Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.995
Filter
Add more filters

Publication year range
1.
J Biol Chem ; 298(3): 101621, 2022 03.
Article in English | MEDLINE | ID: mdl-35074429

ABSTRACT

Inhibition of P300 acetyltransferase activity by specific inhibitor C646 has been shown to improve insulin signaling. However, the underlying molecular mechanism of this improvement remains unclear. In this study, we analyzed P300 levels of obese patients and found that they were significantly increased in liver hepatocytes. In addition, large amounts of P300 appeared in the cytoplasm. Inhibition of P300 acetyltransferase activity by C646 drastically increased tyrosine phosphorylation of the insulin receptor protein substrates (IRS1/2) without affecting the tyrosine phosphorylation of the beta subunit of the insulin receptor (IRß) in hepatocytes in the absence of insulin. Since IRS1/2 requires membrane translocation and binding to inositol compounds for normal functions, we also examined the role of acetylation on binding to phosphatidylinositol(4,5)P2 and found that IRS1/2 acetylation by P300 reduced this binding. In contrast, we show that inhibition of IRS1/2 acetylation by C646 facilitates IRS1/2 membrane translocation. Intriguingly, we demonstrate that C646 activates IRß's tyrosine kinase activity and directly promotes IRß interaction with IRS1/2, leading to the tyrosine phosphorylation of IRS1/2 and subsequent activation of insulin signaling even in the absence of insulin. In conclusion, these data reveal the unique effects of C646 in activating insulin signaling in patients with obesity and diabetes.


Subject(s)
Benzoates , Enzyme Inhibitors , Insulin Receptor Substrate Proteins , Nitrobenzenes , Pyrazolones , Receptor, Insulin , p300-CBP Transcription Factors , Benzoates/pharmacology , Enzyme Inhibitors/pharmacology , Humans , Insulin/metabolism , Insulin Receptor Substrate Proteins/genetics , Insulin Receptor Substrate Proteins/metabolism , Nitrobenzenes/pharmacology , Phosphorylation , Pyrazolones/pharmacology , Receptor, Insulin/metabolism , Tyrosine/metabolism , p300-CBP Transcription Factors/antagonists & inhibitors , p300-CBP Transcription Factors/metabolism
2.
J Enzyme Inhib Med Chem ; 37(1): 125-134, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34894977

ABSTRACT

Oestrogen related receptor α participated in the regulation of oxidative metabolism and mitochondrial biogenesis, and was overexpressed in many cancers including triple-negative breast cancer. A set of new ERRα inverse agonists based on p-nitrobenzenesulfonamide template were discovered and compound 11 with high potent activity (IC50 = 0.80 µM) could significantly inhibit the transcription of ERRα-regulated target genes. By regulating the downstream signalling pathway, compound 11 could suppress the migration and invasion of the ER-negative MDA-MB-231 cell line. Furthermore, compound 11 demonstrated a significant growth suppression of breast cancer xenograft tumours in vivo (inhibition rate 23.58%). The docking results showed that compound 11 could form hydrogen bonds with Glu331 and Arg372 in addition to its hydrophobic interaction with ligand-binding domain. Our data implied that compound 11 represented a novel and effective ERRα inverse agonist, which had broad application prospects in the treatment of triple-negative breast cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery , Nitrobenzenes/pharmacology , Receptors, Estrogen/metabolism , Sulfonamides/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , Molecular Docking Simulation , Molecular Structure , Nitrobenzenes/chemical synthesis , Nitrobenzenes/chemistry , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , ERRalpha Estrogen-Related Receptor
3.
J Enzyme Inhib Med Chem ; 37(1): 573-591, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35012403

ABSTRACT

Based on quinazoline, quinoxaline, and nitrobenzene scaffolds and on pharmacophoric features of VEGFR-2 inhibitors, 17 novel compounds were designed and synthesised. VEGFR-2 IC50 values ranged from 60.00 to 123.85 nM for the new derivatives compared to 54.00 nM for sorafenib. Compounds 15a, 15b, and 15d showed IC50 from 17.39 to 47.10 µM against human cancer cell lines; hepatocellular carcinoma (HepG2), prostate cancer (PC3), and breast cancer (MCF-7). Meanwhile, the first in terms of VEGFR-2 inhibition was compound 15d which came second with regard to antitumor assay with IC50 = 24.10, 40.90, and 33.40 µM against aforementioned cell lines, respectively. Furthermore, Compound 15d increased apoptosis rate of HepG2 from 1.20 to 12.46% as it significantly increased levels of Caspase-3, BAX, and P53 from 49.6274, 40.62, and 42.84 to 561.427, 395.04, and 415.027 pg/mL, respectively. Moreover, 15d showed IC50 of 253 and 381 nM against HER2 and FGFR, respectively.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Molecular Docking Simulation , Protein Kinase Inhibitors/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Nitrobenzenes/chemical synthesis , Nitrobenzenes/chemistry , Nitrobenzenes/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Quinazolines/chemical synthesis , Quinazolines/chemistry , Quinazolines/pharmacology , Quinoxalines/chemical synthesis , Quinoxalines/chemistry , Quinoxalines/pharmacology , Structure-Activity Relationship , Vascular Endothelial Growth Factor Receptor-2/metabolism
4.
Int J Mol Sci ; 23(3)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35163465

ABSTRACT

TMZ-resistance remains a main limitation in glioblastoma (GBM) treatment. TMZ is an alkylating agent whose cytotoxicity is modulated by O6-methylguanine-DNA methyltransferase (MGMT), whose expression is determined by MGMT gene promoter methylation status. The inflammatory marker COX-2 has been implicated in GBM tumorigenesis, progression, and stemness. COX-2 inhibitors are considered a GBM add-on treatment due to their ability to increase TMZ-sensitivity. We investigated the effect of TMZ on COX-2 expression in GBM cell lines showing different COX-2 levels and TMZ sensitivity (T98G and U251MG). ß-catenin, MGMT, and SOX-2 expression was analyzed. The effects of NS398, COX-2 inhibitor, alone or TMZ-combined, were studied evaluating cell proliferation by the IncuCyte® system, cell cycle/apoptosis, and clonogenic potential. COX-2, ß-catenin, MGMT, and SOX-2 expression was evaluated by RT-PCR, Western blotting, and immunofluorescence and PGE2 by ELISA. Our findings, sustaining the role of COX-2/PGE2 system in TMZ-resistance of GBM, show, for the first time, a relevant, dose-dependent up-regulation of COX-2 expression and activity in TMZ-treated T98G that, in turn, correlated with chemoresistance. Similarly, all the COX-2-dependent signaling pathways involved in TMZ-resistance also resulted in being up-modulated after treatment with TMZ. NS398+TMZ was able to reduce cell proliferation and induce cell cycle arrest and apoptosis. Moreover, NS398+TMZ counteracted the resistance in T98G preventing the TMZ-induced COX-2, ß-catenin, MGMT, and SOX-2 up-regulation.


Subject(s)
Antineoplastic Agents, Alkylating/pharmacology , Brain Neoplasms/metabolism , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Glioblastoma/metabolism , Nitrobenzenes/pharmacology , Sulfonamides/pharmacology , Temozolomide/pharmacology , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , DNA Modification Methylases/genetics , DNA Modification Methylases/metabolism , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , Drug Resistance, Neoplasm/drug effects , Drug Synergism , Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma/drug therapy , Glioblastoma/genetics , Humans , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Up-Regulation/drug effects , beta Catenin/genetics , beta Catenin/metabolism
5.
J Cell Mol Med ; 25(20): 9597-9608, 2021 10.
Article in English | MEDLINE | ID: mdl-34551202

ABSTRACT

Autosomal-dominant polycystic kidney disease (ADPKD) is characterized by uncontrolled renal cyst formation, and few treatment options are available. There are many parallels between ADPKD and clear-cell renal cell carcinoma (ccRCC); however, few studies have addressed the mechanisms linking them. In this study, we aimed to investigate their convergences and divergences based on bioinformatics and explore the potential of compounds commonly used in cancer research to be repurposed for ADPKD. We analysed gene expression datasets of ADPKD and ccRCC to identify the common and disease-specific differentially expressed genes (DEGs). We then mapped them to the Connectivity Map database to identify small molecular compounds with therapeutic potential. A total of 117 significant DEGs were identified, and enrichment analyses results revealed that they are mainly enriched in arachidonic acid metabolism, p53 signalling pathway and metabolic pathways. In addition, 127 ccRCC-specific up-regulated genes were identified as related to the survival of patients with cancer. We focused on the compound NS398 as it targeted DEGs and found that it inhibited the proliferation of Pkd1-/- and 786-0 cells. Furthermore, its administration curbed cystogenesis in Pkd2 zebrafish and early-onset Pkd1-deficient mouse models. In conclusion, NS398 is a potential therapeutic agent for ADPKD.


Subject(s)
Nitrobenzenes/pharmacology , Polycystic Kidney, Autosomal Dominant/drug therapy , Sulfonamides/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Biopsy , Computational Biology/methods , Cyclooxygenase Inhibitors/pharmacology , Cyclooxygenase Inhibitors/therapeutic use , Databases, Genetic , Disease Management , Disease Models, Animal , Gene Expression Profiling , Genetic Predisposition to Disease , Humans , Metabolic Networks and Pathways , Mice , Mutation , Nitrobenzenes/therapeutic use , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/metabolism , Polycystic Kidney, Autosomal Dominant/pathology , Protein Interaction Mapping/methods , Protein Kinase C/genetics , Protein Kinase C/metabolism , Sulfonamides/therapeutic use
6.
Pharmacol Res ; 171: 105788, 2021 09.
Article in English | MEDLINE | ID: mdl-34311071

ABSTRACT

Uterine perivascular adipose tissue (PVAT) contributes to uterine blood flow regulation in pregnancy, at least in part, due to its effects on uterine artery reactivity. We tested the hypothesis that uterine PVAT modulates the balance between the contribution of nitric oxide synthase (NOS)- and cyclooxygenase (COX)-dependent pathways to acetylcholine (ACh)-induced relaxation in isolated uterine arteries. Concentration-response curves to ACh (1 nM - 30 µM) were performed on uterine arteries from pregnant and non-pregnant rats. Arteries were exposed to Krebs-Henseleit solution (control) or PVAT-conditioned media (PVATmedia) in the presence of the following inhibitors: L-NAME (NOS inhibitor), indomethacin (COX inhibitor), SC560 (COX-1 inhibitor), NS398 (COX-2 inhibitor), SQ 29,548 (thromboxane receptor (TP) inhibitor). In arteries incubated with PVATmedia, the presence of indomethacin increased ACh-induced relaxation, reversing the anti-dilatory effect of PVATmedia. NOS inhibition reduced ACh-induced relaxation in uterine arteries from pregnant rats, and exposure to PVATmedia did not change this effect. Selective inhibition of COX-1 but not COX-2 suppressed relaxation responses to ACh in control arteries. The presence of PVATmedia abolished the effect of COX-1 inhibition. Incubation of uterine arteries from pregnant rats with PVATmedia increased production of thromboxane B2 (TxB2, p = 0.01) but thromboxane receptor (TP) inhibition did not affect the anti-dilatory properties of PVATmedia. In conclusion, inhibition of COX signaling suppressed the anti-dilatory effects of PVATmedia, while PVATmedia had no effect on the contribution of the NOS/NO pathway to ACh-induced relaxation in uterine arteries from pregnant rats, indicating that the anti-dilatory effects of uterine PVAT are mediated in part by COX-dependent mechanisms.


Subject(s)
Adipose Tissue/physiology , Cyclooxygenase 1/physiology , Cyclooxygenase 2/physiology , Membrane Proteins/physiology , Uterine Artery/physiology , Acetylcholine/pharmacology , Adipose Tissue/drug effects , Animals , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/metabolism , Cyclooxygenase Inhibitors/pharmacology , Female , Indomethacin/pharmacology , Male , Membrane Proteins/metabolism , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide Synthase/physiology , Nitrobenzenes/pharmacology , Pregnancy , Pyrazoles/pharmacology , Rats, Sprague-Dawley , Sulfonamides/pharmacology , Uterine Artery/drug effects , Uterine Artery/metabolism , Vasodilation/drug effects , Vasodilator Agents/pharmacology
7.
Int J Mol Sci ; 22(20)2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34681659

ABSTRACT

The design and development of a small molecule named NPB [3-{(4(2,3-dichlorophenyl)piperazin-1-yl}{2-hydroxyphenyl)methyl}-N-cyclopentylbenzamide], which specifically inhibited the phosphorylation of BAD at Ser99 in human carcinoma cells has been previously reported. Herein, the synthesis, characterization, and effect on cancer cell viability of NPB analogs, and the single-crystal X-ray crystallographic studies of an example compound (4r), which was grown via slow-solvent evaporation technique is reported. Screening for loss of viability in mammary carcinoma cells revealed that compounds such as 2[(4(2,3-dichlorophenyl)piperazin-1-yl][naphthalen-1-yl]methyl)phenol (4e), 5[(4(2,3-dichlorophenyl)piperazin-1-yl][2-hydroxyphenyl)methyl)uran-2-carbaldehyde (4f), 3[(2-hydroxyphenyl][4(p-tolyl)piperazin-1-yl)methyl)benzaldehyde (4i), and NPB inhibited the viability of MCF-7 cells with IC50 values of 5.90, 3.11, 7.68, and 6.5 µM, respectively. The loss of cell viability was enhanced by the NPB analogs synthesized by adding newer rings such as naphthalene and furan-2-carbaldehyde in place of N-cyclopentyl-benzamide of NPB. Furthermore, these compounds decreased Ser99 phosphorylation of hBAD. Additional in silico density functional theory calculations suggested possibilities for other analogs of NPB that may be more suitable for further development.


Subject(s)
Nitrobenzenes/chemistry , bcl-Associated Death Protein/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Crystallography, X-Ray , Density Functional Theory , Female , Humans , MCF-7 Cells , Molecular Conformation , Nitrobenzenes/pharmacology , Phosphorylation/drug effects , Serine/metabolism
8.
Molecules ; 26(6)2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33802860

ABSTRACT

The COVID-19 outbreak continues to spread worldwide at a rapid rate. Currently, the absence of any effective antiviral treatment is the major concern for the global population. The reports of the occurrence of various point mutations within the important therapeutic target protein of SARS-CoV-2 has elevated the problem. The SARS-CoV-2 main protease (Mpro) is a major therapeutic target for new antiviral designs. In this study, the efficacy of PF-00835231 was investigated (a Mpro inhibitor under clinical trials) against the Mpro and their reported mutants. Various in silico approaches were used to investigate and compare the efficacy of PF-00835231 and five drugs previously documented to inhibit the Mpro. Our study shows that PF-00835231 is not only effective against the wild type but demonstrates a high affinity against the studied mutants as well.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Indoles/chemistry , Indoles/pharmacology , Leucine/chemistry , Leucine/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Pyrrolidinones/chemistry , Pyrrolidinones/pharmacology , Binding Sites , Computer Simulation , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/genetics , Databases, Protein , Diarylquinolines/chemistry , Diarylquinolines/pharmacology , Dihydropyridines/chemistry , Dihydropyridines/pharmacology , Humans , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Nitrobenzenes/chemistry , Nitrobenzenes/pharmacology , Nitrophenols/chemistry , Nitrophenols/pharmacology , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/pharmacology , Piperazines/chemistry , Piperazines/pharmacology , Proline/analogs & derivatives , Proline/chemistry , Proline/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , COVID-19 Drug Treatment
9.
J Neurosci Res ; 98(11): 2302-2316, 2020 11.
Article in English | MEDLINE | ID: mdl-32725625

ABSTRACT

Given the integral role of nucleus accumbens (NAc) cAMP response element binding protein (CREB) activity in motivational processes, the goal of the current study was to determine whether blunting chronic NAc CREB activity could rescue the low physical activity motivation of female, low voluntary running (LVR) rats. NAc CREB phosphorylation is elevated in these rats, a state previously attributed to deficits in reward valuation. It was recently shown that overexpression of the upstream CREB inhibitor, protein kinase inhibitor alpha (PKIα), increased LVR nightly running by ~threefold. Therefore, the current study addresses the extent to which NAc CREB attenuation influences female LVR and wild-type (WT) wheel-running behavior. Inducible reductions in NAc neuronal activity using Gi-coupled hM4Di DREADDs increased running behavior in LVR, but not in WT, rats. Similarly, site-directed pharmacological inhibition of NAc CREB activity significantly increased LVR nightly running distance and time by ~twofold, with no effect in WT rats. Finally, environmentally enriched LVR rats exhibit higher levels of running compared to socially isolated rats in what appeared to be a CREB-related manner. Considering the positive outcomes of upstream CREB modulation and environmental enrichment on LVR behavior, we believe that blunting NAc CREB activity has the neuromolecular potential to partially reverse low physical activity motivation, as exemplified by the LVR model. The positive physical activity outcome of early life enrichment adds translatable value to human childhood enrichment and highlights its importance on motivational processes later in life.


Subject(s)
Cyclic AMP Response Element-Binding Protein/metabolism , Nucleus Accumbens/physiology , Running/psychology , Animals , Benzoates/pharmacology , CREB-Binding Protein/antagonists & inhibitors , CREB-Binding Protein/drug effects , Conditioning, Operant , Cyclic AMP Response Element-Binding Protein/antagonists & inhibitors , Environment , Female , Motivation , Motor Activity , Nitrobenzenes/pharmacology , Physical Conditioning, Animal/psychology , Pyrazolones/pharmacology , Rats , Rats, Wistar , Retinoids/pharmacology , Social Isolation
10.
Biol Reprod ; 102(2): 511-520, 2020 02 14.
Article in English | MEDLINE | ID: mdl-31616914

ABSTRACT

Pentachloronitrobenzene (PCNB) is an organochlorine fungicide widely used for crop production and has become an environmental concern. Little is known about the effect of PCNB on ovarian steroidogenesis and follicular development. We found that PCNB stimulated Star expression and progesterone production in cultured rat granulosa cells in a dose-dependent manner. PCNB activated mitogen-activated protein kinase (MAPK3/1) extracellulat regulated kinase (ERK1/2), thus inhibition of either protein kinase A (PKA) or MAPK3/1 signaling pathway significantly attenuated progesterone biosynthesis caused by PCNB, suggesting that PCNB induced progesterone production by activating the cyclic adenosine monophosphate (cAMP/PKA) and MAPK3/1 signaling pathways. Further investigation demonstrated that PCNB induced Star expression and altered MAPK3/1 signaling in ovary tissues of immature SD rats treated with PCNB at the dose of 100, 200, or 300 mg/kg by daily gavage for 7 days, while serum progesterone level was dose-dependently decreased. We demonstrated that PCNB exposure accelerated the recruitment of primordial follicles into the growing follicle pool in ovary tissues, accompanied by increased levels of anti-Mullerian hormone (AMH) in both ovary tissues and serum. Taken together, our data demonstrate for the first time that PCNB stimulated Star expression, altered MAPK3/1 signaling and progesterone production in vivo and in vitro, and accelerated follicular development with a concomitant increase in AMH in ovary tissues and serum. Our findings provide novel insight into the toxicity of PCNB to animal ovary function.


Subject(s)
Granulosa Cells/drug effects , Nitrobenzenes/pharmacology , Ovarian Follicle/drug effects , Ovary/drug effects , Progesterone/biosynthesis , Animals , Cells, Cultured , Dose-Response Relationship, Drug , Female , Granulosa Cells/metabolism , Ovarian Follicle/metabolism , Ovary/metabolism , Phosphoproteins/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects
11.
Cytokine ; 126: 154872, 2020 02.
Article in English | MEDLINE | ID: mdl-31627033

ABSTRACT

Recently, we reported that HaCaT human keratinocytes secreted leucine-rich repeat LGI family member 3 (LGI3) protein after exposure to ultraviolet B (UVB) irradiation. In the present study, we aimed to determine whether LGI3 is also released in response to stimulation by lipopolysaccharides (LPS), membrane components of gram-negative bacteria. Our results showed that LGI3 was indeed secreted by LPS-stimulated HaCaT cells. We also found that LPS potently stimulated the induction of cycloxygenase-2 (COX-2), which is involved in the inflammatory response. In addition, LPS-induced LGI3 secretion and COX-2 expression were blocked by NS-398, a selective COX-2 inhibitor. Moreover, LPS activated nuclear factor-κB (NF-κB) via a TRIF-dependent pathway, and activated NF-κB led to LGI3 production in HaCaT cells. For the first time, we predicted the LGI3 promoter sequence and demonstrated that NF-κB bound to the LGI3 gene promoter region. LPS treatment also increased the expression of a disintegrin and metalloproteinase domain-containing protein 22 (ADAM22), a candidate LGI3 receptor. Furthermore, co-immunoprecipitation, flow cytometry, and immunocytochemistry revealed that LGI3 associated with ADAM22 in LPS-treated keratinocytes. Thus, ADAM22 may be an LGI3 receptor in human keratinocytes. Taken together, these data suggest that the TRIF-dependent pathway is a novel regulator of LGI3 secretion in response to LPS stimulation in HaCaT cells and that keratinocyte-derived LGI3 interacts with ADAM22 and mediates LPS-induced inflammation.


Subject(s)
ADAM Proteins/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Keratinocytes/drug effects , Keratinocytes/metabolism , NF-kappa B/metabolism , Nerve Tissue Proteins/metabolism , ADAM Proteins/genetics , Adaptor Proteins, Vesicular Transport/genetics , Cell Line , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors/pharmacology , Flow Cytometry , Humans , Immunohistochemistry , Lipopolysaccharides/pharmacology , NF-kappa B/genetics , Nerve Tissue Proteins/genetics , Nitrobenzenes/pharmacology , Promoter Regions, Genetic , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Sulfonamides/pharmacology
12.
Parasite Immunol ; 42(6): e12713, 2020 06.
Article in English | MEDLINE | ID: mdl-32173875

ABSTRACT

Canine leishmaniasis (CanL) is caused by the intracellular parasite Leishmania infantum. Prostaglandin E2 (PGE2 ) exerts potent regulatory effects on the immune system in experimental model Leishmania infection, but this influence has not yet been studied in CanL. In this study, PGE2 and PGE2 receptor levels and the regulatory effect of PGE2 on arginase activity, NO2 , IL-10, IL-17, IFN-γ, TNF-α and parasite load were evaluated in cultures of splenic leucocytes obtained from dogs with CanL in the presence of agonists and inhibitors. Our results showed that splenic leucocytes from dogs with CanL had lower EP2 receptor levels than those of splenic leucocytes from healthy animals. We observed that NO2 levels decreased when the cells were treated with a PGE2 receptor agonist (EP1/EP2/EP3) or COX-2 inhibitor (NS-398) and that TNF-α, IL-17 and IFN-γ cytokine levels decreased when the cells were treated with a PGE2 receptor agonist (EP2) or PGE2 itself. The parasite load in splenic leucocyte cell cultures from dogs with CanL decreased after stimulation of the cells with PGE2 . We conclude that Leishmania infection of dogs modulates PGE2 receptors and speculate that the binding of PGE2 to its receptors may activate the microbicidal capacity of cells.


Subject(s)
Cytokines/immunology , Dinoprostone/metabolism , Dog Diseases/drug therapy , Leishmania infantum/immunology , Leishmaniasis/veterinary , Receptors, Prostaglandin E/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cyclooxygenase 2 Inhibitors/pharmacology , Dinoprostone/agonists , Dinoprostone/antagonists & inhibitors , Dog Diseases/immunology , Dog Diseases/parasitology , Dogs , Leishmaniasis/drug therapy , Leishmaniasis/immunology , Nitric Oxide/analysis , Nitrobenzenes/pharmacology , Parasite Load , Receptors, Prostaglandin E/agonists , Receptors, Prostaglandin E/physiology , Sulfonamides/pharmacology , Tumor Necrosis Factor-alpha/immunology
13.
Prostaglandins Other Lipid Mediat ; 148: 106422, 2020 06.
Article in English | MEDLINE | ID: mdl-32004752

ABSTRACT

It is widely accepted that the hypoxic nature of solid tumors contribute to their resistance to radiation therapy. There is increasing evidence that cyclooxygenase-2 (COX-2) contributes to increased resistance of tumors to radiation therapy. Several studies demonstrate that combination of COX-2 selective inhibitors with radiation therapy selectively enhances radio responsiveness of tumor cells. However, the majority of these studies utilised suprapharmacological concentrations under normoxic conditions only. Furthermore, the mechanism by which these agents act remain largely unclear. Therefore, the aim of this study was to determine the impact of COX-2 selective inhibitors on both normoxic and hypoxic radiosensitivity in vitro and the mechanisms underlying this. Because of the close, reciprocal relationship between COX-2 and p53 we investigated their contribution to radioresistance. To achieve this we exposed HeLa, MCF-7 and MeWo cells to the COX-2 selective inhibitor, NS398 (10µM). NS398 (10µM) selectively sensitized hypoxic HeLa and MCF-7 but not MeWo cells to ionising radiation (5 Gy). Furthermore, while knockdown of COX-2 with siRNA did not affect either normoxic radiosensitivity in HeLa cells, the radiosensitisation observed with NS398 was lost suggesting both COX-2 dependent and independent mechanisms. We also show that ionising radiation at 5 Gy results in phosphorylation of p53 at serine 15, a key phosphorylation site for p53-mediated apoptosis, and that hypoxia attenuates this phosphorylation. Attenuated phosphorylation of p53 under hypoxic conditions may therefore contribute to hypoxic radioresistance. We also show that NS398 selectively phosphorylates p53 under hypoxic conditions following irradiation at 5 Gy. p53 phosphorylation could be an underlying mechanism by which this agent and other COX-2 inhibitors sensitize tumors to radiation therapy.


Subject(s)
Cyclooxygenase 2/chemistry , Nitrobenzenes/pharmacology , Radiation Tolerance/drug effects , Sulfonamides/pharmacology , Tumor Suppressor Protein p53/metabolism , Uterine Cervical Neoplasms/radiotherapy , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Apoptosis/drug effects , Apoptosis/radiation effects , Cell Survival/drug effects , Cell Survival/radiation effects , Cyclooxygenase 2/metabolism , Female , HeLa Cells , Humans , Hypoxia/physiopathology , Phosphorylation , Radiation, Ionizing , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology
14.
Biochemistry (Mosc) ; 85(12): 1578-1590, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33705296

ABSTRACT

Appending lipophilic cations to small molecules has been widely used to produce mitochondria-targeted compounds with specific activities. In this work, we obtained a series of derivatives of the well-known fluorescent dye 7-nitrobenzo-2-oxa-1,3-diazole (NBD). According to the previous data [Denisov et al. (2014) Bioelectrochemistry, 98, 30-38], alkyl derivatives of NBD can uncouple isolated mitochondria at concentration of tens of micromoles despite a high pKa value (~11) of the dissociating group. Here, a number of triphenylphosphonium (TPP) derivatives linked to NBD via hydrocarbon spacers of varying length (C5, C8, C10, and C12) were synthesized (mitoNBD analogues), which accumulated in the mitochondria in an energy-dependent manner. NBD-C10-TPP (C10-mitoNBD) acted as a protonophore in artificial lipid membranes (liposomes) and uncoupled isolated mitochondria at micromolar concentrations, while the derivative with a shorter linker (NBD-C5-TPP, or C5-mitoNBD) exhibited no such activities. In accordance with this data, C10-mitoNBD was significantly more efficient than C5-mitoNBD in suppressing the growth of Bacillus subtilis. C10-mitoNBD and C12-mitoNBD demonstrated the highest antibacterial activity among the investigated analogues. C10-mitoNBD also exhibited the neuroprotective effect in the rat model of traumatic brain injury.


Subject(s)
Anti-Bacterial Agents/pharmacology , Brain Injuries/prevention & control , Mitochondria, Liver/drug effects , Neuroprotective Agents/pharmacology , Nitrobenzenes/pharmacology , Organophosphorus Compounds/pharmacology , Oxadiazoles/pharmacology , Animals , Bacillus subtilis/drug effects , Disease Models, Animal , Energy Metabolism , Mitochondria, Liver/metabolism , Nitrobenzenes/chemistry , Organophosphorus Compounds/chemistry , Oxadiazoles/chemistry , Rats , Thermogenesis
15.
Mol Vis ; 25: 329-344, 2019.
Article in English | MEDLINE | ID: mdl-31341381

ABSTRACT

Purpose: Systemic hypertension is a risk factor of age-related macular degeneration, a disease associated with chronic retinal inflammation. The main cause of acute hypertension in the elderly is consumption of dietary salt (NaCl) resulting in increased extracellular osmolarity. The aim of the present study was to determine whether extracellular osmolarity regulates the expression of cyclooxygenase (COX) genes in cultured human retinal pigment epithelial (RPE) cells, and whether COX activity is involved in mediating the osmotic expression of key inflammatory (NLRP3 and IL1B) and angiogenic factor (VEGFA) genes. Methods: Extracellular hyperosmolarity was induced by addition of NaCl or sucrose. Gene expression was determined with real-time reverse transcription (RT)-PCR. Cytosolic interleukin-1ß (IL-1ß) and extracellular vascular endothelial growth factor (VEGF) levels were evaluated with enzyme-linked immunosorbent assay (ELISA). Results: Extracellular hyperosmolarity induced a dose-dependent increase in COX2 gene expression when >10 mM NaCl was added to the culture medium, while COX1 gene expression was increased at higher doses (>50 mM of added NaCl). Extracellular hypo-osmolarity decreased COX2 gene expression. High extracellular osmolarity also induced increases in the COX2 protein level. NaCl-induced expression of COX2 was mediated by various intracellular signal transduction molecules (p38 mitogen-activated protein kinase [p38 MAPK], extracellular signal-regulated kinases 1 and 2 [ERK1/2], and phosphatidylinositol-3 kinase [PI3K]), intracellular calcium signaling involving activation of phospholipase Cγ (PLCγ) and protein kinase Cα/ß (PKCα/ß), and the activity of nuclear factor of activated T cell 5 (NFAT5). Inhibition of fibroblast growth factor (FGF), transforming growth factor-ß (TGF-ß), and interleukin-1 (IL-1) receptor activities decreased NaCl-induced COX2 gene expression. Selective inhibition of COX2 activity decreased osmotic expression of the VEGFA, IL1B, and NLRP3 genes, and blocked the NaCl-induced increase in the cytosolic IL-1ß level. Conclusions: The expression of COX2 in RPE cells is osmoresponsive, and depends on NFAT5. COX2 activity stimulates hyperosmotic expression of angiogenic (VEGFA) and inflammatory factor (IL1B and NLRP3) genes, and activation of the NLRP3 inflammasome in RPE cells.


Subject(s)
Cyclooxygenase 2/biosynthesis , Inflammasomes/metabolism , Osmosis , Retinal Pigment Epithelium/cytology , Retinal Pigment Epithelium/enzymology , Adult , Aged , Aged, 80 and over , Cell Line , Cyclooxygenase 1/genetics , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/genetics , Enzyme Induction , Female , Humans , Inflammation/genetics , Inflammation/pathology , Male , Middle Aged , Neovascularization, Pathologic/genetics , Nitrobenzenes/pharmacology , Signal Transduction/drug effects , Sodium Chloride/pharmacology , Sulfonamides/pharmacology , Transcription Factors/metabolism , Young Adult
16.
Cell Mol Neurobiol ; 39(5): 591-604, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30852719

ABSTRACT

It is known that cerebral ischemia can cause brain inflammation and adiposome can serve as a depot of inflammatory mediators. In the study, the pro-inflammatory and pro-death role of adiposome in ischemic microglia and ischemic brain was newly investigated. The contribution of PPARγ to adiposome formation was also evaluated for the first time in ischemic microglia. Focal cerebral ischemia/reperfusion (I/R) animal model and the in vitro glucose-oxygen-serum deprivation (GOSD) cell model were both applied in the study. GOSD- or I/R-induced adiposome formation, inflammatory activity, cell death of microglia, and brain infarction were, respectively, determined, in the absence or presence of NS-398 (adiposome inhibitor) or GW9662 (PPARγ antagonist). GOSD-increased adiposome formation played a critical role in stimulating the inflammatory activity (production of TNF-α and IL-1ß) and cell death of microglia. Similar results were also found in ischemic brain tissues. GOSD-induced PPARγ partially contributed to the increase of adiposomes and adiposome-mediated inflammatory responses of microglia. Blockade of adiposome formation with NS-398 or GW9662 significantly reduced not only the inflammatory activity and death rate of GOSD-treated microglia but also the brain infarct volume and motor function deficit of ischemic rats. The pathological role of microglia-derived adiposome in cerebral ischemia has been confirmed and attributed to its pro-inflammatory and/or pro-death effect upon ischemic brain cells and tissues. Adiposome and its upstream regulator PPARγ were therefore as potential targets for the treatment of ischemic stroke. Therapeutic values of NS-398 and GW9662 have been suggested.


Subject(s)
Brain Ischemia/therapy , Lipid Droplets/metabolism , Microglia/metabolism , Stroke/therapy , Anilides/pharmacology , Animals , Animals, Newborn , Brain Ischemia/complications , Cell Death , Culture Media, Serum-Free , Cyclooxygenase 2/metabolism , Down-Regulation/drug effects , Glucose/deficiency , Inflammation/pathology , Interleukin-1beta/metabolism , Male , Microglia/pathology , Motor Activity/drug effects , Neurons/metabolism , Neurons/pathology , Nitrobenzenes/pharmacology , Oxygen , PPAR gamma/metabolism , Rats, Sprague-Dawley , Reperfusion Injury/complications , Reperfusion Injury/pathology , Reperfusion Injury/therapy , Stroke/complications , Sulfonamides/pharmacology , Tumor Necrosis Factor-alpha/metabolism
17.
Brain Behav Immun ; 81: 399-409, 2019 10.
Article in English | MEDLINE | ID: mdl-31251974

ABSTRACT

Monoacylglycerol lipase (MAGL) is the main enzyme implicated in the degradation of the most abundant endocannabinoid in the brain, 2-arachidonoylglycerol (2-AG), producing arachidonic acid (AA) and glycerol. MAGL pharmacological inhibition with JZL184 or genetic deletion results in an exacerbated 2-AG signaling and reduced synthesis of prostaglandins (PGs), due to the reduced AA precursor levels. We found that acute JZL184 administration, previously described to exert anti-inflammatory effects, and MAGL knockout (KO) mice display cerebellar, but not hippocampal, microglial reactivity, accompanied with increased expression of the mRNA levels of neuroinflammatory markers, such as cyclooxygenase-2 (COX-2). Notably, this neuroinflammatory phenotype correlated with relevant motor coordination impairment in the beam-walking and the footprint tests. Treatment with the COX-2 inhibitor NS398 during 5 days prevented the deficits in cerebellar function and the cerebellar microglia reactivity in MAGL KO, without affecting hippocampal reactivity. Altogether, this study reveals the brain region-specific response to MAGL inhibition, with an important role of COX-2 in the cerebellar deficits associated, which should be taken into account for the use of MAGL inhibitors as anti-inflammatory drugs.


Subject(s)
Benzodioxoles/pharmacology , Cerebellum/drug effects , Cerebellum/metabolism , Cyclooxygenase 2/metabolism , Monoacylglycerol Lipases/antagonists & inhibitors , Motor Activity/drug effects , Piperidines/pharmacology , Amidohydrolases/antagonists & inhibitors , Animals , Arachidonic Acid/metabolism , Arachidonic Acids/metabolism , Cerebellum/pathology , Cyclooxygenase Inhibitors/pharmacology , Endocannabinoids/metabolism , Glycerides/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Monoacylglycerol Lipases/metabolism , Neuroimmunomodulation/drug effects , Neuroimmunomodulation/physiology , Nitrobenzenes/pharmacology , Signal Transduction , Sulfonamides/pharmacology
18.
Nitric Oxide ; 92: 34-40, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31377229

ABSTRACT

Nitric oxide (NO) is an essential redox-signaling molecule free radical, contributes a significant role in a diverse range of physiological processes. Photo-triggered NO donors have significant potential compared to other NO donors because it releases NO in the presence of light. Hence, an efficient visible light-triggered NO donor is designed and synthesized by coupling 2,6-dimethyl nitrobenzene moiety at the peri-position of 1, 8-naphthalimide. The NO-releasing ability is validated using various spectroscopic techniques, the photoproduct is characterized, and finally, the NO generation quantum yield is also determined. Furthermore, the photo-generated NO has been employed to Arabidopsis thaliana as a model plant to examine the effect of photoreceptor-mediated NO uptake on plant root growth regulation molecule.


Subject(s)
Arabidopsis/metabolism , Arabidopsis/radiation effects , Light , Nitric Oxide/biosynthesis , Nitric Oxide/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Arabidopsis/drug effects , Arabidopsis/growth & development , Molecular Structure , Naphthalimides/chemistry , Naphthalimides/pharmacology , Nitric Oxide Donors/chemical synthesis , Nitric Oxide Donors/chemistry , Nitric Oxide Donors/pharmacology , Nitrobenzenes/chemistry , Nitrobenzenes/pharmacology , Plant Roots/drug effects , Plant Roots/radiation effects
19.
Langmuir ; 35(5): 1450-1457, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30056704

ABSTRACT

Smart materials with both bactericidal and bacteria-resistant functions are promising for combating the infection concern of medical devices. Current work mostly utilizes hydrolysis to switch materials from antimicrobial to antifouling forms by incubating materials in aqueous solutions for hours to days. In this work, a new photoresponsive poly[2-((4,5-dimethoxy-2-nitrobenzyl)oxy)- N-(2-(methacryloyloxy)ethyl)- N, N-dimethyl-2-oxoethan-1-aminium] (polyCBNA) hydrogel was developed, incorporating the photolabile 4,5-dimethoxy-2-nitrobenzyl and cationic quaternary ammonium groups. The photolabile groups were readily cleaved from the hydrogel shortly upon UV irradiation at 365 nm (a long wavelength widely used for biomedical applications), leading to polymer surface charge switching from cationic to zwitterionic form. Protein adsorbed significantly on polyCBNA but easily desorbed from surfaces after UV irradiation. The cationic hydrogel as a precursor was shown to effectively kill the attached bacteria, and then quickly switched to zwitterionic antifouling form via photolysis, which released the attached bacteria from surfaces and prevented further bacterial attachment. Moreover, the adhered endothelial cells were easily detached from polyCBNA surfaces triggered by light, providing a facile and less destructive nonenzymatic approach to harvest cells. This smart photoresponsive polyCBNA polymer, with integrated antimicrobial and antifouling properties, holds great potential in biomedical applications such as self-sterilizing and self-cleaning coatings for implants, cell harvesting, and cell patterning.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofouling/prevention & control , Hydrogels/pharmacology , Polymethacrylic Acids/pharmacology , Adsorption , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/radiation effects , Cattle , Endothelial Cells/drug effects , Escherichia coli K12/drug effects , Fibrinogen/chemistry , Hydrogels/chemical synthesis , Hydrogels/radiation effects , Nitrobenzenes/chemical synthesis , Nitrobenzenes/pharmacology , Nitrobenzenes/radiation effects , Photolysis , Polymethacrylic Acids/chemical synthesis , Polymethacrylic Acids/radiation effects , Quaternary Ammonium Compounds/chemical synthesis , Quaternary Ammonium Compounds/pharmacology , Quaternary Ammonium Compounds/radiation effects
20.
Bioorg Med Chem Lett ; 29(9): 1127-1132, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30826292

ABSTRACT

Chloramphenicol nitroreductase (CNR), a drug-modifying enzyme from Haemophilus influenzae, has been shown to be responsible for the conversion of the nitro group into an amine in the antibiotic chloramphenicol (CAM). Since CAM structurally bears a 4-nitrobenzene moiety, we explored the substrate promiscuity of CNR by investigating its nitroreduction of 4-nitrobenzyl derivatives. We tested twenty compounds containing a nitrobenzene core, two nitropyridines, one compound with a vinylogous nitro group, and two aliphatic nitro compounds. In addition, we also synthesized twenty-eight 4-nitrobenzyl derivatives with ether, ester, and thioether substituents and assessed the relative activity of CNR in their presence. We found several of these compounds to be modified by CNR, with the enzyme activity ranging from 1 to 150% when compared to CAM. This data provides insights into two areas: (i) chemoenzymatic reduction of select compounds to avoid harsh chemicals and heavy metals routinely used in reductions of nitro groups and (ii) functional groups that would aid CAM in overcoming the activity of this enzyme.


Subject(s)
Chloramphenicol/metabolism , Haemophilus influenzae/enzymology , Nitrobenzenes/metabolism , Nitroreductases/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Chloramphenicol/chemistry , Chloramphenicol/pharmacology , Drug Resistance, Bacterial , Gene Expression Regulation, Enzymologic/drug effects , Nitrobenzenes/chemistry , Nitrobenzenes/pharmacology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL