Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.509
Filter
Add more filters

Publication year range
1.
Cell ; 186(9): 1877-1894.e27, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37116470

ABSTRACT

Negative-stranded RNA viruses can establish long-term persistent infection in the form of large intracellular inclusions in the human host and cause chronic diseases. Here, we uncover how cellular stress disrupts the metastable host-virus equilibrium in persistent infection and induces viral replication in a culture model of mumps virus. Using a combination of cell biology, whole-cell proteomics, and cryo-electron tomography, we show that persistent viral replication factories are dynamic condensates and identify the largely disordered viral phosphoprotein as a driver of their assembly. Upon stress, increased phosphorylation of the phosphoprotein at its interaction interface with the viral polymerase coincides with the formation of a stable replication complex. By obtaining atomic models for the authentic mumps virus nucleocapsid, we elucidate a concomitant conformational change that exposes the viral genome to its replication machinery. These events constitute a stress-mediated switch within viral condensates that provide an environment to support upregulation of viral replication.


Subject(s)
Mumps virus , Persistent Infection , Humans , Mumps virus/physiology , Nucleocapsid , Phosphoproteins/metabolism , Virus Replication
2.
Cell ; 185(19): 3603-3616.e13, 2022 09 15.
Article in English | MEDLINE | ID: mdl-36084631

ABSTRACT

The effects of mutations in continuously emerging variants of SARS-CoV-2 are a major concern for the performance of rapid antigen tests. To evaluate the impact of mutations on 17 antibodies used in 11 commercially available antigen tests with emergency use authorization, we measured antibody binding for all possible Nucleocapsid point mutations using a mammalian surface-display platform and deep mutational scanning. The results provide a complete map of the antibodies' epitopes and their susceptibility to mutational escape. Our data predict no vulnerabilities for detection of mutations found in variants of concern. We confirm this using the commercial tests and sequence-confirmed COVID-19 patient samples. The antibody escape mutational profiles generated here serve as a valuable resource for predicting the performance of rapid antigen tests against past, current, as well as any possible future variants of SARS-CoV-2, establishing the direct clinical and public health utility of our system.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , Epitopes/genetics , Humans , Mammals , Mutation , Nucleocapsid , SARS-CoV-2/genetics
3.
Cell ; 185(5): 896-915.e19, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35180381

ABSTRACT

The emerging SARS-CoV-2 variants of concern (VOCs) threaten the effectiveness of current COVID-19 vaccines administered intramuscularly and designed to only target the spike protein. There is a pressing need to develop next-generation vaccine strategies for broader and long-lasting protection. Using adenoviral vectors (Ad) of human and chimpanzee origin, we evaluated Ad-vectored trivalent COVID-19 vaccines expressing spike-1, nucleocapsid, and RdRp antigens in murine models. We show that single-dose intranasal immunization, particularly with chimpanzee Ad-vectored vaccine, is superior to intramuscular immunization in induction of the tripartite protective immunity consisting of local and systemic antibody responses, mucosal tissue-resident memory T cells and mucosal trained innate immunity. We further show that intranasal immunization provides protection against both the ancestral SARS-CoV-2 and two VOC, B.1.1.7 and B.1.351. Our findings indicate that respiratory mucosal delivery of Ad-vectored multivalent vaccine represents an effective next-generation COVID-19 vaccine strategy to induce all-around mucosal immunity against current and future VOC.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Immunity, Mucosal , Administration, Intranasal , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , COVID-19/virology , COVID-19 Vaccines/immunology , Cytokines/blood , Genetic Vectors/genetics , Genetic Vectors/immunology , Genetic Vectors/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Neutralization Tests , Nucleocapsid/genetics , Nucleocapsid/immunology , Nucleocapsid/metabolism , Pan troglodytes , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
4.
Cell ; 172(5): 966-978.e12, 2018 02 22.
Article in English | MEDLINE | ID: mdl-29474922

ABSTRACT

Ebola virus nucleoprotein (eNP) assembles into higher-ordered structures that form the viral nucleocapsid (NC) and serve as the scaffold for viral RNA synthesis. However, molecular insights into the NC assembly process are lacking. Using a hybrid approach, we characterized the NC-like assembly of eNP, identified novel regulatory elements, and described how these elements impact function. We generated a three-dimensional structure of the eNP NC-like assembly at 5.8 Å using electron cryo-microscopy and identified a new regulatory role for eNP helices α22-α23. Biochemical, biophysical, and mutational analyses revealed that inter-eNP contacts within α22-α23 are critical for viral NC assembly and regulate viral RNA synthesis. These observations suggest that the N terminus and α22-α23 of eNP function as context-dependent regulatory modules (CDRMs). Our current study provides a framework for a structural mechanism for NC-like assembly and a new therapeutic target.


Subject(s)
Cryoelectron Microscopy , Ebolavirus/physiology , Ebolavirus/ultrastructure , Nucleocapsid/ultrastructure , Nucleoproteins/ultrastructure , Virus Assembly , Models, Biological , Mutant Proteins/chemistry , Mutation/genetics , Nucleoproteins/chemistry , Protein Multimerization , Protein Structure, Secondary , Protein Subunits/chemistry , Protein Subunits/metabolism , RNA, Viral/biosynthesis , RNA, Viral/chemistry , RNA, Viral/metabolism
5.
Cell ; 166(5): 1257-1268.e12, 2016 Aug 25.
Article in English | MEDLINE | ID: mdl-27565348

ABSTRACT

While an essential role of HIV-1 integrase (IN) for integration of viral cDNA into human chromosome is established, studies with IN mutants and allosteric IN inhibitors (ALLINIs) have suggested that IN can also influence viral particle maturation. However, it has remained enigmatic as to how IN contributes to virion morphogenesis. Here, we demonstrate that IN directly binds the viral RNA genome in virions. These interactions have specificity, as IN exhibits distinct preference for select viral RNA structural elements. We show that IN substitutions that selectively impair its binding to viral RNA result in eccentric, non-infectious virions without affecting nucleocapsid-RNA interactions. Likewise, ALLINIs impair IN binding to viral RNA in virions of wild-type, but not escape mutant, virus. These results reveal an unexpected biological role of IN binding to the viral RNA genome during virion morphogenesis and elucidate the mode of action of ALLINIs.


Subject(s)
Genome, Viral , HIV Integrase/metabolism , HIV-1/growth & development , RNA, Viral/metabolism , Virion/growth & development , HEK293 Cells , HIV Integrase/genetics , HIV Integrase Inhibitors/pharmacology , HIV-1/drug effects , HIV-1/enzymology , Humans , Morphogenesis , Nucleocapsid/drug effects , Protein Binding , Virion/drug effects , Virion/enzymology , Virus Integration/drug effects
6.
Mol Cell ; 80(6): 1078-1091.e6, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33290746

ABSTRACT

We report that the SARS-CoV-2 nucleocapsid protein (N-protein) undergoes liquid-liquid phase separation (LLPS) with viral RNA. N-protein condenses with specific RNA genomic elements under physiological buffer conditions and condensation is enhanced at human body temperatures (33°C and 37°C) and reduced at room temperature (22°C). RNA sequence and structure in specific genomic regions regulate N-protein condensation while other genomic regions promote condensate dissolution, potentially preventing aggregation of the large genome. At low concentrations, N-protein preferentially crosslinks to specific regions characterized by single-stranded RNA flanked by structured elements and these features specify the location, number, and strength of N-protein binding sites (valency). Liquid-like N-protein condensates form in mammalian cells in a concentration-dependent manner and can be altered by small molecules. Condensation of N-protein is RNA sequence and structure specific, sensitive to human body temperature, and manipulatable with small molecules, and therefore presents a screenable process for identifying antiviral compounds effective against SARS-CoV-2.


Subject(s)
COVID-19/metabolism , Coronavirus Nucleocapsid Proteins/metabolism , Genome, Viral , Nucleocapsid/metabolism , RNA, Viral/metabolism , SARS-CoV-2/metabolism , Animals , Antiviral Agents/pharmacology , COVID-19/genetics , Chlorocebus aethiops , Coronavirus Nucleocapsid Proteins/genetics , Drug Evaluation, Preclinical , HEK293 Cells , Humans , Nucleocapsid/genetics , Phosphoproteins/genetics , Phosphoproteins/metabolism , SARS-CoV-2/genetics , Vero Cells , COVID-19 Drug Treatment
7.
Proc Natl Acad Sci U S A ; 120(46): e2306129120, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37939083

ABSTRACT

Controlling the biodistribution of protein- and nanoparticle-based therapeutic formulations remains challenging. In vivo library selection is an effective method for identifying constructs that exhibit desired distribution behavior; library variants can be selected based on their ability to localize to the tissue or compartment of interest despite complex physiological challenges. Here, we describe further development of an in vivo library selection platform based on self-assembling protein nanoparticles encapsulating their own mRNA genomes (synthetic nucleocapsids or synNCs). We tested two distinct libraries: a low-diversity library composed of synNC surface mutations (45 variants) and a high-diversity library composed of synNCs displaying miniproteins with binder-like properties (6.2 million variants). While we did not identify any variants from the low-diversity surface library that yielded therapeutically relevant changes in biodistribution, the high-diversity miniprotein display library yielded variants that shifted accumulation toward lungs or muscles in just two rounds of in vivo selection. Our approach should contribute to achieving specific tissue homing patterns and identifying targeting ligands for diseases of interest.


Subject(s)
Peptide Library , Proteins , Tissue Distribution , Nucleocapsid , Mutation
8.
Proc Natl Acad Sci U S A ; 120(28): e2304087120, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37399385

ABSTRACT

We recently reported that SARS-CoV-2 nucleocapsid (N) protein is abundantly expressed on the surface of both infected and neighboring uninfected cells, where it enables activation of Fc receptor-bearing immune cells with anti-N antibodies (Abs) and inhibits leukocyte chemotaxis by binding chemokines (CHKs). Here, we extend these findings to N from the common cold human coronavirus (HCoV)-OC43, which is also robustly expressed on the surface of infected and noninfected cells by binding heparan sulfate/heparin (HS/H). HCoV-OC43 N binds with high affinity to the same set of 11 human CHKs as SARS-CoV-2 N, but also to a nonoverlapping set of six cytokines. As with SARS-CoV-2 N, HCoV-OC43 N inhibits CXCL12ß-mediated leukocyte migration in chemotaxis assays, as do all highly pathogenic and common cold HCoV N proteins. Together, our findings indicate that cell surface HCoV N plays important evolutionarily conserved roles in manipulating host innate immunity and as a target for adaptive immunity.


Subject(s)
Coronavirus OC43, Human , Immunity, Innate , Nucleocapsid , SARS-CoV-2 , Humans , Coronavirus OC43, Human/genetics , Membrane Proteins , SARS-CoV-2/genetics
9.
J Biol Chem ; 300(6): 107354, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718862

ABSTRACT

The nucleocapsid protein (N) of SARS-CoV-2 is essential for virus replication, genome packaging, evading host immunity, and virus maturation. N is a multidomain protein composed of an independently folded monomeric N-terminal domain that is the primary site for RNA binding and a dimeric C-terminal domain that is essential for efficient phase separation and condensate formation with RNA. The domains are separated by a disordered Ser/Arg-rich region preceding a self-associating Leu-rich helix. Phosphorylation in the Ser/Arg region in infected cells decreases the viscosity of N:RNA condensates promoting viral replication and host immune evasion. The molecular level effect of phosphorylation, however, is missing from our current understanding. Using NMR spectroscopy and analytical ultracentrifugation, we show that phosphorylation destabilizes the self-associating Leu-rich helix 30 amino-acids distant from the phosphorylation site. NMR and gel shift assays demonstrate that RNA binding by the linker is dampened by phosphorylation, whereas RNA binding to the full-length protein is not significantly affected presumably due to retained strong interactions with the primary RNA-binding domain. Introducing a switchable self-associating domain to replace the Leu-rich helix confirms the importance of linker self-association to droplet formation and suggests that phosphorylation not only increases solubility of the positively charged elongated Ser/Arg region as observed in other RNA-binding proteins but can also inhibit self-association of the Leu-rich helix. These data highlight the effect of phosphorylation both at local sites and at a distant self-associating hydrophobic helix in regulating liquid-liquid phase separation of the entire protein.


Subject(s)
Coronavirus Nucleocapsid Proteins , SARS-CoV-2 , Arginine/chemistry , Arginine/metabolism , Coronavirus Nucleocapsid Proteins/metabolism , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/genetics , COVID-19/virology , COVID-19/metabolism , Magnetic Resonance Spectroscopy , Nucleocapsid/metabolism , Nucleocapsid/chemistry , Nucleocapsid Proteins/metabolism , Nucleocapsid Proteins/chemistry , Phase Separation , Phosphoproteins/metabolism , Phosphoproteins/chemistry , Phosphoproteins/genetics , Phosphorylation , Protein Binding , RNA, Viral/metabolism , RNA, Viral/chemistry , RNA, Viral/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/chemistry , Serine/metabolism , Serine/chemistry
10.
EMBO J ; 40(18): e108249, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34296442

ABSTRACT

SARS-CoV-2 is an emerging coronavirus that causes dysfunctions in multiple human cells and tissues. Studies have looked at the entry of SARS-CoV-2 into host cells mediated by the viral spike protein and human receptor ACE2. However, less is known about the cellular immune responses triggered by SARS-CoV-2 viral proteins. Here, we show that the nucleocapsid of SARS-CoV-2 inhibits host pyroptosis by blocking Gasdermin D (GSDMD) cleavage. SARS-CoV-2-infected monocytes show enhanced cellular interleukin-1ß (IL-1ß) expression, but reduced IL-1ß secretion. While SARS-CoV-2 infection promotes activation of the NLRP3 inflammasome and caspase-1, GSDMD cleavage and pyroptosis are inhibited in infected human monocytes. SARS-CoV-2 nucleocapsid protein associates with GSDMD in cells and inhibits GSDMD cleavage in vitro and in vivo. The nucleocapsid binds the GSDMD linker region and hinders GSDMD processing by caspase-1. These insights into how SARS-CoV-2 antagonizes cellular inflammatory responses may open new avenues for treating COVID-19 in the future.


Subject(s)
COVID-19/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Nucleocapsid/metabolism , Phosphate-Binding Proteins/metabolism , Pyroptosis/physiology , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Caspase 1/immunology , Caspase 1/metabolism , HEK293 Cells , Host-Pathogen Interactions , Humans , Inflammasomes/immunology , Inflammasomes/metabolism , Interleukin-1beta/immunology , Interleukin-1beta/metabolism , Intracellular Signaling Peptides and Proteins/immunology , Mice , Monocytes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Phosphate-Binding Proteins/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , THP-1 Cells
11.
PLoS Pathog ; 19(12): e1011832, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38039340

ABSTRACT

After entry into cells, herpes simplex virus (HSV) nucleocapsids dock at nuclear pore complexes (NPCs) through which viral genomes are released into the nucleoplasm where viral gene expression, genome replication, and early steps in virion assembly take place. After their assembly, nucleocapsids are translocated to the cytoplasm for final virion maturation. Nascent cytoplasmic nucleocapsids are prevented from binding to NPCs and delivering their genomes to the nucleus from which they emerged, but how this is accomplished is not understood. Here we report that HSV pUL16 and pUL21 deletion mutants accumulate empty capsids at the cytoplasmic face of NPCs late in infection. Additionally, prior expression of pUL16 and pUL21 prevented incoming nucleocapsids from docking at NPCs, delivering their genomes to the nucleus and initiating viral gene expression. Both pUL16 and pUL21 localized to the nuclear envelope, placing them in an appropriate location to interfere with nucleocapsid/NPC interactions.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Humans , Capsid/metabolism , Nuclear Pore/metabolism , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Nucleocapsid/metabolism
12.
Proc Natl Acad Sci U S A ; 119(30): e2201927119, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35858426

ABSTRACT

Hepatitis B virus (HBV) DNA replication takes place inside the viral core particle and is dependent on autophagy. Here we show that HBV core particles are associated with autophagosomes and phagophores in cells that productively replicate HBV. These autophagic membrane-associated core particles contain almost entirely the hypophosphorylated core protein and are DNA replication competent. As the hyperphosphorylated core protein can be localized to phagophores and the dephosphorylation of the core protein is associated with the packaging of viral pregenomic RNA (pgRNA), these results are in support of the model that phagophores can serve as the sites for the packaging of pgRNA. In contrast, in cells that replicate HBV, the precore protein derivatives, which are related to the core protein, are associated with autophagosomes but not with phagophores via a pathway that is independent of its signal peptide. Interestingly, when the core protein is expressed by itself, it is associated with phagophores but not with autophagosomes. These observations indicate that autophagic membranes are differentially involved in the trafficking of precore and core proteins. HBV induces the fusion of autophagosomes and multivesicular bodies and the silencing of Rab11, a regulator of this fusion, is associated with the reduction of release of mature HBV particles. Our studies thus indicate that autophagic membranes participate in the assembly of HBV nucleocapsids, the trafficking of HBV precore and core proteins, and likely also the egress of HBV particles.


Subject(s)
Autophagosomes , Hepatitis B virus , Nucleocapsid , Viral Genome Packaging , Virus Replication , Autophagosomes/physiology , DNA, Viral/metabolism , Hepatitis B virus/genetics , Hepatitis B virus/physiology , Humans , Nucleocapsid/genetics , Nucleocapsid/physiology , Protein Transport , RNA, Viral/metabolism , Virus Replication/genetics
13.
Emerg Infect Dis ; 30(8): 1621-1630, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38981189

ABSTRACT

Nucleocapsid antibody assays can be used to estimate SARS-CoV-2 infection prevalence in regions implementing spike-based COVID-19 vaccines. However, poor sensitivity of nucleocapsid antibody assays in detecting infection after vaccination has been reported. We derived a lower cutoff for identifying previous infections in a large blood donor cohort (N = 142,599) by using the Ortho VITROS Anti-SARS-CoV-2 Total-N Antibody assay, improving sensitivity while maintaining specificity >98%. We validated sensitivity in samples donated after self-reported swab-confirmed infections diagnoses. Sensitivity for first infections in unvaccinated donors was 98.1% (95% CI 98.0-98.2) and for infection after vaccination was 95.6% (95% CI 95.6-95.7) based on the standard cutoff. Regression analysis showed sensitivity was reduced in the Delta compared with Omicron period, in older donors, in asymptomatic infections, <30 days after infection, and for infection after vaccination. The standard Ortho N antibody threshold demonstrated good sensitivity, which was modestly improved with the revised cutoff.


Subject(s)
Antibodies, Viral , Blood Donors , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/prevention & control , COVID-19/epidemiology , SARS-CoV-2/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Adult , Middle Aged , Male , COVID-19 Vaccines/immunology , Female , Vaccination , Young Adult , Sensitivity and Specificity , Adolescent , Aged , Nucleocapsid/immunology , COVID-19 Serological Testing/methods
14.
J Virol ; 97(10): e0089223, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37772835

ABSTRACT

IMPORTANCE: The hepatitis C virus is associated with nearly 300,000 deaths annually. At the core of the virus is an RNA-protein complex called the nucleocapsid, which consists of the viral genome and many copies of the core protein. Because the assembly of the nucleocapsid is a critical step in viral replication, a considerable amount of effort has been devoted to identifying antiviral therapeutics that can bind to the core protein and disrupt assembly. Although several candidates have been identified, little is known about how they interact with the core protein or how those interactions alter the structure and thus the function of this viral protein. Our work biochemically characterizes several of these binding interactions, highlighting both similarities and differences as well as strengths and weaknesses. These insights bolster the notion that this viral protein is a viable target for novel therapeutics and will help to guide future developments of these candidate antivirals.


Subject(s)
Antiviral Agents , Hepacivirus , Viral Core Proteins , Humans , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Hepacivirus/chemistry , Hepacivirus/drug effects , Hepacivirus/metabolism , Hepatitis C/drug therapy , Hepatitis C/virology , Nucleocapsid/antagonists & inhibitors , Nucleocapsid/chemistry , Nucleocapsid/metabolism , Viral Core Proteins/antagonists & inhibitors , Viral Core Proteins/metabolism , Virus Assembly , Virus Replication , Single Molecule Imaging/methods , Protein Binding
15.
Clin Exp Immunol ; 215(3): 268-278, 2024 02 19.
Article in English | MEDLINE | ID: mdl-37313783

ABSTRACT

As there are limited data on B-cell epitopes for the nucleocapsid protein in SARS-CoV-2, we sought to identify the immunodominant regions within the N protein, recognized by patients with varying severity of natural infection with the Wuhan strain (WT), delta, omicron, and in those who received the Sinopharm vaccines, which is an inactivated, whole virus vaccine. Using overlapping peptides representing the N protein, with an in-house ELISA, we mapped the immunodominant regions within the N protein, in seronegative (n = 30), WT infected (n = 30), delta infected (n = 30), omicron infected + vaccinated (n = 20) and Sinopharm (BBIBP-CorV) vaccinees (n = 30). We then investigated the sensitivity and specificity of these immunodominant regions and analyzed their conservation with other SARS-CoV-2 variants of concern, seasonal human coronaviruses, and bat Sarbecoviruses. We identified four immunodominant regions aa 29-52, aa 155-178, aa 274-297, and aa 365-388, which were highly conserved within SARS-CoV-2 and the bat coronaviruses. The magnitude of responses to these regions varied based on the infecting SARS-CoV-2 variants, >80% of individuals gave responses above the positive cut-off threshold to many of the four regions, with some differences with individuals who were infected with different VoCs. These regions were found to be 100% specific, as none of the seronegative individuals gave any responses. As these regions were highly specific with high sensitivity, they have a potential to be used to develop diagnostic assays and to be used in development of vaccines.


Subject(s)
COVID-19 , Chiroptera , Humans , Animals , SARS-CoV-2 , Antibody Formation , Immunodominant Epitopes , Nucleocapsid , Antibodies, Viral
16.
PLoS Pathog ; 18(12): e1011022, 2022 12.
Article in English | MEDLINE | ID: mdl-36480574

ABSTRACT

Rabies virus (RABV) transcription and replication take place within viral factories having liquid properties, called Negri bodies (NBs), that are formed by liquid-liquid phase separation (LLPS). The co-expression of RABV nucleoprotein (N) and phosphoprotein (P) in mammalian cells is sufficient to induce the formation of cytoplasmic biocondensates having properties that are like those of NBs. This cellular minimal system was previously used to identify P domains that are essential for biocondensates formation. Here, we constructed fluorescent versions of N and analyzed by FRAP their dynamics inside the biocondensates formed in this minimal system as well as in NBs of RABV-infected cells using FRAP. The behavior of N appears to be different of P as there was no fluorescence recovery of N proteins after photobleaching. We also identified arginine residues as well as two exposed loops of N involved in condensates formation. Corresponding N mutants exhibited distinct phenotypes in infected cells ranging from co-localization with NBs to exclusion from them associated with a dominant-negative effect on infection. We also demonstrated that in vitro, in crowded environments, purified P as well as purified N0-P complex (in which N is RNA-free) form liquid condensates. We identified P domains required for LLPS in this acellular system. P condensates were shown to associate with liposomes, concentrate RNA, and undergo a liquid-gel transition upon ageing. Conversely, N0-P droplets were disrupted upon incubation with RNA. Taken together, our data emphasize the central role of P in NBs formation and reveal some physicochemical features of P and N0-P droplets relevant for explaining NBs properties such as their envelopment by cellular membranes at late stages of infection and nucleocapsids ejections from the viral factories.


Subject(s)
Rabies virus , Rabies , Animals , Rabies virus/genetics , Rabies virus/metabolism , Nucleoproteins/genetics , Rabies/metabolism , Nucleocapsid/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , Virus Replication , Mammals
17.
PLoS Pathog ; 18(7): e1010616, 2022 07.
Article in English | MEDLINE | ID: mdl-35900983

ABSTRACT

Filovirus-infected cells are characterized by typical cytoplasmic inclusion bodies (IBs) located in the perinuclear region. The formation of these IBs is induced mainly by the accumulation of the filoviral nucleoprotein NP, which recruits the other nucleocapsid proteins, the polymerase co-factor VP35, the polymerase L, the transcription factor VP30 and VP24 via direct or indirect protein-protein interactions. Replication of the negative-strand RNA genomes by the viral polymerase L and VP35 occurs in the IBs, resulting in the synthesis of positive-strand genomes, which are encapsidated by NP, thus forming ribonucleoprotein complexes (antigenomic RNPs). These newly formed antigenomic RNPs in turn serve as templates for the synthesis of negative-strand RNA genomes that are also encapsidated by NP (genomic RNPs). Still in the IBs, genomic RNPs mature into tightly packed transport-competent nucleocapsids (NCs) by the recruitment of the viral protein VP24. NCs are tightly coiled left-handed helices whose structure is mainly determined by the multimerization of NP at its N-terminus, and these helices form the inner layer of the NCs. The RNA genome is fixed by 2 lobes of the NP N-terminus and is thus guided by individual NP molecules along the turns of the helix. Direct interaction of the NP C-terminus with the VP35 and VP24 molecules forms the outer layer of the NCs. Once formed, NCs that are located at the border of the IBs recruit actin polymerization machinery to one of their ends to drive their transport to budding sites for their envelopment and final release. Here, we review the current knowledge on the structure, assembly, and transport of filovirus NCs.


Subject(s)
Ebolavirus , Inclusion Bodies, Viral , Marburgvirus , Humans , Ebolavirus/genetics , Marburgvirus/genetics , Nucleocapsid/metabolism , Ribonucleoproteins/metabolism , RNA/metabolism
18.
PLoS Pathog ; 18(6): e1010627, 2022 06.
Article in English | MEDLINE | ID: mdl-35728038

ABSTRACT

While SARS-CoV-2 continues to adapt for human infection and transmission, genetic variation outside of the spike gene remains largely unexplored. This study investigates a highly variable region at residues 203-205 in the SARS-CoV-2 nucleocapsid protein. Recreating a mutation found in the alpha and omicron variants in an early pandemic (WA-1) background, we find that the R203K+G204R mutation is sufficient to enhance replication, fitness, and pathogenesis of SARS-CoV-2. The R203K+G204R mutant corresponds with increased viral RNA and protein both in vitro and in vivo. Importantly, the R203K+G204R mutation increases nucleocapsid phosphorylation and confers resistance to inhibition of the GSK-3 kinase, providing a molecular basis for increased virus replication. Notably, analogous alanine substitutions at positions 203+204 also increase SARS-CoV-2 replication and augment phosphorylation, suggesting that infection is enhanced through ablation of the ancestral 'RG' motif. Overall, these results demonstrate that variant mutations outside spike are key components in SARS-CoV-2's continued adaptation to human infection.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/genetics , Glycogen Synthase Kinase 3 , Humans , Mutation , Nucleocapsid , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
19.
Hepatology ; 77(4): 1366-1381, 2023 04 01.
Article in English | MEDLINE | ID: mdl-35718932

ABSTRACT

BACKGROUND AND AIMS: Murine hepatic cells cannot support hepatitis B virus (HBV) infection even with supplemental expression of viral receptor, human sodium taurocholate cotransporting polypeptide (hNTCP). However, the specific restricted step remains elusive. In this study, we aimed to dissect HBV infection process in murine hepatic cells. APPROACH AND RESULTS: Cells expressing hNTCP were inoculated with HBV or hepatitis delta virus (HDV). HBV pregenomic RNA (pgRNA), covalently closed circular DNA (cccDNA), and different relaxed circular DNA (rcDNA) intermediates were produced in vitro . The repair process from rcDNA to cccDNA was assayed by in vitro repair experiments and in mouse with hydrodynamic injection. Southern blotting and in situ hybridization were used to detect HBV DNA. HBV, but not its satellite virus HDV, was restricted from productive infection in murine hepatic cells expressing hNTCP. Transfection of HBV pgRNA could establish HBV replication in human, but not in murine, hepatic cells. HBV replication-competent plasmid, cccDNA, and recombinant cccDNA could support HBV transcription in murine hepatic cells. Different rcDNA intermediates could be repaired to form cccDNA both in vitro and in vivo . In addition, rcDNA could be detected in the nucleus of murine hepatic cells, but cccDNA could not be formed. Interestingly, nuclease sensitivity assay showed that the protein-linked rcDNA isolated from cytoplasm was completely nuclease resistant in murine, but not in human, hepatic cells. CONCLUSIONS: Our results imply that the disassembly of cytoplasmic HBV nucleocapsids is restricted in murine hepatic cells. Overcoming this limitation may help to establish an HBV infection mouse model.


Subject(s)
Hepatitis B virus , Hepatitis B , Mice , Humans , Animals , Hepatitis B virus/genetics , Hepatitis B virus/metabolism , DNA, Viral/genetics , Virus Replication/genetics , Hepatocytes/metabolism , Nucleocapsid/metabolism , Hepatitis B/genetics , Cytoplasm/metabolism , DNA, Circular/metabolism
20.
J Med Virol ; 96(1): e29358, 2024 01.
Article in English | MEDLINE | ID: mdl-38180230

ABSTRACT

In hospitalized children, SARS-CoV-2 infection can present as either a primary reason for admission (patients admitted for COVID-19) or an incidental finding during follow-up (patients admitted with COVID-19). We conducted a nested case-control study within a cohort of pediatric patients with confirmed SARS-CoV-2 infection, to investigate the concentration of plasma nucleocapsid antigen (N-Ag) in children admitted for COVID-19 or with COVID-19. While reverse transcriptase polymerase chain reaction Ct values in nasopharyngeal swab were similar between the two groups, children admitted for COVID-19 had a higher rate of detectable N-Ag (12/18 (60.7%) versus 6/18 (33.3%), p = 0.0455) and a higher concentration of N-Ag (medians: 19.51 g/mL vs. 1.08 pg/mL, p = 0.0105). In children hospitalized for COVID-19, the youngest had higher concentration of N-Ag (r = -0.74, p = 0.0004). We also observed a lower prevalence of detectable spike antibodies in children hospitalized for COVID-19 compared to those hospitalized for other medical reasons (3/15 [20%] vs. 13/16 [81.25%], respectively, p = < 0.0011), but similar rates of IgG nucleocapsid antibodies (5/14 [35.7%] vs. 6/17 [35.3%], respectively, p = 0.99). Our findings indicate that N-Ag is associated with COVID-19-related hospitalizations in pediatric patients, and less frequently detected in children tested positive for SARS-CoV-2 but hospitalized for another medical reason. Further studies are needed to confirm the value of N-Ag in identifying COVID-19 disease infections in which SARS-CoV-2 is the main pathogen responsible for symptoms.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Child , Case-Control Studies , COVID-19/diagnosis , Nucleocapsid , Virion , Antigens, Viral , Immunoglobulin G
SELECTION OF CITATIONS
SEARCH DETAIL