Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.029
Filter
Add more filters

Publication year range
1.
Nature ; 632(8024): 366-374, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38961294

ABSTRACT

Social communication guides decision-making, which is essential for survival. Social transmission of food preference (STFP) is an ecologically relevant memory paradigm in which an animal learns a desirable food odour from another animal in a social context, creating a long-term memory1,2. How food-preference memory is acquired, consolidated and stored is unclear. Here we show that the posteromedial nucleus of the cortical amygdala (COApm) serves as a computational centre in long-term STFP memory consolidation by integrating social and sensory olfactory inputs. Blocking synaptic signalling by the COApm-based circuit selectively abolished STFP memory consolidation without impairing memory acquisition, storage or recall. COApm-mediated STFP memory consolidation depends on synaptic inputs from the accessory olfactory bulb and on synaptic outputs to the anterior olfactory nucleus. STFP memory consolidation requires protein synthesis, suggesting a gene-expression mechanism. Deep single-cell and spatially resolved transcriptomics revealed robust but distinct gene-expression signatures induced by STFP memory formation in the COApm that are consistent with synapse restructuring. Our data thus define a neural circuit for the consolidation of a socially communicated long-term memory, thereby mechanistically distinguishing protein-synthesis-dependent memory consolidation from memory acquisition, storage or retrieval.


Subject(s)
Amygdala , Food Preferences , Memory Consolidation , Memory, Long-Term , Social Behavior , Animals , Male , Mice , Amygdala/physiology , Amygdala/cytology , Memory Consolidation/physiology , Memory, Long-Term/physiology , Mice, Inbred C57BL , Odorants/analysis , Olfactory Bulb/physiology , Olfactory Bulb/cytology , Single-Cell Analysis , Synapses/metabolism , Transcriptome , Food Preferences/physiology , Food Preferences/psychology
2.
Physiol Rev ; 102(1): 61-154, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34254835

ABSTRACT

The biological olfactory system is the sensory system responsible for the detection of the chemical composition of the environment. Several attempts to mimic biological olfactory systems have led to various artificial olfactory systems using different technical approaches. Here we provide a parallel description of biological olfactory systems and their technical counterparts. We start with a presentation of the input to the systems, the stimuli, and treat the interface between the external world and the environment where receptor neurons or artificial chemosensors reside. We then delineate the functions of receptor neurons and chemosensors as well as their overall input-output (I/O) relationships. Up to this point, our accounts of the systems go along similar lines. The next processing steps differ considerably: whereas in biology the processing step following the receptor neurons is the "integration" and "processing" of receptor neuron outputs in the olfactory bulb, this step has various realizations in electronic noses. For a long period of time, the signal processing stages beyond the olfactory bulb, i.e., the higher olfactory centers, were little studied. Only recently has there been a marked growth of studies tackling the information processing in these centers. In electronic noses, a third stage of processing has virtually never been considered. In this review, we provide an up-to-date overview of the current knowledge of both fields and, for the first time, attempt to tie them together. We hope it will be a breeding ground for better information, communication, and data exchange between very related but so far little-connected fields.


Subject(s)
Olfactory Bulb/physiology , Olfactory Receptor Neurons/physiology , Sensory Receptor Cells/physiology , Smell/physiology , Animals , Humans , Odorants , Vertebrates/physiology
3.
Cell ; 156(5): 1072-83, 2014 Feb 27.
Article in English | MEDLINE | ID: mdl-24561062

ABSTRACT

In most mammals, neurons are added throughout life in the hippocampus and olfactory bulb. One area where neuroblasts that give rise to adult-born neurons are generated is the lateral ventricle wall of the brain. We show, using histological and carbon-14 dating approaches, that in adult humans new neurons integrate in the striatum, which is adjacent to this neurogenic niche. The neuronal turnover in the striatum appears restricted to interneurons, and postnatally generated striatal neurons are preferentially depleted in patients with Huntington's disease. Our findings demonstrate a unique pattern of neurogenesis in the adult human brain.


Subject(s)
Basal Ganglia/cytology , Neurogenesis , Neurons/cytology , Adult , Animals , Basal Ganglia/pathology , Basal Ganglia/physiology , Brain/cytology , Brain/physiology , Hippocampus/cytology , Hippocampus/physiology , Humans , Huntington Disease/pathology , Interneurons/cytology , Interneurons/physiology , Mice , Models, Biological , Neurons/metabolism , Olfactory Bulb/cytology , Olfactory Bulb/physiology
4.
Nature ; 603(7903): 871-877, 2022 03.
Article in English | MEDLINE | ID: mdl-35322231

ABSTRACT

Neuroanatomists have long speculated that expanded primate brains contain an increased morphological diversity of inhibitory neurons (INs)1, and recent studies have identified primate-specific neuronal populations at the molecular level2. However, we know little about the developmental mechanisms that specify evolutionarily novel cell types in the brain. Here, we reconstruct gene expression trajectories specifying INs generated throughout the neurogenic period in macaques and mice by analysing the transcriptomes of 250,181 cells. We find that the initial classes of INs generated prenatally are largely conserved among mammals. Nonetheless, we identify two contrasting developmental mechanisms for specifying evolutionarily novel cell types during prenatal development. First, we show that recently identified primate-specific TAC3 striatal INs are specified by a unique transcriptional programme in progenitors followed by induction of a distinct suite of neuropeptides and neurotransmitter receptors in new-born neurons. Second, we find that multiple classes of transcriptionally conserved olfactory bulb (OB)-bound precursors are redirected to expanded primate white matter and striatum. These classes include a novel peristriatal class of striatum laureatum neurons that resemble dopaminergic periglomerular cells of the OB. We propose an evolutionary model in which conserved initial classes of neurons supplying the smaller primate OB are reused in the enlarged striatum and cortex. Together, our results provide a unified developmental taxonomy of initial classes of mammalian INs and reveal multiple developmental mechanisms for neural cell type evolution.


Subject(s)
Biological Evolution , Corpus Striatum , Embryonic Development , Macaca , Neurogenesis , Neurons , Olfactory Bulb , Animals , Corpus Striatum/growth & development , Dopaminergic Neurons , Female , Macaca/growth & development , Mammals , Mice , Neurogenesis/physiology , Olfactory Bulb/physiology , Pregnancy , Primates
5.
Nature ; 601(7894): 595-599, 2022 01.
Article in English | MEDLINE | ID: mdl-34937941

ABSTRACT

Odours are a fundamental part of the sensory environment used by animals to guide behaviours such as foraging and navigation1,2. Primary olfactory (piriform) cortex is thought to be the main cortical region for encoding odour identity3-8. Here, using neural ensemble recordings in freely moving rats performing an odour-cued spatial choice task, we show that posterior piriform cortex neurons carry a robust spatial representation of the environment. Piriform spatial representations have features of a learned cognitive map, being most prominent near odour ports, stable across behavioural contexts and independent of olfactory drive or reward availability. The accuracy of spatial information carried by individual piriform neurons was predicted by the strength of their functional coupling to the hippocampal theta rhythm. Ensembles of piriform neurons concurrently represented odour identity as well as spatial locations of animals, forming an odour-place map. Our results reveal a function for piriform cortex in spatial cognition and suggest that it is well-suited to form odour-place associations and guide olfactory-cued spatial navigation.


Subject(s)
Olfactory Cortex , Piriform Cortex , Spatial Navigation , Animals , Odorants , Olfactory Bulb/physiology , Olfactory Cortex/physiology , Olfactory Pathways/physiology , Piriform Cortex/physiology , Rats , Smell/physiology
6.
PLoS Biol ; 22(3): e3002536, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38427708

ABSTRACT

Associating values to environmental cues is a critical aspect of learning from experiences, allowing animals to predict and maximise future rewards. Value-related signals in the brain were once considered a property of higher sensory regions, but their wide distribution across many brain regions is increasingly recognised. Here, we investigate how reward-related signals begin to be incorporated, mechanistically, at the earliest stage of olfactory processing, namely, in the olfactory bulb. In head-fixed mice performing Go/No-Go discrimination of closely related olfactory mixtures, rewarded odours evoke widespread inhibition in one class of output neurons, that is, in mitral cells but not tufted cells. The temporal characteristics of this reward-related inhibition suggest it is odour-driven, but it is also context-dependent since it is absent during pseudo-conditioning and pharmacological silencing of the piriform cortex. Further, the reward-related modulation is present in the somata but not in the apical dendritic tuft of mitral cells, suggesting an involvement of circuit components located deep in the olfactory bulb. Depth-resolved imaging from granule cell dendritic gemmules suggests that granule cells that target mitral cells receive a reward-related extrinsic drive. Thus, our study supports the notion that value-related modulation of olfactory signals is a characteristic of olfactory processing in the primary olfactory area and narrows down the possible underlying mechanisms to deeper circuit components that contact mitral cells perisomatically.


Subject(s)
Neurons , Olfactory Bulb , Mice , Animals , Olfactory Bulb/physiology , Neurons/physiology , Smell/physiology , Odorants , Synapses/physiology
7.
PLoS Biol ; 22(8): e3002660, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39186804

ABSTRACT

Inhibitory circuits in the mammalian olfactory bulb (OB) dynamically reformat olfactory information as it propagates from peripheral receptors to downstream cortex. To gain mechanistic insight into how specific OB interneuron types support this sensory processing, we examine unitary synaptic interactions between excitatory mitral and tufted cells (MTCs), the OB projection neurons, and a conserved population of anaxonic external plexiform layer interneurons (EPL-INs) using pair and quartet whole-cell recordings in acute mouse brain slices. Physiological, morphological, neurochemical, and synaptic analyses divide EPL-INs into distinct subtypes and reveal that parvalbumin-expressing fast-spiking EPL-INs (FSIs) perisomatically innervate MTCs with release-competent dendrites and synaptically detonate to mediate fast, short-latency recurrent and lateral inhibition. Sparse MTC synchronization supralinearly increases this high-fidelity inhibition, while sensory afferent activation combined with single-cell silencing reveals that individual FSIs account for a substantial fraction of total network-driven MTC lateral inhibition. OB output is thus powerfully shaped by detonation-driven high-fidelity perisomatic inhibition.


Subject(s)
Interneurons , Olfactory Bulb , Animals , Interneurons/physiology , Interneurons/metabolism , Olfactory Bulb/physiology , Olfactory Bulb/cytology , Olfactory Bulb/metabolism , Mice , Action Potentials/physiology , Neural Inhibition/physiology , Mice, Inbred C57BL , Male , Synapses/physiology , Synapses/metabolism , Patch-Clamp Techniques , Dendrites/physiology , Dendrites/metabolism , Parvalbumins/metabolism , Female
8.
Nature ; 578(7793): 137-141, 2020 02.
Article in English | MEDLINE | ID: mdl-31996852

ABSTRACT

Organisms have evolved diverse behavioural strategies that enhance the likelihood of encountering and assessing mates1. Many species use pheromones to communicate information about the location, sexual and social status of potential partners2. In mice, the major urinary protein darcin-which is present in the urine of males-provides a component of a scent mark that elicits approach by females and drives learning3,4. Here we show that darcin elicits a complex and variable behavioural repertoire that consists of attraction, ultrasonic vocalization and urinary scent marking, and also serves as a reinforcer in learning paradigms. We identify a genetically determined circuit-extending from the accessory olfactory bulb to the posterior medial amygdala-that is necessary for all behavioural responses to darcin. Moreover, optical activation of darcin-responsive neurons in the medial amygdala induces both the innate and the conditioned behaviours elicited by the pheromone. These neurons define a topographically segregated population that expresses neuronal nitric oxide synthase. We suggest that this darcin-activated neural circuit integrates pheromonal information with internal state to elicit both variable innate behaviours and reinforced behaviours that may promote mate encounters and mate selection.


Subject(s)
Pheromones/physiology , Proteins/physiology , Sexual Behavior, Animal/physiology , Animals , Female , Intercellular Signaling Peptides and Proteins , Male , Mice , Olfactory Bulb/physiology , Reinforcement, Psychology
9.
Nature ; 583(7815): 253-258, 2020 07.
Article in English | MEDLINE | ID: mdl-32612230

ABSTRACT

The cortex organizes sensory information to enable discrimination and generalization1-4. As systematic representations of chemical odour space have not yet been described in the olfactory cortex, it remains unclear how odour relationships are encoded to place chemically distinct but similar odours, such as lemon and orange, into perceptual categories, such as citrus5-7. Here, by combining chemoinformatics and multiphoton imaging in the mouse, we show that both the piriform cortex and its sensory inputs from the olfactory bulb represent chemical odour relationships through correlated patterns of activity. However, cortical odour codes differ from those in the bulb: cortex more strongly clusters together representations for related odours, selectively rewrites pairwise odour relationships, and better matches odour perception. The bulb-to-cortex transformation depends on the associative network originating within the piriform cortex, and can be reshaped by passive odour experience. Thus, cortex actively builds a structured representation of chemical odour space that highlights odour relationships; this representation is similar across individuals but remains plastic, suggesting a means through which the olfactory system can assign related odour cues to common and yet personalized percepts.


Subject(s)
Odorants/analysis , Olfactory Cortex/anatomy & histology , Olfactory Cortex/physiology , Olfactory Pathways , Organic Chemicals/analysis , Organic Chemicals/chemistry , Animals , Male , Mice , Olfactory Bulb/cytology , Olfactory Bulb/physiology , Olfactory Cortex/cytology , Olfactory Perception/physiology , Smell
10.
J Neurosci ; 44(33)2024 Aug 14.
Article in English | MEDLINE | ID: mdl-38997160

ABSTRACT

The sense of smell is tightly linked to emotions, a link that is thought to rely on the direct synaptic connections between the olfactory bulb (OB) and nuclei of the amygdala. However, there are multiple pathways projecting olfactory information to the amygdala, and their unique functions are unknown. The pathway via the nucleus of the lateral olfactory tract (NLOT) that receives input from olfactory regions and projects to the basolateral amygdala (BLA) is among them. NLOT has been very little studied, and consequentially its function is unknown. Furthermore, formulation of informed hypotheses about NLOT function is at this stage limited by the lack of knowledge about its connectivity and physiological properties. Here, we used virus-based tracing methods to systematically reveal inputs into NLOT, as well as NLOT projection targets in mice of both sexes. We found that the NLOT is interconnected with several olfactory brain regions and with the BLA. Some of these connections were reciprocal, and some showed unique interhemispheric patterns. We tested the excitable properties of NLOT neurons and the properties of each of the major synaptic inputs. We found that the NLOT receives powerful input from the piriform cortex, tenia tecta, and the BLA but only very weak input from the OB. When input crosses threshold, NLOT neurons respond with calcium-dependent bursts of action potentials. We hypothesize that this integration of olfactory and amygdalar inputs serves behaviors that combine smell and emotion.


Subject(s)
Olfactory Pathways , Synapses , Animals , Mice , Male , Olfactory Pathways/physiology , Female , Synapses/physiology , Mice, Inbred C57BL , Olfactory Bulb/physiology , Basolateral Nuclear Complex/physiology , Neurons/physiology
11.
J Neurosci ; 44(39)2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39187379

ABSTRACT

Recording and analysis of neural activity are often biased toward detecting sparse subsets of highly active neurons, masking important signals carried in low-magnitude and variable responses. To investigate the contribution of seemingly noisy activity to odor encoding, we used mesoscale calcium imaging from mice of both sexes to record odor responses from the dorsal surface of bilateral olfactory bulbs (OBs). The outer layer of the mouse OB is comprised of dendrites organized into discrete "glomeruli," which are defined by odor receptor-specific sensory neuron input. We extracted activity from a large population of glomeruli and used logistic regression to classify odors from individual trials with high accuracy. We then used add-in and dropout analyses to determine subsets of glomeruli necessary and sufficient for odor classification. Classifiers successfully predicted odor identity even after excluding sparse, highly active glomeruli, indicating that odor information is redundantly represented across a large population of glomeruli. Additionally, we found that random forest (RF) feature selection informed by Gini inequality (RF Gini impurity, RFGI) reliably ranked glomeruli by their contribution to overall odor classification. RFGI provided a measure of "feature importance" for each glomerulus that correlated with intuitive features like response magnitude. Finally, in agreement with previous work, we found that odor information persists in glomerular activity after the odor offset. Together, our findings support a model of OB odor coding where sparse activity is sufficient for odor identification, but information is widely, redundantly available across a large population of glomeruli, with each glomerulus representing information about more than one odor.


Subject(s)
Mice, Inbred C57BL , Odorants , Olfactory Bulb , Wakefulness , Animals , Olfactory Bulb/physiology , Mice , Male , Female , Wakefulness/physiology , Smell/physiology , Olfactory Receptor Neurons/physiology
12.
Annu Rev Physiol ; 83: 231-256, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33228453

ABSTRACT

In mammals, odor information detected by olfactory sensory neurons is converted to a topographic map of activated glomeruli in the olfactory bulb. Mitral cells and tufted cells transmit signals sequentially to the olfactory cortex for behavioral outputs. To elicit innate behavioral responses, odor signals are directly transmitted by distinct subsets of mitral cells from particular functional domains in the olfactory bulb to specific amygdala nuclei. As for the learned decisions, input signals are conveyed by tufted cells as well as by mitral cells to the olfactory cortex. Behavioral scene cells link the odor information to the valence cells in the amygdala to elicit memory-based behavioral responses. Olfactory decision and perception take place in relation to the respiratory cycle. How is the sensory quality imposed on the olfactory inputs for behavioral outputs? How are the two types of odor signals, innate and learned, processed during respiration? Here, we review recent progress on the study of neural circuits involved in decision making in the mouse olfactory system.


Subject(s)
Olfactory Bulb/physiology , Olfactory Cortex/physiology , Smell/physiology , Amygdala/physiology , Animals , Humans , Neurons/physiology
13.
Genesis ; 62(2): e23595, 2024 04.
Article in English | MEDLINE | ID: mdl-38553878

ABSTRACT

Adult neurogenesis has fascinated the field of neuroscience for decades given the prospects of harnessing mechanisms that facilitate the rewiring and/or replacement of adult brain tissue. The subgranular zone of the hippocampus and the subventricular zone of the lateral ventricle are the two main areas in the brain that exhibit ongoing neurogenesis. Of these, adult-born neurons within the olfactory bulb have proven to be a powerful model for studying circuit plasticity, providing a broad and accessible avenue into neuron development, migration, and continued circuit integration within adult brain tissue. This review focuses on some of the recognized molecular and signaling mechanisms underlying activity-dependent adult-born neuron development. Notably, olfactory activity and behavioral states contribute to adult-born neuron plasticity through sensory and centrifugal inputs, in which calcium-dependent transcriptional programs, local translation, and neuropeptide signaling play important roles. This review also highlights areas of needed continued investigation to better understand the remarkable phenomenon of adult-born neuron integration.


Subject(s)
Neurons , Olfactory Bulb , Mice , Animals , Olfactory Bulb/physiology , Neurons/physiology , Neurogenesis/physiology , Brain
14.
Genesis ; 62(2): e23597, 2024 04.
Article in English | MEDLINE | ID: mdl-38590121

ABSTRACT

Sensory signals detected by olfactory sensory organs are critical regulators of animal behavior. An accessory olfactory organ, the vomeronasal organ, detects cues from other animals and plays a pivotal role in intra- and inter-species interactions in mice. However, how ethologically relevant cues control mouse behavior through approximately 350 vomeronasal sensory receptor proteins largely remains elusive. The type 2 vomeronasal receptor-A4 (V2R-A4) subfamily members have been repeatedly detected from vomeronasal sensory neurons responsive to predator cues, suggesting a potential role of this receptor subfamily as a sensor for predators. This review focuses on this intriguing subfamily, delving into its receptor functions and genetic characteristics.


Subject(s)
Olfactory Bulb , Vomeronasal Organ , Mice , Animals , Olfactory Bulb/physiology , Sensory Receptor Cells/metabolism , Vomeronasal Organ/metabolism
15.
Genesis ; 62(1): e23586, 2024 02.
Article in English | MEDLINE | ID: mdl-38593162

ABSTRACT

Neural activity influences every aspect of nervous system development. In olfactory systems, sensory neurons expressing the same odorant receptor project their axons to stereotypically positioned glomeruli, forming a spatial map of odorant receptors in the olfactory bulb. As individual odors activate unique combinations of glomeruli, this map forms the basis for encoding olfactory information. The establishment of this stereotypical olfactory map requires coordinated regulation of axon guidance molecules instructed by spontaneous activity. Recent studies show that sensory experiences also modify innervation patterns in the olfactory bulb, especially during a critical period of the olfactory system development. This review examines evidence in the field to suggest potential mechanisms by which various aspects of neural activity regulate axon targeting. We also discuss the precise functions served by neural plasticity during the critical period.


Subject(s)
Olfactory Receptor Neurons , Receptors, Odorant , Animals , Olfactory Receptor Neurons/metabolism , Olfactory Bulb/physiology , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Axons/metabolism , Mammals
16.
J Neurosci ; 43(50): 8700-8722, 2023 12 13.
Article in English | MEDLINE | ID: mdl-37903594

ABSTRACT

Social communication is crucial for the survival of many species. In most vertebrates, a dedicated chemosensory system, the vomeronasal system (VNS), evolved to process ethologically relevant chemosensory cues. The first central processing stage of the VNS is the accessory olfactory bulb (AOB), which sends information to downstream brain regions via AOB mitral cells (AMCs). Recent studies provided important insights about the functional properties of AMCs, but little is known about the principles that govern their coordinated activity. Here, we recorded local field potentials (LFPs) and single-unit activity in the AOB of adult male and female mice during presentation of natural stimuli. Our recordings reveal prominent LFP theta-band oscillatory episodes with a characteristic spatial pattern across the AOB. Throughout an experiment, the AOB network shows varying degrees of similarity to this pattern, in a manner that depends on the sensory stimulus. Analysis of LFP signal polarity and single-unit activity indicates that oscillatory episodes are generated locally within the AOB, likely representing a reciprocal interaction between AMCs and granule cells. Notably, spike times of many AMCs are constrained to the negative LFP oscillation phase in a manner that can drastically affect integration by downstream processing stages. Based on these observations, we propose that LFP oscillations may gate, bind, and organize outgoing signals from individual AOB neurons to downstream processing stages. Our findings suggest that, as in other neuronal systems and brain regions, population-level oscillations play a key role in organizing and enhancing transmission of socially relevant chemosensory information.SIGNIFICANCE STATEMENT The accessory olfactory bulb (AOB) is the first central stage of the vomeronasal system, a chemosensory system dedicated to processing cues from other organisms. Information from the AOB is conveyed to other brain regions via activity of its principal neurons, AOB mitral cells (AMCs). Here, we show that socially relevant sensory stimulation of the mouse vomeronasal system leads not only to changes in AMC activity, but also to distinct theta-band (∼5 Hz) oscillatory episodes in the local field potential. Notably AMCs favor the negative phase of these oscillatory events. Our findings suggest a novel mechanism for the temporal coordination of distributed patterns of neuronal activity, which can serve to efficiently activate downstream processing stages.


Subject(s)
Neurons , Olfactory Bulb , Mice , Male , Female , Animals , Olfactory Bulb/physiology , Neurons/physiology , Cues
17.
J Neurosci ; 43(46): 7799-7811, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37739796

ABSTRACT

Individuals with mutations in a single copy of the SHANK3 gene present with social interaction deficits. Although social behavior in mice depends on olfaction, mice with mutations in a single copy of the Shank3 gene do not have olfactory deficits in simple odor identification tasks (Drapeau et al., 2018). Here, we tested olfaction in mice with mutations in a single copy of the Shank3 gene (Peça et al., 2011) using a complex odor task and imaging in awake mice. Average glomerular responses in the olfactory bulb of Shank3B +/- were correlated with WT mice. However, there was increased trial-to-trial variability in the odor responses for Shank3B +/- mice. Simulations demonstrated that this increased variability could affect odor detection in novel environments. To test whether performance was affected by the increased variability, we tested target odor recognition in the presence of novel background odors using a recently developed task (Li et al., 2023). Head-fixed mice were trained to detect target odors in the presence of known background odors. Performance was tested using catch trials where the known background odors were replaced by novel background odors. We compared the performance of eight Shank3B +/- mice (five males, three females) on this task with six WT mice (three males, three females). Performance for known background odors and learning rates were similar between Shank3B +/- and WT mice. However, when tested with novel background odors, the performance of Shank3B +/- mice dropped to almost chance levels. Thus, haploinsufficiency of the Shank3 gene causes a specific deficit in odor detection in novel environments. Our results are discussed in the context of other Shank3 mouse models and have implications for understanding olfactory function in neurodevelopmental disorders.SIGNIFICANCE STATEMENT People and mice with mutations in a single copy in the synaptic gene Shank3 show features seen in autism spectrum disorders, including social interaction deficits. Although mice social behavior uses olfaction, mice with mutations in a single copy of Shank3 have so far not shown olfactory deficits when tested using simple tasks. Here, we used a recently developed task to show that these mice could identify odors in the presence of known background odors as well as wild-type mice. However, their performance fell below that of wild-type mice when challenged with novel background odors. This deficit was also previously reported in the Cntnap2 mouse model of autism, suggesting that odor detection in novel backgrounds is a general deficit across mouse models of autism.


Subject(s)
Haploinsufficiency , Odorants , Humans , Male , Female , Mice , Animals , Smell/genetics , Social Behavior , Olfactory Bulb/physiology , Microfilament Proteins , Nerve Tissue Proteins/genetics
18.
J Neurosci ; 43(7): 1178-1190, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36623874

ABSTRACT

The accessory olfactory system (AOS) is critical for the development and expression of social behavior. The first dedicated circuit in the AOS, the accessory olfactory bulb (AOB), exhibits cellular and network plasticity in male and female mice after social experience. In the AOB, interneurons called internal granule cells (IGCs) express the plasticity-associated immediate-early gene Arc following intermale aggression or mating. Here, we sought to better understand how Arc-expressing IGCs shape AOB information processing and social behavior in the context of territorial aggression. We used "ArcTRAP" (Arc-CreERT2) transgenic mice to selectively and permanently label Arc-expressing IGCs following male-male resident-intruder interactions. Using whole-cell patch-clamp electrophysiology, we found that Arc-expressing IGCs display increased intrinsic excitability for several days after a single resident-intruder interaction. Further, we found that Arc-expressing IGCs maintain this increased excitability across repeated resident-intruder interactions, during which resident mice increase or "ramp" their aggression. We tested the hypothesis that Arc-expressing IGCs participate in ramping aggression. Using a combination of ArcTRAP mice and chemogenetics (Cre-dependent hM4D(Gi)-mCherry AAV injections), we found that disruption of Arc-expressing IGC activity during repeated resident-intruder interactions abolishes the ramping aggression exhibited by resident male mice. This work shows that Arc-expressing AOB IGC ensembles are activated by specific chemosensory environments, and play an integral role in the establishment and expression of sex-typical social behavior. These studies identify a population of plastic interneurons in an early chemosensory circuit that display physiological features consistent with simple memory formation, increasing our understanding of central chemosensory processing and mammalian social behavior.SIGNIFICANCE STATEMENT The accessory olfactory system plays a vital role in rodent chemosensory social behavior. We studied experience-dependent plasticity in the accessory olfactory bulb and found that internal granule cells expressing the immediate-early gene Arc after the resident-intruder paradigm increase their excitability for several days. We investigated the roles of these Arc-expressing internal granule cells on chemosensory social behavior by chemogenetically manipulating their excitability during repeated social interactions. We found that inhibiting these cells eliminated intermale aggressive ramping behavior. These studies identify a population of plastic interneurons in an early chemosensory circuit that display physiological features consistent with simple memory formation, increasing our understanding of central chemosensory processing and mammalian social behavior.


Subject(s)
Interneurons , Olfactory Bulb , Mice , Male , Female , Animals , Olfactory Bulb/physiology , Interneurons/physiology , Neurons , Social Behavior , Aggression , Mice, Transgenic , Mammals
19.
J Physiol ; 602(14): 3519-3543, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38837412

ABSTRACT

In mammals, odour information within the olfactory bulb (OB) is processed by complex neural circuits before being ultimately represented in the action potential activity of mitral/tufted cells (M/Ts). Cholecystokinin-expressing (CCK+) superficial tufted cells (sTCs) are a subset of tufted cells that potentially contribute to olfactory processing in the OB by orchestrating M/T activity. However, the exact role of CCK+ sTCs in modulating odour processing and olfactory function in vivo is largely unknown. Here, we demonstrate that manipulating CCK+ sTCs can generate perception and induce place avoidance. Optogenetic activation/inactivation of CCK+ sTCs exerted strong but differing effects on spontaneous and odour-evoked M/T firing. Furthermore, inactivation of CCK+ sTCs disrupted M/T odour encoding and impaired olfactory detection and odour discrimination. These results establish the role of CCK+ sTCs in odour representation and olfactory behaviours. KEY POINTS: Mice could perceive the activity of CCK+ sTCs and show place avoidance to CCK+ sTC inactivation. Optical activation of CCK+ sTCs increased the percentage of cells with odour response but reduced the odour-evoked response in M/Ts in awake mice. Optical inactivation of CCK+ sTCs greatly decreased spontaneous firing and odour-evoked response in M/Ts. Inactivation of CCK+ sTCs impairs the odour decoding performance of M/Ts and disrupts odour detection and discrimination behaviours in mice. These results indicate that CCK+ sTCs participate in modulating the odour representation and maintaining normal olfactory-related behaviours.


Subject(s)
Cholecystokinin , Olfactory Bulb , Animals , Female , Male , Mice , Cholecystokinin/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Neurons/physiology , Odorants , Olfactory Bulb/physiology , Olfactory Perception/physiology , Optogenetics , Smell/physiology
20.
J Neurophysiol ; 131(3): 492-508, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38264784

ABSTRACT

Spike timing-based representations of sensory information depend on embedded dynamical frameworks within neuronal networks that establish the rules of local computation and interareal communication. Here, we investigated the dynamical properties of olfactory bulb circuitry in mice of both sexes using microelectrode array recordings from slice and in vivo preparations. Neurochemical activation or optogenetic stimulation of sensory afferents evoked persistent gamma oscillations in the local field potential. These oscillations arose from slower, GABA(A) receptor-independent intracolumnar oscillators coupled by GABA(A)-ergic synapses into a faster, broadly coherent network oscillation. Consistent with the theoretical properties of coupled-oscillator networks, the spatial extent of zero-phase coherence was bounded in slices by the reduced density of lateral interactions. The intact in vivo network, however, exhibited long-range lateral interactions that suffice in simulation to enable zero-phase gamma coherence across the olfactory bulb. The timing of action potentials in a subset of principal neurons was phase-constrained with respect to evoked gamma oscillations. Coupled-oscillator dynamics in olfactory bulb thereby enable a common clock, robust to biological heterogeneities, that is capable of supporting gamma-band spike synchronization and phase coding across the ensemble of activated principal neurons.NEW & NOTEWORTHY Odor stimulation evokes rhythmic gamma oscillations in the field potential of the olfactory bulb, but the dynamical mechanisms governing these oscillations have remained unclear. Establishing these mechanisms is important as they determine the biophysical capacities of the bulbar circuit to, for example, maintain zero-phase coherence across a spatially extended network, or coordinate the timing of action potentials in principal neurons. These properties in turn constrain and suggest hypotheses of sensory coding.


Subject(s)
Neurons , Olfactory Bulb , Female , Male , Mice , Animals , Olfactory Bulb/physiology , Neurons/physiology , Action Potentials/physiology , Synapses/physiology , Odorants
SELECTION OF CITATIONS
SEARCH DETAIL