth. Our findings reveal novel biological functions and a mechanism underlying the role of HPCAL1 in NSCLC growth in vitro and in vivo.


Subject(s)
Carcinoma, Non-Small-Cell Lung , L-Lactate Dehydrogenase/metabolism , Lung Neoplasms , Neurocalcin/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Hippocalcin/genetics , Hippocalcin/metabolism , Humans , Lung Neoplasms/pathology , Tandem Mass Spectrometry
19.
Ann Clin Lab Sci ; 52(1): 60-72, 2022 01.
Article in English | MEDLINE | ID: mdl-35181619

ABSTRACT

OBJECTIVE: The study aimed to explore the role of VSNL1/COL10A1 axis in colorectal cancer. METHODS: The differential-expressed mRNA in colorectal cancer tissues and adjacent tissues were analyzed through GEO database and GEPIA database. The target genes of mRNA were predicted through the Starbase database, and the targeting relationship of mRNA was verified by co-IP assay. The expressions of VSNL1 and COL10A1 were detected by RT-PCR and immunohistochemistry. Cell viability and proliferation were detected by CCK8 assay and EdU assay, respectively. Cell migration and invasion were detected by transwell assay. The expression of related proteins was detected by western blot. RESULTS: VSNL1 was significantly overexpressed in colorectal cancer tissues compared with adjacent tissues. In addition, downregulation of VSNL1 could inhibit the proliferation, migration, and invasion of colorectal cancer cells. The co-IP experiment indicated that VSNL1 could bind with COL10A1. Further studies demonstrated that upregulation of COL10A1 could promote colorectal cells proliferation, migration, invasion, and reverse the effect of sh-VSNL1 on colorectal cancer cells. CONCLUSION: VSNL1 could promote the proliferation, migration, and invasion of colorectal cancer by targeting COL10A1. VSNL1 might be a potential target for colorectal cancer treatment.


Subject(s)
Collagen Type X , Colorectal Neoplasms , Neurocalcin , Cell Line, Tumor , Cell Movement/physiology , Cell Proliferation/physiology , Collagen Type X/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Humans , Neoplasm Invasiveness , Neurocalcin/genetics , Neurocalcin/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Up-Regulation
20.
Int J Oncol ; 60(2)2022 02.
Article in English | MEDLINE | ID: mdl-35014676

ABSTRACT

Resistance to 5­Fluorouracil (5­FU) is a frequent occurrence in patients with colorectal cancer (CRC). MicroRNAs (miRNAs) from cancer­associated fibroblasts (CAFs)­secreted exosomes have been associated with 5­FU sensitivity. The potential molecular mechanism of CAFs­exosomal miRNAs in CRC remains unclear. The aim of the present study was to elucidate the role of exosomal miRNAs in 5­FU sensitivity in CRC. Exosomes derived from CAFs were extracted. Exosomal miR­181d­5p was identified as a miRNA associated with 5­FU sensitivity. The putative function of exosomal miR­181d­5p was evaluated by ethynyl­2­deoxyuridine staining, flow cytometry, RNA immunoprecipitation, luciferase reporter assay, tumor xenograft formation, reverse transcription­quantitative PCR and western blot analysis. Modification of miR­181d­5p by the RNA N6­methyladenosine (m6A) methyltransferase like (METTL)3 was examined by m6A methylation analysis. The results indicated that m6A modification and METTL3 expression were upregulated in CRC patients. METTL3­dependent m6A methylation promoted the miR­181b­5p process by DiGeorge Syndrome Critical Region 8 (DGCR8) in CAFs. CAFs­derived exosomes inhibited 5­FU sensitivity in CRC cells through the METTL3/miR­181d­5p axis. A mechanistic study revealed that miR­181d­5p directly targeted neurocalcin δ (NCALD) to inhibit the 5­FU sensitivity of CRC cells. Patients with higher NCALD levels exhibited a higher survival rate. Taken together, METTL3­dependent m6A methylation was upregulated in CRC to promote the processing of miR­181d­5p by DGCR8. This led to increased miR­181d­5p expression, which inhibited the 5­FU sensitivity of CRC cells by targeting NCALD. The results of the present study provided novel insight into exosomal microRNAs in 5­FU sensitivity in CRC cells. Furthermore, exosomal miR­181d­5p may represent a potential prognostic marker for CRC.


Subject(s)
Adenosine/analogs & derivatives , Fluorouracil/metabolism , MicroRNAs/metabolism , Neurocalcin/drug effects , Adenosine/genetics , Adenosine/metabolism , Cancer-Associated Fibroblasts/drug effects , Cancer-Associated Fibroblasts/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Humans , MicroRNAs/drug effects , Neurocalcin/metabolism , Up-Regulation/genetics , Up-Regulation/immunology
SELECTION OF CITATIONS
SEARCH DETAIL