Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.039
Filter
Add more filters

Publication year range
1.
Cell ; 184(3): 675-688.e19, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33421369

ABSTRACT

CRISPR-Cas systems provide prokaryotes with acquired immunity against viruses and plasmids, but how these systems are regulated to prevent autoimmunity is poorly understood. Here, we show that in the S. pyogenes CRISPR-Cas system, a long-form transactivating CRISPR RNA (tracr-L) folds into a natural single guide that directs Cas9 to transcriptionally repress its own promoter (Pcas). Further, we demonstrate that Pcas serves as a critical regulatory node. De-repression causes a dramatic 3,000-fold increase in immunization rates against viruses; however, heightened immunity comes at the cost of increased autoimmune toxicity. Using bioinformatic analyses, we provide evidence that tracrRNA-mediated autoregulation is widespread in type II-A CRISPR-Cas systems. Collectively, we unveil a new paradigm for the intrinsic regulation of CRISPR-Cas systems by natural single guides, which may facilitate the frequent horizontal transfer of these systems into new hosts that have not yet evolved their own regulatory strategies.


Subject(s)
CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems/genetics , Gene Expression , Homeostasis/genetics , RNA, Guide, Kinetoplastida/genetics , Autoimmunity/genetics , Base Sequence , Conserved Sequence , Down-Regulation/genetics , Models, Genetic , Mutation/genetics , Operon/genetics , Promoter Regions, Genetic/genetics , Streptococcus pyogenes/genetics , Stress, Physiological/genetics , Transcription, Genetic , Transcriptional Activation/genetics
2.
Cell ; 176(6): 1356-1366.e10, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30799038

ABSTRACT

Operons are a hallmark of bacterial genomes, where they allow concerted expression of functionally related genes as single polycistronic transcripts. They are rare in eukaryotes, where each gene usually drives expression of its own independent messenger RNAs. Here, we report the horizontal operon transfer of a siderophore biosynthesis pathway from relatives of Escherichia coli into a group of budding yeast taxa. We further show that the co-linearly arranged secondary metabolism genes are expressed, exhibit eukaryotic transcriptional features, and enable the sequestration and uptake of iron. After transfer, several genetic changes occurred during subsequent evolution, including the gain of new transcription start sites that were sometimes within protein-coding sequences, acquisition of polyadenylation sites, structural rearrangements, and integration of eukaryotic genes into the cluster. We conclude that the genes were likely acquired as a unit, modified for eukaryotic gene expression, and maintained by selection to adapt to the highly competitive, iron-limited environment.


Subject(s)
Eukaryota/genetics , Gene Transfer, Horizontal/genetics , Operon/genetics , Bacteria/genetics , Escherichia coli/genetics , Eukaryotic Cells , Evolution, Molecular , Gene Expression Regulation, Bacterial/genetics , Genes, Bacterial/genetics , Genome, Bacterial/genetics , Genome, Fungal/genetics , Saccharomycetales/genetics , Siderophores/genetics
3.
Nature ; 626(7999): 661-669, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38267581

ABSTRACT

Organisms determine the transcription rates of thousands of genes through a few modes of regulation that recur across the genome1. In bacteria, the relationship between the regulatory architecture of a gene and its expression is well understood for individual model gene circuits2,3. However, a broader perspective of these dynamics at the genome scale is lacking, in part because bacterial transcriptomics has hitherto captured only a static snapshot of expression averaged across millions of cells4. As a result, the full diversity of gene expression dynamics and their relation to regulatory architecture remains unknown. Here we present a novel genome-wide classification of regulatory modes based on the transcriptional response of each gene to its own replication, which we term the transcription-replication interaction profile (TRIP). Analysing single-bacterium RNA-sequencing data, we found that the response to the universal perturbation of chromosomal replication integrates biological regulatory factors with biophysical molecular events on the chromosome to reveal the local regulatory context of a gene. Whereas the TRIPs of many genes conform to a gene dosage-dependent pattern, others diverge in distinct ways, and this is shaped by factors such as intra-operon position and repression state. By revealing the underlying mechanistic drivers of gene expression heterogeneity, this work provides a quantitative, biophysical framework for modelling replication-dependent expression dynamics.


Subject(s)
Bacteria , DNA Replication , Gene Expression Regulation, Bacterial , Genome, Bacterial , Transcription, Genetic , Bacteria/genetics , DNA Replication/genetics , Gene Dosage/genetics , Gene Regulatory Networks , Genome, Bacterial/genetics , Operon/genetics , Sequence Analysis, RNA , Transcription, Genetic/genetics , Chromosomes, Bacterial/genetics
4.
Nature ; 631(8022): 843-849, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39020180

ABSTRACT

Ubiquitination pathways have crucial roles in protein homeostasis, signalling and innate immunity1-3. In these pathways, an enzymatic cascade of E1, E2 and E3 proteins conjugates ubiquitin or a ubiquitin-like protein (Ubl) to target-protein lysine residues4. Bacteria encode ancient relatives of E1 and Ubl proteins involved in sulfur metabolism5,6, but these proteins do not mediate Ubl-target conjugation, leaving open the question of whether bacteria can perform ubiquitination-like protein conjugation. Here we demonstrate that a bacterial operon associated with phage defence islands encodes a complete ubiquitination pathway. Two structures of a bacterial E1-E2-Ubl complex reveal striking architectural parallels with canonical eukaryotic ubiquitination machinery. The bacterial E1 possesses an amino-terminal inactive adenylation domain and a carboxy-terminal active adenylation domain with a mobile α-helical insertion containing the catalytic cysteine (CYS domain). One structure reveals a pre-reaction state with the bacterial Ubl C terminus positioned for adenylation, and a second structure mimics an E1-to-E2 transthioesterification state with the E1 CYS domain adjacent to the bound E2. We show that a deubiquitinase in the same pathway preprocesses the bacterial Ubl, exposing its C-terminal glycine for adenylation. Finally, we show that the bacterial E1 and E2 collaborate to conjugate Ubl to target-protein lysine residues. Together, these data reveal that bacteria possess bona fide ubiquitination systems with strong mechanistic and architectural parallels to canonical eukaryotic ubiquitination pathways, suggesting that these pathways arose first in bacteria.


Subject(s)
Models, Molecular , Ubiquitination , Ubiquitins , Ubiquitins/metabolism , Ubiquitins/chemistry , Deubiquitinating Enzymes/metabolism , Ubiquitin-Activating Enzymes/metabolism , Ubiquitin-Activating Enzymes/chemistry , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/chemistry , Operon/genetics , Protein Domains , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Ubiquitin/metabolism , Bacteriophages/metabolism , Crystallography, X-Ray
5.
Nature ; 608(7924): 803-807, 2022 08.
Article in English | MEDLINE | ID: mdl-35859168

ABSTRACT

Stimulator of interferon genes (STING) is an antiviral signalling protein that is broadly conserved in both innate immunity in animals and phage defence in prokaryotes1-4. Activation of STING requires its assembly into an oligomeric filament structure through binding of a cyclic dinucleotide4-13, but the molecular basis of STING filament assembly and extension remains unknown. Here we use cryogenic electron microscopy to determine the structure of the active Toll/interleukin-1 receptor (TIR)-STING filament complex from a Sphingobacterium faecium cyclic-oligonucleotide-based antiphage signalling system (CBASS) defence operon. Bacterial TIR-STING filament formation is driven by STING interfaces that become exposed on high-affinity recognition of the cognate cyclic dinucleotide signal c-di-GMP. Repeating dimeric STING units stack laterally head-to-head through surface interfaces, which are also essential for human STING tetramer formation and downstream immune signalling in mammals5. The active bacterial TIR-STING structure reveals further cross-filament contacts that brace the assembly and coordinate packing of the associated TIR NADase effector domains at the base of the filament to drive NAD+ hydrolysis. STING interface and cross-filament contacts are essential for cell growth arrest in vivo and reveal a stepwise mechanism of activation whereby STING filament assembly is required for subsequent effector activation. Our results define the structural basis of STING filament formation in prokaryotic antiviral signalling.


Subject(s)
Bacterial Proteins , Cryoelectron Microscopy , Membrane Proteins , Receptors, Interleukin-1 , Sphingobacterium , Toll-Like Receptors , Animals , Antiviral Agents/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Bacterial Proteins/ultrastructure , Bacteriophages/immunology , Dinucleoside Phosphates/metabolism , Humans , Immunity, Innate , Membrane Proteins/chemistry , Membrane Proteins/immunology , Membrane Proteins/metabolism , Membrane Proteins/ultrastructure , Operon/genetics , Receptors, Interleukin-1/chemistry , Receptors, Interleukin-1/immunology , Receptors, Interleukin-1/metabolism , Receptors, Interleukin-1/ultrastructure , Sphingobacterium/chemistry , Sphingobacterium/genetics , Sphingobacterium/ultrastructure , Sphingobacterium/virology , Toll-Like Receptors/chemistry , Toll-Like Receptors/immunology , Toll-Like Receptors/metabolism , Toll-Like Receptors/ultrastructure
6.
PLoS Genet ; 20(3): e1011215, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38512984

ABSTRACT

Enterococci are commensal members of the gastrointestinal tract and also major nosocomial pathogens. They possess both intrinsic and acquired resistance to many antibiotics, including intrinsic resistance to cephalosporins that target bacterial cell wall synthesis. These antimicrobial resistance traits make enterococcal infections challenging to treat. Moreover, prior therapy with antibiotics, including broad-spectrum cephalosporins, promotes enterococcal proliferation in the gut, resulting in dissemination to other sites of the body and subsequent infection. As a result, a better understanding of mechanisms of cephalosporin resistance is needed to enable development of new therapies to treat or prevent enterococcal infections. We previously reported that flow of metabolites through the peptidoglycan biosynthesis pathway is one determinant of enterococcal cephalosporin resistance. One factor that has been implicated in regulating flow of metabolites into cell wall biosynthesis pathways of other Gram-positive bacteria is GlmR. In enterococci, GlmR is encoded as the middle gene of a predicted 3-gene operon along with YvcJ and YvcL, whose functions are poorly understood. Here we use genetics and biochemistry to investigate the function of the enterococcal yvcJ-glmR-yvcL gene cluster. Our results reveal that YvcL is a DNA-binding protein that regulates expression of the yvcJ-glmR-yvcL operon in response to cell wall stress. YvcJ and GlmR bind UDP-GlcNAc and reciprocally regulate cephalosporin resistance in E. faecalis, and binding of UDP-GlcNAc by YvcJ appears essential for its activity. Reciprocal regulation by YvcJ/GlmR is essential for fitness during exposure to cephalosporin stress. Additionally, our results indicate that enterococcal GlmR likely acts by a different mechanism than the previously studied GlmR of Bacillus subtilis, suggesting that the YvcJ/GlmR regulatory module has evolved unique targets in different species of bacteria.


Subject(s)
Cephalosporin Resistance , Cephalosporins , Cephalosporins/pharmacology , Cephalosporins/metabolism , Cephalosporin Resistance/genetics , Anti-Bacterial Agents/pharmacology , Enterococcus faecalis/genetics , Operon/genetics , Uridine Diphosphate/metabolism
7.
PLoS Genet ; 20(6): e1011325, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38861577

ABSTRACT

Bacteria use diverse strategies and molecular machinery to maintain copper homeostasis and to cope with its toxic effects. Some genetic elements providing copper resistance are acquired by horizontal gene transfer; however, little is known about how they are controlled and integrated into the central regulatory network. Here, we studied two copper-responsive systems in a clinical isolate of Pseudomonas paraeruginosa and deciphered the regulatory and cross-regulation mechanisms. To do so, we combined mutagenesis, transcriptional fusion analyses and copper sensitivity phenotypes. Our results showed that the accessory CusRS two-component system (TCS) responds to copper and activates both its own expression and that of the adjacent nine-gene operon (the pcoA2 operon) to provide resistance to elevated levels of extracellular copper. The same locus was also found to be regulated by two core-genome-encoded TCSs-the copper-responsive CopRS and the zinc-responsive CzcRS. Although the target palindromic sequence-ATTCATnnATGTAAT-is the same for the three response regulators, transcriptional outcomes differ. Thus, depending on the operon/regulator pair, binding can result in different activation levels (from none to high), with the systems demonstrating considerable plasticity. Unexpectedly, although the classical CusRS and the noncanonical CopRS TCSs rely on distinct signaling mechanisms (kinase-based vs. phosphatase-based), we discovered cross-talk in the absence of the cognate sensory kinases. This cross-talk occurred between the proteins of these two otherwise independent systems. The cusRS-pcoA2 locus is part of an Integrative and Conjugative Element and was found in other Pseudomonas strains where its expression could provide copper resistance under appropriate conditions. The results presented here illustrate how acquired genetic elements can become part of endogenous regulatory networks, providing a physiological advantage. They also highlight the potential for broader effects of accessory regulatory proteins through interference with core regulatory proteins.


Subject(s)
Bacterial Proteins , Copper , Gene Expression Regulation, Bacterial , Operon , Pseudomonas , Copper/metabolism , Pseudomonas/genetics , Pseudomonas/metabolism , Operon/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Bacterial/genetics , Signal Transduction/genetics
8.
Annu Rev Genet ; 52: 159-183, 2018 11 23.
Article in English | MEDLINE | ID: mdl-30183405

ABSTRACT

In bacteria, more than half of the genes in the genome are organized in operons. In contrast, in eukaryotes, functionally related genes are usually dispersed across the genome. There are, however, numerous examples of functional clusters of nonhomologous genes for metabolic pathways in fungi and plants. Despite superficial similarities with operons (physical clustering, coordinate regulation), these clusters have not usually originated by horizontal gene transfer from bacteria, and (unlike operons) the genes are typically transcribed separately rather than as a single polycistronic message. This clustering phenomenon raises intriguing questions about the origins of clustered metabolic pathways in eukaryotes and the significance of clustering for pathway function. Here we review metabolic gene clusters from fungi and plants, highlight commonalities and differences, and consider how these clusters form and are regulated. We also identify opportunities for future research in the areas of large-scale genomics, synthetic biology, and experimental evolution.


Subject(s)
Fungi/genetics , Metabolic Networks and Pathways/genetics , Multigene Family/genetics , Plants/genetics , Eukaryota/genetics , Eukaryota/metabolism , Fungi/metabolism , Gene Transfer, Horizontal , Genome/genetics , Operon/genetics , Plants/metabolism
9.
PLoS Biol ; 21(7): e3002189, 2023 07.
Article in English | MEDLINE | ID: mdl-37459330

ABSTRACT

Plant-associated bacteria play important regulatory roles in modulating plant hormone auxin levels, affecting the growth and yields of crops. A conserved auxin degradation (iad) operon was recently identified in the Variovorax genomes, which is responsible for root growth inhibition (RGI) reversion, promoting rhizosphere colonization and root growth. However, the molecular mechanism underlying auxin degradation by Variovorax remains unclear. Here, we systematically screened Variovorax iad operon products and identified 2 proteins, IadK2 and IadD, that directly associate with auxin indole-3-acetic acid (IAA). Further biochemical and structural studies revealed that IadK2 is a highly IAA-specific ATP-binding cassette (ABC) transporter solute-binding protein (SBP), likely involved in IAA uptake. IadD interacts with IadE to form a functional Rieske non-heme dioxygenase, which works in concert with a FMN-type reductase encoded by gene iadC to transform IAA into the biologically inactive 2-oxindole-3-acetic acid (oxIAA), representing a new bacterial pathway for IAA inactivation/degradation. Importantly, incorporation of a minimum set of iadC/D/E genes could enable IAA transformation by Escherichia coli, suggesting a promising strategy for repurposing the iad operon for IAA regulation. Together, our study identifies the key components and underlying mechanisms involved in IAA transformation by Variovorax and brings new insights into the bacterial turnover of plant hormones, which would provide the basis for potential applications in rhizosphere optimization and ecological agriculture.


Subject(s)
Indoleacetic Acids , Rhizosphere , Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Plants/metabolism , Bacteria/metabolism , Operon/genetics
10.
Nature ; 587(7832): 103-108, 2020 11.
Article in English | MEDLINE | ID: mdl-32999461

ABSTRACT

Plants grow within a complex web of species that interact with each other and with the plant1-10. These interactions are governed by a wide repertoire of chemical signals, and the resulting chemical landscape of the rhizosphere can strongly affect root health and development7-9,11-18. Here, to understand how interactions between microorganisms influence root growth in Arabidopsis, we established a model system for interactions between plants, microorganisms and the environment. We inoculated seedlings with a 185-member bacterial synthetic community, manipulated the abiotic environment and measured bacterial colonization of the plant. This enabled us to classify the synthetic community into four modules of co-occurring strains. We deconstructed the synthetic community on the basis of these modules, and identified interactions between microorganisms that determine root phenotype. These interactions primarily involve a single bacterial genus (Variovorax), which completely reverses the severe inhibition of root growth that is induced by a wide diversity of bacterial strains as well as by the entire 185-member community. We demonstrate that Variovorax manipulates plant hormone levels to balance the effects of our ecologically realistic synthetic root community on root growth. We identify an auxin-degradation operon that is conserved in all available genomes of Variovorax and is necessary and sufficient for the reversion of root growth inhibition. Therefore, metabolic signal interference shapes bacteria-plant communication networks and is essential for maintaining the stereotypic developmental programme of the root. Optimizing the feedbacks that shape chemical interaction networks in the rhizosphere provides a promising ecological strategy for developing more resilient and productive crops.


Subject(s)
Arabidopsis/microbiology , Comamonadaceae/classification , Comamonadaceae/physiology , Microbiota/physiology , Plant Roots/growth & development , Plant Roots/microbiology , Arabidopsis/genetics , Arabidopsis/growth & development , Comamonadaceae/genetics , Ethylenes/metabolism , Indoleacetic Acids/metabolism , Microbiota/genetics , Operon/genetics , Plant Growth Regulators/metabolism , Plant Roots/genetics , Rhizosphere , Signal Transduction
11.
Nature ; 582(7813): 566-570, 2020 06.
Article in English | MEDLINE | ID: mdl-32555455

ABSTRACT

The gut microbiota synthesize hundreds of molecules, many of which influence host physiology. Among the most abundant metabolites are the secondary bile acids deoxycholic acid (DCA) and lithocholic acid (LCA), which accumulate at concentrations of around 500 µM and are known to block the growth of Clostridium difficile1, promote hepatocellular carcinoma2 and modulate host metabolism via the G-protein-coupled receptor TGR5 (ref. 3). More broadly, DCA, LCA and their derivatives are major components of the recirculating pool of bile acids4; the size and composition of this pool are a target of therapies for primary biliary cholangitis and nonalcoholic steatohepatitis. Nonetheless, despite the clear impact of DCA and LCA on host physiology, an incomplete knowledge of their biosynthetic genes and a lack of genetic tools to enable modification of their native microbial producers limit our ability to modulate secondary bile acid levels in the host. Here we complete the pathway to DCA and LCA by assigning and characterizing enzymes for each of the steps in its reductive arm, revealing a strategy in which the A-B rings of the steroid core are transiently converted into an electron acceptor for two reductive steps carried out by Fe-S flavoenzymes. Using anaerobic in vitro reconstitution, we establish that a set of six enzymes is necessary and sufficient for the eight-step conversion of cholic acid to DCA. We then engineer the pathway into Clostridium sporogenes, conferring production of DCA and LCA on a nonproducing commensal and demonstrating that a microbiome-derived pathway can be expressed and controlled heterologously. These data establish a complete pathway to two central components of the bile acid pool.


Subject(s)
Bile Acids and Salts/chemistry , Bile Acids and Salts/metabolism , Gastrointestinal Microbiome/genetics , Gastrointestinal Microbiome/physiology , Hydroxylation/genetics , Metabolic Networks and Pathways/genetics , Animals , Clostridium/enzymology , Clostridium/genetics , Clostridium/metabolism , Deoxycholic Acid/chemistry , Deoxycholic Acid/metabolism , Lithocholic Acid/chemistry , Lithocholic Acid/metabolism , Male , Metabolic Engineering , Mice , Operon/genetics , Symbiosis
12.
Nucleic Acids Res ; 52(12): 7305-7320, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38842936

ABSTRACT

The SorC family of transcriptional regulators plays a crucial role in controlling the carbohydrate metabolism and quorum sensing. We employed an integrative approach combining X-ray crystallography and cryo-electron microscopy to investigate architecture and functional mechanism of two prototypical representatives of two sub-classes of the SorC family: DeoR and CggR from Bacillus subtilis. Despite possessing distinct DNA-binding domains, both proteins form similar tetrameric assemblies when bound to their respective DNA operators. Structural analysis elucidates the process by which the CggR-regulated gapA operon is derepressed through the action of two effectors: fructose-1,6-bisphosphate and newly confirmed dihydroxyacetone phosphate. Our findings provide the first comprehensive understanding of the DNA binding mechanism of the SorC-family proteins, shedding new light on their functional characteristics.


Subject(s)
Bacillus subtilis , Bacterial Proteins , Cryoelectron Microscopy , Models, Molecular , Repressor Proteins , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Crystallography, X-Ray , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Repressor Proteins/genetics , Protein Binding , Protein Multimerization , DNA/chemistry , DNA/metabolism , Binding Sites , Gene Expression Regulation, Bacterial , DNA, Bacterial/metabolism , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Operon/genetics , Fructosediphosphates
13.
PLoS Genet ; 19(9): e1010946, 2023 09.
Article in English | MEDLINE | ID: mdl-37699047

ABSTRACT

Streptococcus pneumoniae (the pneumococcus) is well known for its ability to develop competence for natural DNA transformation. Competence development is regulated by an autocatalytic loop driven by variations in the basal level of transcription of the comCDE and comAB operons. These genes are part of the early gene regulon that controls expression of the late competence genes known to encode the apparatus of transformation. Several stressful conditions are known to promote competence development, although the induction pathways are remain poorly understood. Here we demonstrate that transient temperature elevation induces an immediate increase in the basal expression level of the comCDE operon and early genes that, in turn, stimulates its full induction, including that of the late competence regulon. This thermal regulation depends on the HtrA chaperone/protease and its proteolytic activity. We find that other competence induction stimulus, like norfloxacin, is not conveyed by the HtrA-dependent pathway. This finding strongly suggests that competence can be induced by at least two independent pathways and thus reinforces the view that competence is a general stress response system in the pneumococcus.


Subject(s)
Operon , Streptococcus pneumoniae , Streptococcus pneumoniae/genetics , Temperature , Proteolysis , Operon/genetics , Endopeptidases
14.
Proc Natl Acad Sci U S A ; 120(33): e2305393120, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37556498

ABSTRACT

Toxin-antitoxin (TA) systems are a large group of small genetic modules found in prokaryotes and their mobile genetic elements. Type II TAs are encoded as bicistronic (two-gene) operons that encode two proteins: a toxin and a neutralizing antitoxin. Using our tool NetFlax (standing for Network-FlaGs for toxins and antitoxins), we have performed a large-scale bioinformatic analysis of proteinaceous TAs, revealing interconnected clusters constituting a core network of TA-like gene pairs. To understand the structural basis of toxin neutralization by antitoxins, we have predicted the structures of 3,419 complexes with AlphaFold2. Together with mutagenesis and functional assays, our structural predictions provide insights into the neutralizing mechanism of the hyperpromiscuous Panacea antitoxin domain. In antitoxins composed of standalone Panacea, the domain mediates direct toxin neutralization, while in multidomain antitoxins the neutralization is mediated by other domains, such as PAD1, Phd-C, and ZFD. We hypothesize that Panacea acts as a sensor that regulates TA activation. We have experimentally validated 16 NetFlax TA systems and used domain annotations and metabolic labeling assays to predict their potential mechanisms of toxicity (such as membrane disruption, and inhibition of cell division or protein synthesis) as well as biological functions (such as antiphage defense). We have validated the antiphage activity of a RosmerTA system encoded by Gordonia phage Kita, and used fluorescence microscopy to confirm its predicted membrane-depolarizing activity. The interactive version of the NetFlax TA network that includes structural predictions can be accessed at http://netflax.webflags.se/.


Subject(s)
Antitoxins , Bacterial Toxins , Antitoxins/genetics , Bacterial Toxins/metabolism , Prokaryotic Cells/metabolism , Operon/genetics , Computational Biology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
15.
Proc Natl Acad Sci U S A ; 120(30): e2301402120, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37459525

ABSTRACT

DNA transcription initiates after an RNA polymerase (RNAP) molecule binds to the promoter of a gene. In bacteria, the canonical picture is that RNAP comes from the cytoplasmic pool of freely diffusing RNAP molecules. Recent experiments suggest the possible existence of a separate pool of polymerases, competent for initiation, which freely slide on the DNA after having terminated one round of transcription. Promoter-dependent transcription reinitiation from this pool of posttermination RNAP may lead to coupled initiation at nearby operons, but it is unclear whether this can occur over the distance and timescales needed for it to function widely on a bacterial genome in vivo. Here, we mathematically model the hypothesized reinitiation mechanism as a diffusion-to-capture process and compute the distances over which significant interoperon coupling can occur and the time required. These quantities depend on molecular association and dissociation rate constants between DNA, RNAP, and the transcription initiation factor σ70; we measure these rate constants using single-molecule experiments in vitro. Our combined theory/experimental results demonstrate that efficient coupling can occur at physiologically relevant σ70 concentrations and on timescales appropriate for transcript synthesis. Coupling is efficient over terminator-promoter distances up to ∼1,000 bp, which includes the majority of terminator-promoter nearest neighbor pairs in the Escherichia coli genome. The results suggest a generalized mechanism that couples the transcription of nearby operons and breaks the paradigm that each binding of RNAP to DNA can produce at most one messenger RNA.


Subject(s)
DNA-Directed RNA Polymerases , DNA , DNA-Directed RNA Polymerases/metabolism , DNA/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Promoter Regions, Genetic , Operon/genetics , Transcription, Genetic , Sigma Factor/genetics , DNA, Bacterial/metabolism
16.
Mol Microbiol ; 121(5): 984-1001, 2024 05.
Article in English | MEDLINE | ID: mdl-38494741

ABSTRACT

YbeX of Escherichia coli, a member of the CorC protein family, is encoded in the same operon with ribosome-associated proteins YbeY and YbeZ. Here, we report the involvement of YbeX in ribosomal metabolism. The ΔybeX cells accumulate distinct 16S rRNA degradation intermediates in the 30S particles and the 70S ribosomes. E. coli lacking ybeX has a lengthened lag phase upon outgrowth from the stationary phase. This growth phenotype is heterogeneous at the individual cell level and especially prominent under low extracellular magnesium levels. The ΔybeX strain is sensitive to elevated growth temperatures and to several ribosome-targeting antibiotics that have in common the ability to induce the cold shock response in E. coli. Although generally milder, the phenotypes of the ΔybeX mutant overlap with those caused by ybeY deletion. A genetic screen revealed partial compensation of the ΔybeX growth phenotype by the overexpression of YbeY. These findings indicate an interconnectedness among the ybeZYX operon genes, highlighting their roles in ribosomal assembly and/or degradation.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Operon , RNA, Ribosomal, 16S , Ribosomal Proteins , Ribosomes , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli/growth & development , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , RNA, Ribosomal, 16S/genetics , Ribosomes/metabolism , Operon/genetics , Ribosomal Proteins/metabolism , Ribosomal Proteins/genetics , Gene Expression Regulation, Bacterial , Anti-Bacterial Agents/pharmacology
17.
Mol Microbiol ; 122(1): 11-28, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38770591

ABSTRACT

The rpoN operon, an important regulatory hub in Enterobacteriaceae, includes rpoN encoding sigma factor σ54, hpf involved in ribosome hibernation, rapZ regulating glucosamine-6-phosphate levels, and two genes encoding proteins of the nitrogen-related phosphotransferase system. Little is known about regulatory mechanisms controlling the abundance of these proteins. This study employs transposon mutagenesis and chemical screens to dissect the complex expression of the rpoN operon. We find that envelope stress conditions trigger read-through transcription into the rpoN operon from a promoter located upstream of the preceding lptA-lptB locus. This promoter is controlled by the envelope stress sigma factor E and response regulator PhoP is required for its full response to a subset of stress signals. σE also stimulates ptsN-rapZ-npr expression using an element downstream of rpoN, presumably by interfering with mRNA processing by RNase E. Additionally, we identify a novel promoter in the 3' end of rpoN that directs transcription of the distal genes in response to ethanol. Finally, we show that translation of hpf and ptsN is individually regulated by the RNA chaperone Hfq, perhaps involving small RNAs. Collectively, our work demonstrates that the rpoN operon is subject to complex regulation, integrating signals related to envelope stress and carbon source quality.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Gene Expression Regulation, Bacterial , Operon , Promoter Regions, Genetic , Sigma Factor , Operon/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Sigma Factor/metabolism , Sigma Factor/genetics , Stress, Physiological/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Transcription, Genetic , Endoribonucleases
18.
Mol Microbiol ; 121(6): 1217-1227, 2024 06.
Article in English | MEDLINE | ID: mdl-38725184

ABSTRACT

The hmuR operon encodes proteins for the uptake and utilization of heme as a nutritional iron source in Bradyrhizobium japonicum. The hmuR operon is transcriptionally activated by the Irr protein and is also positively controlled by HmuP by an unknown mechanism. An hmuP mutant does not express the hmuR operon genes nor does it grow on heme. Here, we show that hmuR expression from a heterologous promoter still requires hmuP, suggesting that HmuP does not regulate at the transcriptional level. Replacement of the 5' untranslated region (5'UTR) of an HmuP-independent gene with the hmuR 5'UTR conferred HmuP-dependent expression on that gene. Recombinant HmuP bound an HmuP-responsive RNA element (HPRE) within the hmuR 5'UTR. A 2 nt substitution predicted to destabilize the secondary structure of the HPRE abolished both HmuP binding activity in vitro and hmuR expression in cells. However, deletion of the HPRE partially restored hmuR expression in an hmuP mutant, and it rescued growth of the hmuP mutant on heme. These findings suggest that the HPRE is a negative regulatory RNA element that is suppressed when bound by HmuP to express the hmuR operon.


Subject(s)
5' Untranslated Regions , Bacterial Proteins , Bradyrhizobium , Gene Expression Regulation, Bacterial , Operon , RNA-Binding Proteins , Bradyrhizobium/genetics , Bradyrhizobium/metabolism , Operon/genetics , 5' Untranslated Regions/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Heme/metabolism , Promoter Regions, Genetic , RNA, Bacterial/metabolism , RNA, Bacterial/genetics , Protein Binding
19.
Mol Microbiol ; 121(5): 1002-1020, 2024 05.
Article in English | MEDLINE | ID: mdl-38525557

ABSTRACT

Upon starvation, rod-shaped Myxococcus xanthus bacteria form mounds and then differentiate into round, stress-resistant spores. Little is known about the regulation of late-acting operons important for spore formation. C-signaling has been proposed to activate FruA, which binds DNA cooperatively with MrpC to stimulate transcription of developmental genes. We report that this model can explain regulation of the fadIJ operon involved in spore metabolism, but not that of the spore coat biogenesis operons exoA-I, exoL-P, and nfsA-H. Rather, a mutation in fruA increased the transcript levels from these operons early in development, suggesting negative regulation by FruA, and a mutation in mrpC affected transcript levels from each operon differently. FruA bound to all four promoter regions in vitro, but strikingly each promoter region was unique in terms of whether or not MrpC and/or the DNA-binding domain of Nla6 bound, and in terms of cooperative binding. Furthermore, the DevI component of a CRISPR-Cas system is a negative regulator of all four operons, based on transcript measurements. Our results demonstrate complex regulation of sporulation genes by three transcription factors and a CRISPR-Cas component, which we propose produces spores suited to withstand starvation and environmental insults.


Subject(s)
Bacterial Proteins , CRISPR-Cas Systems , Gene Expression Regulation, Bacterial , Myxococcus xanthus , Operon , Promoter Regions, Genetic , Spores, Bacterial , Transcription Factors , Myxococcus xanthus/genetics , Myxococcus xanthus/metabolism , Myxococcus xanthus/growth & development , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Operon/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Spores, Bacterial/genetics , Spores, Bacterial/metabolism , Spores, Bacterial/growth & development , Promoter Regions, Genetic/genetics , Mutation , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics
20.
Mol Microbiol ; 121(6): 1182-1199, 2024 06.
Article in English | MEDLINE | ID: mdl-38690761

ABSTRACT

The dipeptide D-Ala-D-Ala is an essential component of peptidoglycan and the target of vancomycin. Most Clostridioides difficile strains possess the vanG operon responsible for the synthesis of D-Ala-D-Ser, which can replace D-Ala-D-Ala in peptidoglycan. The C. difficile vanG operon is regulated by a two-component system, VanRS, but is not induced sufficiently by vancomycin to confer resistance to this antibiotic. Surprisingly, in the absence of the VanS histidine kinase (HK), the vanG operon is still induced by vancomycin and also by another antibiotic, ramoplanin, in a VanR-dependent manner. This suggested the cross-regulation of VanR by another HK or kinases that are activated in the presence of certain lipid II-targeting antibiotics. We identified these HKs as CD35990 and CD22880. However, mutations in either or both HKs did not affect the regulation of the vanG operon in wild-type cells suggesting that intact VanS prevents the cross-activation of VanR by non-cognate HKs. Overproduction of VanR in the absence of VanS, CD35990, and CD22880 led to high expression of the vanG operon indicating that VanR can potentially utilize at least one more phosphate donor for its activation. Candidate targets of CD35990- and CD22880-mediated regulation in the presence of vancomycin or ramoplanin were identified by RNA-Seq.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Clostridioides difficile , Gene Expression Regulation, Bacterial , Histidine Kinase , Operon , Vancomycin Resistance , Vancomycin , Operon/genetics , Clostridioides difficile/genetics , Clostridioides difficile/drug effects , Clostridioides difficile/metabolism , Histidine Kinase/metabolism , Histidine Kinase/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Vancomycin/pharmacology , Vancomycin Resistance/genetics , Anti-Bacterial Agents/pharmacology , Depsipeptides/pharmacology , Transcription Factors
SELECTION OF CITATIONS
SEARCH DETAIL