Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.623
Filter
Add more filters

Publication year range
1.
Am J Hum Genet ; 111(3): 594-613, 2024 03 07.
Article in English | MEDLINE | ID: mdl-38423010

ABSTRACT

The endosomal sorting complex required for transport (ESCRT) machinery is essential for membrane remodeling and autophagy and it comprises three multi-subunit complexes (ESCRT I-III). We report nine individuals from six families presenting with a spectrum of neurodevelopmental/neurodegenerative features caused by bi-allelic variants in SNF8 (GenBank: NM_007241.4), encoding the ESCRT-II subunit SNF8. The phenotypic spectrum included four individuals with severe developmental and epileptic encephalopathy, massive reduction of white matter, hypo-/aplasia of the corpus callosum, neurodevelopmental arrest, and early death. A second cohort shows a milder phenotype with intellectual disability, childhood-onset optic atrophy, or ataxia. All mildly affected individuals shared the same hypomorphic variant, c.304G>A (p.Val102Ile). In patient-derived fibroblasts, bi-allelic SNF8 variants cause loss of ESCRT-II subunits. Snf8 loss of function in zebrafish results in global developmental delay and altered embryo morphology, impaired optic nerve development, and reduced forebrain size. In vivo experiments corroborated the pathogenicity of the tested SNF8 variants and their variable impact on embryo development, validating the observed clinical heterogeneity. Taken together, we conclude that loss of ESCRT-II due to bi-allelic SNF8 variants is associated with a spectrum of neurodevelopmental/neurodegenerative phenotypes mediated likely via impairment of the autophagic flux.


Subject(s)
Epilepsy, Generalized , Optic Atrophy , Animals , Humans , Child , Zebrafish/genetics , Optic Atrophy/genetics , Phenotype , Endosomal Sorting Complexes Required for Transport/genetics
2.
FASEB J ; 38(10): e23651, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38752537

ABSTRACT

Singleton-Merten syndrome (SMS) is a rare immunogenetic disorder affecting multiple systems, characterized by dental dysplasia, aortic calcification, glaucoma, skeletal abnormalities, and psoriasis. Glaucoma, a key feature of both classical and atypical SMS, remains poorly understood in terms of its molecular mechanism caused by DDX58 mutation. This study presented a novel DDX58 variant (c.1649A>C [p.Asp550Ala]) in a family with childhood glaucoma. Functional analysis showed that DDX58 variant caused an increase in IFN-stimulated gene expression and high IFN-ß-based type-I IFN. As the trabecular meshwork (TM) is responsible for controlling intraocular pressure (IOP), we examine the effect of IFN-ß on TM cells. Our study is the first to demonstrate that IFN-ß significantly reduced TM cell viability and function by activating autophagy. In addition, anterior chamber injection of IFN-ß remarkably increased IOP level in mice, which can be attenuated by treatments with autophagy inhibitor chloroquine. To uncover the specific mechanism underlying IFN-ß-induced autophagy in TM cells, we performed microarray analysis in IFN-ß-treated and DDX58 p.Asp550Ala TM cells. It showed that RSAD2 is necessary for IFN-ß-induced autophagy. Knockdown of RSAD2 by siRNA significantly decreased autophagy flux induced by IFN-ß. Our findings suggest that DDX58 mutation leads to the overproduction of IFN-ß, which elevates IOP by modulating autophagy through RSAD2 in TM cells.


Subject(s)
Autophagy , DEAD Box Protein 58 , Glaucoma , Intraocular Pressure , Trabecular Meshwork , Animals , Female , Humans , Male , Mice , Aortic Diseases , Autophagy/drug effects , DEAD Box Protein 58/metabolism , DEAD Box Protein 58/genetics , Dental Enamel Hypoplasia , Glaucoma/pathology , Glaucoma/metabolism , Glaucoma/genetics , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/pathology , Hearing Loss, Sensorineural/metabolism , Interferon-beta/metabolism , Intraocular Pressure/genetics , Metacarpus/abnormalities , Mice, Inbred C57BL , Muscular Diseases , Mutation , Odontodysplasia , Optic Atrophy/genetics , Optic Atrophy/metabolism , Optic Atrophy/pathology , Osteoporosis , Pedigree , Receptors, Immunologic , Trabecular Meshwork/metabolism , Trabecular Meshwork/drug effects , Vascular Calcification
3.
Brain ; 147(3): 1043-1056, 2024 03 01.
Article in English | MEDLINE | ID: mdl-37804316

ABSTRACT

AFG3L2 is a mitochondrial protease exerting protein quality control in the inner mitochondrial membrane. Heterozygous AFG3L2 mutations cause spinocerebellar ataxia type 28 (SCA28) or dominant optic atrophy type 12 (DOA12), while biallelic AFG3L2 mutations result in the rare and severe spastic ataxia type 5 (SPAX5). The clinical spectrum of SPAX5 includes childhood-onset cerebellar ataxia, spasticity, dystonia and myoclonic epilepsy. We previously reported that the absence or mutation of AFG3L2 leads to the accumulation of mitochondria-encoded proteins, causing the overactivation of the stress-sensitive protease OMA1, which over-processes OPA1, leading to mitochondrial fragmentation. Recently, OMA1 has been identified as the pivotal player communicating mitochondrial stress to the cytosol via a pathway involving the inner mitochondrial membrane protein DELE1 and the cytosolic kinase HRI, thus eliciting the integrated stress response. In general, the integrated stress response reduces global protein synthesis and drives the expression of cytoprotective genes that allow cells to endure proteotoxic stress. However, the relevance of the OMA1-DELE1-HRI axis in vivo, and especially in a human CNS disease context, has been poorly documented thus far. In this work, we demonstrated that mitochondrial proteotoxicity in the absence/mutation of AFG3L2 activates the OMA1-DELE1-HRI pathway eliciting the integrated stress response. We found enhanced OMA1-dependent processing of DELE1 upon depletion of AFG3L2. Also, in both skin fibroblasts from SPAX5 patients (including a novel case) and in the cerebellum of Afg3l2-/- mice we detected increased phosphorylation of the α-subunit of the eukaryotic translation initiation factor 2 (eIF2α), increased levels of ATF4 and strong upregulation of its downstream targets (Chop, Chac1, Ppp1r15a and Ffg21). Silencing of DELE1 or HRI in SPAX5 fibroblasts (where OMA1 is overactivated at basal state) reduces eIF2α phosphorylation and affects cell growth. In agreement, pharmacological potentiation of integrated stress response via Sephin-1, a drug that selectively inhibits the stress-induced eIF2alpha phosphatase GADD34 (encoded by Ppp1r15a), improved cell growth of SPAX5 fibroblasts and cell survival and dendritic arborization ex vivo in primary Afg3l2-/- Purkinje neurons. Notably, Sephin-1 treatment in vivo extended the lifespan of Afg3l2-/- mice, improved Purkinje neuron morphology, mitochondrial ultrastructure and respiratory capacity. These data indicate that activation of the OMA1-DELE1-HRI pathway is protective in the context of SPAX5. Pharmacological tuning of the integrated stress response may represent a future therapeutic strategy for SPAX5 and other cerebellar ataxias caused by impaired mitochondrial proteostasis.


Subject(s)
Intellectual Disability , Optic Atrophy , Spinocerebellar Ataxias , Humans , Animals , Mice , Child , Spinocerebellar Ataxias/genetics , Muscle Spasticity , Peptide Hydrolases , ATPases Associated with Diverse Cellular Activities/genetics , ATP-Dependent Proteases/genetics , Mitochondrial Proteins , Metalloproteases
4.
Neurobiol Dis ; 193: 106455, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38408685

ABSTRACT

White matter (WM) tract formation and axonal pathfinding are major processes in brain development allowing to establish precise connections between targeted structures. Disruptions in axon pathfinding and connectivity impairments will lead to neural circuitry abnormalities, often associated with various neurodevelopmental disorders (NDDs). Among several neuroimaging methodologies, Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging (MRI) technique that has the advantage of visualizing in 3D the WM tractography of the whole brain non-invasively. DTI is particularly valuable in unpinning structural tract connectivity defects of neural networks in NDDs. In this study, we used 3D DTI to unveil brain-specific tract defects in two mouse models lacking the Nr2f1 gene, which mutations in patients have been proven to cause an emerging NDD, called Bosch-Boonstra-Schaaf Optic Atrophy (BBSOAS). We aimed to investigate the impact of the lack of cortical Nr2f1 function on WM morphometry and tract microstructure quantifications. We found in both mutant mice partial loss of fibers and severe misrouting of the two major cortical commissural tracts, the corpus callosum, and the anterior commissure, as well as the two major hippocampal efferent tracts, the post-commissural fornix, and the ventral hippocampal commissure. DTI tract malformations were supported by 2D histology, 3D fluorescent imaging, and behavioral analyses. We propose that these interhemispheric connectivity impairments are consistent in explaining some cognitive defects described in BBSOAS patients, particularly altered information processing between the two brain hemispheres. Finally, our results highlight 3DDTI as a relevant neuroimaging modality that can provide appropriate morphometric biomarkers for further diagnosis of BBSOAS patients.


Subject(s)
Optic Atrophy , White Matter , Humans , Mice , Animals , Diffusion Tensor Imaging , White Matter/diagnostic imaging , White Matter/pathology , Brain , Magnetic Resonance Imaging , Optic Atrophy/pathology
5.
Hum Mol Genet ; 31(16): 2711-2727, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35325133

ABSTRACT

Wolfram syndrome (WS) is a rare genetic disease characterized by diabetes, optic atrophy and deafness. Patients die at 35 years of age, mainly from respiratory failure or dysphagia. Unfortunately, there is no treatment to block the progression of symptoms and there is an urgent need for adequate research models. Here, we report on the phenotypical characterization of two loss-of-function zebrafish mutant lines: wfs1aC825X and wfs1bW493X. We observed that wfs1a deficiency altered the size of the ear and the retina of the fish. We also documented a decrease in the expression level of unfolded protein response (UPR) genes in basal condition and in stress condition, i.e. after tunicamycin treatment. Interestingly, both mutants lead to a decrease in their visual function measured behaviorally. These deficits were associated with a decrease in the expression level of UPR genes in basal and stress conditions. Interestingly, basal, ATP-linked and maximal mitochondrial respirations were transiently decreased in the wfs1b mutant. Taken together, these zebrafish lines highlight the critical role of wfs1a and wfs1b in UPR, mitochondrial function and visual physiology. These models will be useful tools to better understand the cellular function of Wfs1 and to develop novel therapeutic approaches for WS.


Subject(s)
Optic Atrophy , Wolfram Syndrome , Animals , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mutation , Optic Atrophy/genetics , Phenotype , Wolfram Syndrome/genetics , Wolfram Syndrome/metabolism , Zebrafish/genetics , Zebrafish/metabolism
6.
Mamm Genome ; 35(1): 1-12, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38351344

ABSTRACT

Wolfram syndrome (OMIM 222300) is a rare autosomal recessive disease with a devastating array of symptoms, including diabetes mellitus, optic nerve atrophy, diabetes insipidus, hearing loss, and neurological dysfunction. The discovery of the causative gene, WFS1, has propelled research on this disease. However, a comprehensive understanding of the function of WFS1 remains unknown, making the development of effective treatment a pressing challenge. To bridge these knowledge gaps, disease models for Wolfram syndrome are indispensable, and understanding the characteristics of each model is critical. This review will provide a summary of the current knowledge regarding WFS1 function and offer a comprehensive overview of established disease models for Wolfram syndrome, covering animal models such as mice, rats, flies, and zebrafish, along with induced pluripotent stem cell (iPSC)-derived human cellular models. These models replicate key aspects of Wolfram syndrome, contributing to a deeper understanding of its pathogenesis and providing a platform for discovering potential therapeutic approaches.


Subject(s)
Optic Atrophy , Wolfram Syndrome , Humans , Rats , Mice , Animals , Wolfram Syndrome/genetics , Wolfram Syndrome/therapy , Wolfram Syndrome/diagnosis , Zebrafish , Optic Atrophy/diagnosis , Optic Atrophy/genetics , Mutation , Calmodulin-Binding Proteins/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism
7.
Ophthalmology ; 131(3): 341-348, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37742723

ABSTRACT

PURPOSE: To determine the sensitivity, specificity, and cutoff of macular ganglion cell layer (GCL) volume consistent with optic atrophy in children with syndromic craniosynostosis and to investigate factors independently associated with reduction in GCL volume. DESIGN: Retrospective cross-sectional study. PARTICIPANTS: Patients with syndromic craniosynostosis evaluated at Boston Children's Hospital (2010-2022) with reliable macular OCT scans. METHODS: The latest ophthalmic examination that included OCT macula scans was identified. Age at examination, sex, ethnicity, best-corrected logarithm of the minimum angle of resolution (logMAR) visual acuity, cycloplegic refraction, and funduscopic optic nerve appearance were recorded in addition to history of primary or recurrent elevation in intracranial pressure (ICP), Chiari malformation, and obstructive sleep apnea (OSA). Spectral-domain OCT software quantified segmentation of macula retinal layers and was checked manually. MAIN OUTCOME MEASURES: The primary outcome was determining sensitivity, specificity, and optimal cutoff of GCL volume consistent with optic atrophy. The secondary outcome was determining whether previously elevated ICP, OSA, Chiari malformation, craniosynostosis diagnosis, logMAR visual acuity, age, or sex were independently associated with lower GCL volume. RESULTS: Median age at examination was 11.9 years (interquartile range, 8.5-14.8 years). Fifty-eight of 61 patients (112 eyes) had reliable macula scans, 74% were female, and syndromes represented were Apert (n = 14), Crouzon (n = 17), Muenke (n = 6), Pfeiffer (n = 6), and Saethre-Chotzen (n = 15). Optimal cutoff identifying optic atrophy was a GCL volume < 1.02 mm3 with a sensitivity of 83% and specificity of 77%. Univariate analysis demonstrated that significantly lower macular GCL volume was associated with optic atrophy on fundus examination (P < 0.001), Apert syndrome (P < 0.001), history of elevated ICP (P = 0.015), Chiari malformation (P = 0.001), OSA (P < 0.001), male sex (P = 0.027), and worse logMAR visual acuity (P < 0.001). Multivariable median regression analysis confirmed that only OSA (P = 0.005), optic atrophy on fundus examination (P = 0.003), and worse logMAR visual acuity (P = 0.042) were independently associated with lower GCL volume. CONCLUSIONS: Surveillance for optic atrophy by GCL volume may be useful in a population where cognitive skills can limit acquisition of other key ophthalmic measures. It is noteworthy that OSA is also associated with lower GLC volume in this population. FINANCIAL DISCLOSURE(S): The author(s) have no proprietary or commercial interest in any materials discussed in this article.


Subject(s)
Craniosynostoses , Intracranial Hypertension , Optic Atrophy , Sleep Apnea, Obstructive , Child , Humans , Male , Female , Adolescent , Retinal Ganglion Cells , Cross-Sectional Studies , Retrospective Studies , Optic Atrophy/diagnosis , Tomography, Optical Coherence
8.
Ophthalmology ; 131(1): 58-65, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37673374

ABSTRACT

PURPOSE: To explore the prevalence and causes of loss of visual acuity and visual field in highly myopic eyes. DESIGN: Population-based study. PARTICIPANTS: 4439 subjects of the Beijing Eye Study underwent ophthalmological and systemic examinations including frequency doubling technology perimetry. METHODS: High myopia was defined by a refractive error of ≤-6 diopters (D) or axial length >26.0 mm. MAIN OUTCOME MEASURES: Prevalence of vision impairment causes. RESULTS: 212 highly myopic eyes from 154 participants were included with a mean age of 56.2 ± 9.6 years, a mean refractive error of -9.87 ± 3.70 D and a mean axial length of 27.2 ± 1.3 mm. We observed moderate/severe vision impairment (MSVI) in 40 eyes (18.9%; 95% confidence interval [CI], 13.6-24.2) and blindness in 10 eyes (4.7%; 95% CI, 1.8-7.6). Primary causes for MSVI and blindness were myopic macular degeneration (MMD) (29/50; 58%), age-related macular degeneration (1/50; 2%), and branch macular retinal vein occlusion (1/50; 2%). Secondary causes were MMD (4/50; 8%) and optic nerve atrophy (14/50, 28%), further differentiated into non-glaucomatous optic atrophy (NGOA) (9/50; 18%) and glaucomatous optic atrophy (GOA) (5/50; 10%). Prevalence of MMD as vision impairment cause increased significantly from 1/61 (1.6%) in the refractive error group of -6.00 to ≥-7.00 D, to 16/25 (64%) in the group of <-15.0 D. Higher MMD prevalence correlated with higher myopic refractive error (P < 0.001) and increased likelihood of concomitant optic neuropathy (P < 0.001). Similarly, prevalence of optic neuropathy as vision impairment cause increased from 0/61 (0%) in the refractive error group of -6.00 D to ≥-7.00 D, to 9/25 (36%) in the group of <-15.0 D. Higher optic neuropathy prevalence correlated with more myopic refraction (P < 0.001) and older age (P = 0.02). CONCLUSIONS: In this population-based recruited cohort of highly myopic patients, optic neuropathy accounted for vision impairment in 9.0% eyes, which was lower than the prevalence of MMD as vision impairment cause (18.9%). Notably, optic neuropathy became a significant contributor to vision impairment in more advanced high myopia, reaching 36% in the group with refractive error of <-15.0 D. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.


Subject(s)
Macular Degeneration , Myopia, Degenerative , Optic Atrophy , Optic Nerve Diseases , Humans , Middle Aged , Aged , Beijing , Prevalence , Visual Fields , Risk Factors , Visual Acuity , Myopia, Degenerative/complications , Optic Nerve Diseases/etiology , Blindness/etiology , Vision Disorders/etiology , Vision Disorders/complications , Macular Degeneration/epidemiology
9.
Cerebellum ; 23(2): 489-501, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37101017

ABSTRACT

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a neurologic disorder with generally well-known clinical manifestations. However, few studies assessed their progression rate using a longitudinal design. This study aimed to document the natural history of ARSACS over a 4-year period in terms of upper and lower limb functions, balance, walking capacity, performance in daily living activities, and disease severity. Forty participants were assessed on three occasions over 4 years. Participant performance was reported in raw data as well as in percentage from reference values to consider the normal aging process. Severe balance and walking capacity impairments were found, with a significant performance decrease over the 4 years. Balance reached a floor score of around 6 points on the Berg Balance Scale for participants aged >40 years, while other participants lost about 1.5 points per year. The mean loss in walking speed was 0.044 m/s per year and the mean decrease in the distance walked in 6 min was 20.8 m per year for the whole cohort. Pinch strength, balance, walking speed, and walking distance decreased over time even when reported in percentage from reference values. Major impairments and rapid progression rates were documented in the present study for upper limb coordination, pinch strength, balance, and walking capacity in the ARSACS population. A progression rate beyond the normal aging process was observed. These results provide fundamental insights regarding the disease prognosis that will help to better inform patients, develop specific rehabilitation programs, and improve trial readiness.


Subject(s)
Cerebellar Ataxia , Intellectual Disability , Optic Atrophy , Spinocerebellar Ataxias , Humans , Longitudinal Studies , Spinocerebellar Ataxias/genetics , Muscle Spasticity , Ataxia
10.
Am J Med Genet A ; 194(2): 226-232, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37798908

ABSTRACT

Progressive encephalopathy with edema, hypsarrhythmia, and optic atrophy (PEHO) and PEHO-like syndromes are very rare infantile disorders characterized by profound intellectual disability, hypotonia, convulsions, optic, and progressive brain atrophy. Many causative genes for PEHO and PEHO-like syndromes have been identified including CCDC88A. So far, only five patients from two unrelated families with biallelic CCDC88A variants have been reported in the literature. Herein, we describe a new family from Egypt with a lethal epileptic encephalopathy. Our patient was the youngest child born to a highly consanguineous couple and had a family history of five deceased sibs with the same condition. She presented with postnatal microcephaly, poor visual responsiveness, and epilepsy. Her brain MRI showed abnormal cortical gyration with failure of opercularization of the insula, hypogenesis of corpus callosum, colpocephaly, reduced white matter, hypoplastic vermis, and brain stem. Whole exome sequencing identified a new homozygous frameshift variant in CCDC88A gene (c.1795_1798delACAA, p.Thr599ValfsTer4). Our study presents the third reported family with this extremely rare disorder. We also reviewed all described cases to better refine the phenotypic spectrum associated with biallelic loss of function variants in the CCDC88A gene.


Subject(s)
Brain Edema , Neurodegenerative Diseases , Optic Atrophy , Spasms, Infantile , Humans , Child , Female , Spasms, Infantile/genetics , Brain Edema/genetics , Optic Atrophy/genetics , Syndrome , Microfilament Proteins/genetics , Vesicular Transport Proteins/genetics
11.
J Neuroophthalmol ; 44(1): 22-29, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38251954

ABSTRACT

BACKGROUND: MRI abnormalities are common in optic neuropathies, especially on dedicated orbital imaging. In acute optic neuritis, optic nerve T2-hyperintensity associated with optic nerve contrast enhancement is the typical imaging finding. In chronic optic neuropathies, optic nerve T2-hyperintensity and atrophy are regularly seen. Isolated optic nerve T2-hyperintensity is often erroneously presumed to reflect optic neuritis, frequently prompting unnecessary investigations and neuro-ophthalmology consultations. Our goal was to determine the significance of optic nerve/chiasm T2-hyperintensity and/or atrophy on MRI. METHODS: Retrospective study of consecutive patients who underwent brain/orbital MRI with/without contrast at our institution between July 1, 2019, and June 6, 2022. Patients with optic nerve/chiasm T2-hyperintensity and/or atrophy were included. Medical records were reviewed to determine the etiology of the T2-hyperintensity and/or atrophy. RESULTS: Four hundred seventy-seven patients (698 eyes) were included [mean age 52 years (SD ±18 years); 57% women]. Of the 364 of 698 eyes with optic nerve/chiasm T2-hyperintensity without atrophy, the causes were compressive (104), inflammatory (103), multifactorial (49), glaucoma (21), normal (19), and other (68); of the 219 of 698 eyes with optic nerve/chiasm T2-hyperintensity and atrophy, the causes were compressive (57), multifactorial (40), inflammatory (38), glaucoma (33), normal (7), and other (44); of the 115 of 698 eyes with optic nerve/chiasm atrophy without T2-hyperintensity, the causes were glaucoma (34), multifactorial (21), inflammatory (13), compressive (11), normal (10), and other (26). Thirty-six eyes with optic nerve/chiasm T2-hyperintensity or atrophy did not have evidence of optic neuropathy or retinopathy on ophthalmologic examination, and 17 eyes had clinical evidence of severe retinopathy without primary optic neuropathy. CONCLUSIONS: Optic nerve T2-hyperintensity or atrophy can be found with any cause of optic neuropathy and with severe chronic retinopathy. These MRI findings should not automatically prompt optic neuritis diagnosis, workup, and treatment, and caution is advised regarding their use in the diagnostic criteria for multiple sclerosis. Cases of incidentally found MRI optic nerve T2-hyperintensity and/or atrophy without a known underlying optic neuropathy or severe retinopathy are rare. Such patients should receive an ophthalmologic examination before further investigations.


Subject(s)
Glaucoma , Optic Atrophy , Optic Nerve Diseases , Optic Nerve Injuries , Optic Neuritis , Retinal Diseases , Humans , Female , Middle Aged , Male , Retrospective Studies , Optic Nerve/diagnostic imaging , Optic Nerve/pathology , Optic Nerve Diseases/pathology , Optic Neuritis/etiology , Magnetic Resonance Imaging/methods , Optic Atrophy/diagnosis , Optic Atrophy/complications , Optic Nerve Injuries/complications , Atrophy/complications , Atrophy/pathology , Glaucoma/complications , Glaucoma/pathology , Retinal Diseases/complications
12.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Article in English | MEDLINE | ID: mdl-33879611

ABSTRACT

Mitochondrial disease is a debilitating condition with a diverse genetic etiology. Here, we report that TMEM126A, a protein that is mutated in patients with autosomal-recessive optic atrophy, participates directly in the assembly of mitochondrial complex I. Using a combination of genome editing, interaction studies, and quantitative proteomics, we find that loss of TMEM126A results in an isolated complex I deficiency and that TMEM126A interacts with a number of complex I subunits and assembly factors. Pulse-labeling interaction studies reveal that TMEM126A associates with the newly synthesized mitochondrial DNA (mtDNA)-encoded ND4 subunit of complex I. Our findings indicate that TMEM126A is involved in the assembly of the ND4 distal membrane module of complex I. In addition, we find that the function of TMEM126A is distinct from its paralogue TMEM126B, which acts in assembly of the ND2-module of complex I.


Subject(s)
Membrane Proteins/metabolism , NADH Dehydrogenase/metabolism , Optic Atrophy/genetics , DNA, Mitochondrial/genetics , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Electron Transport Complex I/physiology , HEK293 Cells , Humans , Membrane Proteins/genetics , Mitochondria/metabolism , Mutation , NADH Dehydrogenase/physiology , Optic Atrophy/metabolism
13.
Medicina (Kaunas) ; 60(7)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39064493

ABSTRACT

Background and Objectives: Wolfram syndrome type 1 (OMIM# 222300; ORPHAcode 3463) is an extremely rare autosomal recessive syndrome with a 25% recurrence risk in children. It is characterized by the presence of juvenile-onset diabetes mellitus (DM), progressive optic atrophy (OA), diabetes insipidus (DI), and sensorineural deafness (D), often referred to by the acronym DIDMOAD. It is a severe neurodegenerative disease with a life expectancy of 39 years, with death occurring due to cerebral atrophy. For a positive diagnosis, the presence of diabetes mellitus and optic nerve atrophy is sufficient. The disease occurs because of pathogenic variants in the WFS1 gene. The aim of this article is to present a case report of Wolfram Syndrome Type I, alongside a review of genetic variants, clinical manifestations, diagnosis, therapy, and long-term management. Emphasizing the importance of early diagnosis and a multidisciplinary approach, the study aims to enhance understanding and improve outcomes for patients with this complex syndrome. Materials and Methods: A case of a 28-year-old patient diagnosed with DM at the age of 6 and with progressive optic atrophy at 26 years old is presented. Molecular diagnosis revealed the presence of a heterozygous nonsense variant WFS1 c.1943G>A (p.Trp648*), and a heterozygous missense variant WFS1 c.1675G>C (p.Ala559Pro). Results: The molecular diagnosis of the patient confirmed the presence of a heterozygous nonsense variant and a heterozygous missense variant in the WFS1 gene, correlating with the clinical presentation of Wolfram syndrome type 1. Both allelic variants found in our patient have been previously described in other patients, whilst this combination has not been described before. Conclusions: This case report and review underscores the critical role of early recognition and diagnosis in Wolfram syndrome, facilitated by genetic testing. By identifying pathogenic variants in the WFS1 gene, genetic testing not only confirms diagnosis but also guides clinical management and informs genetic counseling for affected families. Timely intervention based on genetic insights can potentially reduce the progressive multisystem manifestations of the syndrome, thereby improving the quality of life and outcomes for patients.


Subject(s)
Early Diagnosis , Membrane Proteins , Wolfram Syndrome , Humans , Wolfram Syndrome/genetics , Wolfram Syndrome/diagnosis , Membrane Proteins/genetics , Adult , Male , Genetic Variation , Female , Optic Atrophy/genetics , Optic Atrophy/diagnosis
14.
Int Ophthalmol ; 44(1): 173, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38598101

ABSTRACT

PURPOSE: The ROCK inhibitor ripasudil hydrochloride hydrate was shown to have axonal protective effects in TNF-induced optic nerve degeneration. The α2-adrenoreceptor agonist brimonidine was also shown to exert axonal protection. The current study aimed to elucidate whether additive axonal protection was achieved by the simultaneous injection of ripasudil and brimonidine and examine the association with AMPK activation. METHODS: Intravitreal administration was performed in the following groups: PBS, TNF, or TNF with ripasudil, with brimonidine, or with a combination of ripasudil and brimonidine. Axon numbers were counted to evaluate the effects against axon loss. Immunoblot analysis was performed to examine phosphorylated AMPK expression in optic nerves, and immunohistochemical analysis was performed to evaluate the expression levels of p-AMPK and neurofilament in the optic nerve. RESULTS: Both ripasudil alone or brimonidine alone resulted in significant neuroprotection against TNF-induced axon loss. The combination of ripasudil and brimonidine showed additive protective effects. Combined ripasudil and brimonidine plus TNF significantly upregulated p-AMPK levels in the optic nerve compared with the TNF groups. Immunohistochemical analysis revealed that p-AMPK is present in axons and enhanced by combination therapy. CONCLUSION: The combination of ripasudil and brimonidine may have additive protective effects compared with single-agent treatment alone. These protective effects may be at least partially associated with AMPK activation.


Subject(s)
AMP-Activated Protein Kinases , Isoquinolines , Optic Atrophy , Sulfonamides , Humans , Brimonidine Tartrate , Up-Regulation , Axons , Nerve Degeneration
15.
Zhonghua Yan Ke Za Zhi ; 60(2): 180-184, 2024 Feb 11.
Article in Zh | MEDLINE | ID: mdl-38296324

ABSTRACT

Different from classical autosomal recessive Wolfram syndrome, Wolfram-like syndrome is an autosomal dominant disorder caused by a heterozygous mutation in the WFS1 gene. In this case, a 7-year-old male child presented to the eye clinic due to vision loss that could not be corrected, discovered during a routine examination. The child had experienced hearing impairment since early childhood, leading to cochlear implantation. Ophthalmic examination revealed optic disc atrophy in both eyes. Optical coherence tomography imaging demonstrated a distinctive thickening of the outer plexiform layer with abnormal layering, characteristic of a single mutation in the WFS1 gene. Subsequent genetic testing identified a de novo heterozygous missense mutation c.2051C>T (p.A684V) in the WFS1 gene, which ultimately led to the diagnosis of Wolfram-like syndrome.


Subject(s)
Optic Atrophy , Wolfram Syndrome , Child , Humans , Male , Mutation , Optic Atrophy/genetics , Pedigree , Tungsten , Wolfram Syndrome/genetics , Wolfram Syndrome/diagnosis
16.
Vestn Oftalmol ; 140(2): 91-96, 2024.
Article in Russian | MEDLINE | ID: mdl-38742504

ABSTRACT

Optic nerve atrophy is a pathomorphological consequence of diseases of the peripheral neuron of the visual pathway, manifested as atrophy of nerve fibers of varying severity. The toxic effect of methanol is mainly associated with formic acid and formaldehyde, which suppress the cytochrome system, inhibit oxidative phosphorylation, and thereby cause a deficiency of adenosine triphosphoric acid, to which brain and retinal tissues are especially susceptible. When formiate accumulates, tissue respiration is disrupted, leading to pronounced tissue hypoxia. As a result of such methanol metabolism, metabolic acidosis occurs. Tissue hypoxia develops in the first few hours as a result of the action of formic acid on the respiratory enzyme chain at the cytochrome oxidase level. Hypoxia and, as a consequence, a decrease in energy supply lead to a disruption of biological oxidation and the development of apoptosis in the optic nerve fibers. Understanding the process of optic nerve atrophy development at the pathogenetic level in methyl alcohol intoxication will help make a correct early diagnosis and prescribe timely treatment.


Subject(s)
Methanol , Optic Nerve , Humans , Methanol/poisoning , Optic Nerve/pathology , Optic Nerve/drug effects , Optic Atrophy/etiology , Optic Atrophy/diagnosis , Optic Atrophy/chemically induced
17.
Diabetologia ; 66(7): 1306-1321, 2023 07.
Article in English | MEDLINE | ID: mdl-36995380

ABSTRACT

AIMS/HYPOTHESIS: Wolfram syndrome is a rare autosomal recessive disorder caused by pathogenic variants in the WFS1 gene. It is characterised by insulin-dependent diabetes mellitus, optic nerve atrophy, diabetes insipidus, hearing loss and neurodegeneration. Considering the unmet treatment need for this orphan disease, this study aimed to evaluate the therapeutic potential of glucagon-like peptide 1 receptor (GLP-1R) agonists under wolframin (WFS1) deficiency with a particular focus on human beta cells and neurons. METHODS: The effect of the GLP-1R agonists dulaglutide and exenatide was examined in Wfs1 knockout mice and in an array of human preclinical models of Wolfram syndrome, including WFS1-deficient human beta cells, human induced pluripotent stem cell (iPSC)-derived beta-like cells and neurons from control individuals and individuals affected by Wolfram syndrome, and humanised mice. RESULTS: Our study shows that the long-lasting GLP-1R agonist dulaglutide reverses impaired glucose tolerance in WFS1-deficient mice, and that exenatide and dulaglutide improve beta cell function and prevent apoptosis in different human WFS1-deficient models including iPSC-derived beta cells from people with Wolfram syndrome. Exenatide improved mitochondrial function, reduced oxidative stress and prevented apoptosis in Wolfram syndrome iPSC-derived neural precursors and cerebellar neurons. CONCLUSIONS/INTERPRETATION: Our study provides novel evidence for the beneficial effect of GLP-1R agonists on WFS1-deficient human pancreatic beta cells and neurons, suggesting that these drugs may be considered as a treatment for individuals with Wolfram syndrome.


Subject(s)
Induced Pluripotent Stem Cells , Insulin-Secreting Cells , Optic Atrophy , Wolfram Syndrome , Humans , Animals , Mice , Wolfram Syndrome/drug therapy , Wolfram Syndrome/genetics , Exenatide/therapeutic use , Optic Atrophy/pathology , Insulin-Secreting Cells/pathology , Mice, Knockout
18.
J Biol Chem ; 298(9): 102261, 2022 09.
Article in English | MEDLINE | ID: mdl-35843310

ABSTRACT

Regulation of protein synthesis is critical for control of gene expression in all cells. Ribosomes are ribonucleoprotein machines responsible for translating cellular proteins. Defects in ribosome production, function, or regulation are detrimental to the cell and cause human diseases, such as progressive encephalopathy with edema, hypsarrhythmia, and optic atrophy (PEHO) syndrome. PEHO syndrome is a devastating neurodevelopmental disorder caused by mutations in the ZNHIT3 gene, which encodes an evolutionarily conserved nuclear protein. The precise mechanisms by which ZNHIT3 mutations lead to PEHO syndrome are currently unclear. Studies of the human zinc finger HIT-type containing protein 3 homolog in budding yeast (Hit1) revealed that this protein is critical for formation of small nucleolar ribonucleoprotein complexes that are required for rRNA processing and 2'-O-methylation. Here, we use budding yeast as a model system to reveal the basis for the molecular pathogenesis of PEHO syndrome. We show that missense mutations modeling those found in PEHO syndrome patients cause a decrease in steady-state Hit1 protein levels, a significant reduction of box C/D snoRNA levels, and subsequent defects in rRNA processing and altered cellular translation. Using RiboMethSeq analysis of rRNAs isolated from actively translating ribosomes, we reveal site-specific changes in the rRNA modification pattern of PEHO syndrome mutant yeast cells. Our data suggest that PEHO syndrome is a ribosomopathy and reveal potential new aspects of the molecular basis of this disease in translation dysregulation.


Subject(s)
Brain Edema , Neurodegenerative Diseases , Nuclear Proteins , Optic Atrophy , Ribonucleoproteins, Small Nucleolar , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Spasms, Infantile , Transcription Factors , Brain Edema/genetics , Humans , Infant, Newborn , Mutation , Neurodegenerative Diseases/genetics , Nuclear Proteins/genetics , Optic Atrophy/genetics , RNA, Small Nucleolar/metabolism , Ribonucleoproteins, Small Nucleolar/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Spasms, Infantile/genetics , Transcription Factors/genetics
19.
Clin Genet ; 103(6): 625-635, 2023 06.
Article in English | MEDLINE | ID: mdl-36843433

ABSTRACT

Since the first report of SOPH syndrome among the Yakut population in 2010, new clinical data of SOPH-like conditions continue to appear. We expand the phenotypic spectrum of SOPH syndrome and perform a comparative analysis of Yakut SOPH patients' clinical data with SOPH-like conditions reported in the world scientific literature to form a foundation for NBAS pathogenesis discussion. Clinical data from the genetic records of 93 patients with SOPH syndrome and global survey data on patients with pathogenic variants of the C-terminal in the NBAS gene were collected. A detailed phenotype description of patients is presented with a total number of 111 individuals. Underweight below the fifth centile and prone to delayed bone age in Yakut SOPH patients are retrospectively observed. We outline the short stature with optic atrophy as the leading phenotyping trait for C-terminal NBAS patients. The pathophysiology and patients management of SOPH-like conditions are discussed.


Subject(s)
Dwarfism , Optic Atrophy , Humans , Retrospective Studies , Neoplasm Proteins/genetics , Phenotype , Optic Atrophy/genetics , Dwarfism/genetics
20.
Clin Genet ; 104(6): 686-693, 2023 12.
Article in English | MEDLINE | ID: mdl-37574199

ABSTRACT

We studied a patient with mitochondrial DNA depletion in skeletal muscle and a multiorgan phenotype, including fatal encephalomyopathy, retinopathy, optic atrophy, and sensorineural hearing loss. Instead of pathogenic variants in the mitochondrial maintenance genes, we identified previously unpublished variant in DHX16 gene, a de novo heterozygous c.1360C>T (p. Arg454Trp). Variants in DHX16 encoding for DEAH-box RNA helicase have previously been reported only in five patients with a phenotype called as neuromuscular oculoauditory syndrome including developmental delay, neuromuscular symptoms, and ocular or auditory defects with or without seizures. We performed functional studies on patient-derived fibroblasts and skeletal muscle revealing, that the DHX16 expression was decreased. Clinical features together with functional data suggest, that our patient's disease is associated with a novel pathogenic DHX16 variant, and mtDNA depletion could be a secondary manifestation of the disease.


Subject(s)
Metabolism, Inborn Errors , Optic Atrophy , Retinal Diseases , Humans , DNA, Mitochondrial/genetics , Muscle, Skeletal/pathology , Optic Atrophy/pathology , RNA Helicases , Infant
SELECTION OF CITATIONS
SEARCH DETAIL