Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 826
Filter
Add more filters

Publication year range
1.
Nature ; 626(7997): 111-118, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38297171

ABSTRACT

The recovery of top predators is thought to have cascading effects on vegetated ecosystems and their geomorphology1,2, but the evidence for this remains correlational and intensely debated3,4. Here we combine observational and experimental data to reveal that recolonization of sea otters in a US estuary generates a trophic cascade that facilitates coastal wetland plant biomass and suppresses the erosion of marsh edges-a process that otherwise leads to the severe loss of habitats and ecosystem services5,6. Monitoring of the Elkhorn Slough estuary over several decades suggested top-down control in the system, because the erosion of salt marsh edges has generally slowed with increasing sea otter abundance, despite the consistently increasing physical stress in the system (that is, nutrient loading, sea-level rise and tidal scour7-9). Predator-exclusion experiments in five marsh creeks revealed that sea otters suppress the abundance of burrowing crabs, a top-down effect that cascades to both increase marsh edge strength and reduce marsh erosion. Multi-creek surveys comparing marsh creeks pre- and post-sea otter colonization confirmed the presence of an interaction between the keystone sea otter, burrowing crabs and marsh creeks, demonstrating the spatial generality of predator control of ecosystem edge processes: densities of burrowing crabs and edge erosion have declined markedly in creeks that have high levels of sea otter recolonization. These results show that trophic downgrading could be a strong but underappreciated contributor to the loss of coastal wetlands, and suggest that restoring top predators can help to re-establish geomorphic stability.


Subject(s)
Brachyura , Estuaries , Otters , Predatory Behavior , Soil Erosion , Wetlands , Animals , Biomass , Brachyura/physiology , Otters/physiology , United States , Plants , Sea Level Rise , Tidal Waves , Nutrients/metabolism , Food Chain
2.
Proc Natl Acad Sci U S A ; 120(5): e2209037120, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36689656

ABSTRACT

Sea otters (Enhydra lutris) and wolves (Canis lupus) are two apex predators with strong and cascading effects on ecosystem structure and function. After decades of recovery from near extirpation, their ranges now overlap, allowing sea otters and wolves to interact for the first time in the scientific record. We intensively studied wolves during 2015 to 2021 in an island system colonized by sea otters in the 2000s and by wolves in 2013. After wolf colonization, we quantified shifts in foraging behavior with DNA metabarcoding of 689 wolf scats and stable isotope analyses, both revealing a dietary switch from Sitka black-tailed deer (Odocoileus hemionus), the terrestrial in situ primary prey, to sea otters. Here we show an unexpected result of the reintroduction and restoration of sea otters, which became an abundant marine subsidy for wolves following population recovery. The availability of sea otters allowed wolves to persist and continue to reproduce, subsequently nearly eliminating deer. Genotypes from 390 wolf scats and telemetry data from 13 wolves confirmed island fidelity constituting one of the highest known wolf population densities and upending standardly accepted wolf density predictions based on ungulate abundance. Whereas marine subsidies in other systems are generally derived from lower trophic levels, here an apex nearshore predator became a key prey species and linked nearshore and terrestrial food webs in a recently deglaciated and rapidly changing ecosystem. These results underscore that species restoration may serve as an unanticipated nutrient pathway for recipient ecosystems even resulting in cross-boundary subsidy cascades.


Subject(s)
Deer , Otters , Wolves , Animals , Ecosystem , Predatory Behavior , Food Chain , Population Dynamics
3.
Nature ; 626(7997): 35-36, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38297169

Subject(s)
Ecosystem , Otters , Animals
4.
Mol Biol Evol ; 40(11)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37713621

ABSTRACT

Conservation genetic analyses of many endangered species have been based on genotyping of microsatellite loci and sequencing of short fragments of mtDNA. The increase in power and resolution afforded by whole genome approaches may challenge conclusions made on limited numbers of loci and maternally inherited haploid markers. Here, we provide a matched comparison of whole genome sequencing versus microsatellite and control region (CR) genotyping for Eurasian otters (Lutra lutra). Previous work identified four genetically differentiated "stronghold" populations of otter in Britain, derived from regional populations that survived the population crash of the 1950s-1980s. Using whole genome resequencing data from 45 samples from across the British stronghold populations, we confirmed some aspects of population structure derived from previous marker-driven studies. Importantly, we showed that genomic signals of the population crash bottlenecks matched evidence from otter population surveys. Unexpectedly, two strongly divergent mitochondrial lineages were identified that were undetectable using CR fragments, and otters in the east of England were genetically distinct and surprisingly variable. We hypothesize that this previously unsuspected variability may derive from past releases of Eurasian otters from other, non-British source populations in England around the time of the population bottleneck. Our work highlights that even reasonably well-studied species may harbor genetic surprises, if studied using modern high-throughput sequencing methods.


Subject(s)
Otters , Animals , Otters/genetics , United Kingdom , DNA, Mitochondrial/genetics , Endangered Species , Genomics
5.
J Evol Biol ; 37(2): 152-161, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38366250

ABSTRACT

Some taxa of mammals live in water, all of which evolved from land-dwelling ancestors. In the family Mustelidae (Mammalia: Carnivora), most species live on land, while otters, comprising the subfamily Lutrinae, inhabit aquatic environments, which include the almost exclusively aquatic sea otters (Enhydra lutris). Thus, the transition from a terrestrial to an aquatic lifestyle has occurred within this family. Despite potentially different selection pressures on body size in aquatic and terrestrial habitats, no divergence in the evolutionary pattern of body size between otters and other mustelids has previously been shown using models of trait evolution on a phylogeny. We applied models that explicitly incorporated lineage-specific directional selection to the evolution of body mass in living mustelids. Using a simulation-based likelihood and approximate Bayesian computation approach, we demonstrated lineage-specific directional selection for larger body mass in otters, which is distinct from other mustelids. There was no evidence of a difference between sea otters and other otters in the strength of directional selection for larger body mass. Additionally, our analyses supported no difference in the rate at which body mass evolves in both directions between otters and other mustelids. These findings suggest that the evolution of body mass in otters is associated with selective advantages of larger size rather than the relaxation of constraints on body size in aquatic habitats, like other aquatic mammals such as sirenians, cetaceans, and pinnipeds.


Subject(s)
Otters , Animals , Bayes Theorem , Phylogeny , Ecosystem , Body Size
6.
J Exp Biol ; 227(17)2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39265248

ABSTRACT

Sea otters are extremely positively buoyant and spend most of their time resting at the water surface. It is understood that some of this buoyancy comes from the air layer that sea otters maintain in their pelage, with the lungs providing an additional source of positive buoyancy. Past studies have investigated the fur buoyant force in adult sea otters; however, little is known about the fur buoyant force in younger age classes. This study compared ontogenetic changes in the fur buoyant force of southern sea otter (Enhydra lutris nereis) pelage. We measured the fur buoyant force of pelt samples, scaled that to the whole animal, and calculated mass-specific fur buoyant force for six age classes: neonates (<1 month), small pups (1-2 months), large pups (3-5 months), juveniles (6 months-1 year), subadults (1-3 years) and adults (4-9 years). Each pelt sample was measured under three conditions: control, oiled and washed with Dawn® dish soap. Oiled and washed pelts had a lower fur buoyant force compared with the control pelts across all age classes. When oiled, the air layer of the pelt is ruined and no longer provides sufficient positive buoyancy. Pelts washed with Dawn® had higher variability in buoyant force compared with other conditions, and the air layer was not restored consistently. When we scaled up, we found that younger age classes were more buoyant because of their larger surface area to volume ratio. These differences in buoyancy may underlie variations in energetic costs and behavior among sea otters across development.


Subject(s)
Animal Fur , Otters , Animals , Otters/physiology , Otters/growth & development , Animal Fur/growth & development
7.
Ann Bot ; 133(1): 105-116, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-37832150

ABSTRACT

BACKGROUND AND AIMS: Coastal Alaska contains vast kelp habitat that supports diverse marine and human communities. Over the past century, the North Pacific Ocean has undergone oceanographic and ecological regime shifts that have the potential to influence the structure and function of kelp ecosystems strongly. However, the remoteness and complexity of the glacially carved region precludes the regular monitoring efforts that would be necessary to detect such changes. METHODS: To begin to fill this critical knowledge gap, we drew upon historical and modern surveys to analyse the change in spatial coverage and species composition of canopy kelp between two time points (1913 and the early 2000s to 2010s). We also incorporated decadal surveys on sea otter range expansion following complete extirpation and reintroduction to assess the influence of sea otter recovery on the spatial extent of canopy kelp. KEY RESULTS: We found increases in the spatial extent of canopy kelp throughout the Gulf of Alaska where there was coverage from both surveys. Kelp in Southcentral Alaska showed extensive recovery after the catastrophic Novarupta volcano. Kelp in Southeast Alaska showed persistence and spatial increase that closely matched increases in the range of sea otters. Observations of thermally tolerant kelp species increased more than observations of cold-adapted species between the two surveys. CONCLUSIONS: Contrary to trends observed at lower latitudes, the kelp forests that ring the Gulf of Alaska have been remarkably stable and even increased in the past century, despite oceanographic and ecosystem changes. To improve monitoring, we propose identification of sentinel kelp beds for regular monitoring to detect changes to these iconic and foundational canopy kelp species more readily.


Subject(s)
Kelp , Otters , Humans , Animals , Ecosystem , Alaska , Forests
8.
Biol Lett ; 20(9): 20240103, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39319669

ABSTRACT

The Eurasian otter is a wide-ranging semi-aquatic mammal that underwent a significant population decline in the last century, leading to local extinctions, reduction and fragmentation of populations. The individuals of populations exposed to both external and internal stress may present the inability to produce a specific developmental outcome, generating developmental 'noise' (developmental instability (DI)). Factors contributing to DI include inbreeding depression, population bottlenecks, habitat loss and exposure to pollution. We analysed fluctuating asymmetry (FA) as a proxy of DI in two European otter populations that experienced a major decline in the 1990s. Using three-dimensional geometric morphometrics methods on skull samples of otters from the UK and Sweden, we compared the degree of FA both between populations before, during and after the decline. We found a higher FA in the UK populations compared with Sweden. The level of asymmetry differed significantly over time only in the UK population, where it was higher during the decline phase. FA in the UK populations can be attributed to the specific impact of polychlorinated biphenyls pollution that caused a bottleneck. More generally, our study suggests that habitat loss, pollution and limited gene flow may contribute to DI in declining otter populations, highlighting the need for continued investigation to identify and quantify the specific stressors behind this trend in local populations.


Subject(s)
Otters , Animals , Otters/physiology , Sweden , United Kingdom , Population Dynamics , Male , Skull/anatomy & histology , Female , Ecosystem
9.
Environ Sci Technol ; 58(23): 10195-10206, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38800846

ABSTRACT

Concentrations of 33 PFASs were determined in 20 Eurasian otters, sampled 2015-2019, along a transect away from a factory, which used PFOA in PTFE manufacture. Despite cessation of usage in 2012, PFOA concentrations remained high near the factory (>298 µg/kg ww <20 km from factory) and declined with increasing distance (<57 µg/kg ww >150 km away). Long-chain legacy PFASs dominated the Σ33PFAS profile, particularly PFOS, PFOA, PFDA, and PFNA. Replacement compounds, PFECHS, F-53B, PFBSA, PFBS, PFHpA, and 8:2 FTS, were detected in ≥19 otters, this being the first report of PFBSA and PFECHS in the species. Concentrations of replacement PFASs were generally lower than legacy compounds (max: 70.3 µg/kg ww and 4,640 µg/kg ww, respectively). Our study underscores the utility of otters as sentinels for evaluating mitigation success and highlights the value of continued monitoring to provide insights into the longevity of spatial associations with historic sources. Lower concentrations of replacement, than legacy, PFASs likely reflect their lower bioaccumulation potential, and more recent introduction. Continued PFAS use will inevitably lead to increased environmental and human exposure if not controlled. Further research is needed on fate, toxicity, and bioaccumulation of replacement compounds.


Subject(s)
Environmental Monitoring , Otters , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/analysis , Fresh Water , Fluorocarbons/analysis
10.
Environ Sci Technol ; 58(4): 2089-2101, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38231021

ABSTRACT

North American river otters (Lontra canadensis) are top predators in riverine ecosystems and are vulnerable to per- and polyfluoroalkyl substance (PFAS) exposure. Little is known about the magnitude of exposure and tissue distribution of PFAS in river otters. We measured 45 PFAS in various tissues of 42 river otters collected from several watersheds in the state of West Virginia, USA. The median concentrations of ∑All (sum concentration of 45 PFAS) varied among tissues in the following decreasing order: liver (931 ng/g wet weight) > bile > pancreas > lung > kidney > blood > brain > muscle. Perfluoroalkylsulfonates (PFSAs) were the predominant compounds accounting for 58-75% of the total concentrations, followed by perfluoroalkyl carboxylates (PFCAs; 21-35%). 8:2 fluorotelomer sulfonate (8:2 FTS), 10:2 FTS, and 6:2 chlorinated polyfluoroalkyl ether sulfonate were frequently found in the liver (50-90%) and bile (96-100%), whereas hexafluoropropylene oxide dimer acid (HFPO-DA) was rarely found. The hepatic concentrations of ∑All in river otters collected downstream of a fluoropolymer production facility located along the Ohio River were 2-fold higher than those in other watersheds. The median whole body burden of ∑All was calculated to be 1580 µg. PFOS and perfluorooctanoic acid (PFOA) concentrations in whole blood of some river otters exceeded the human toxicity reference values, which warrant further studies.


Subject(s)
Fluorocarbons , Otters , Water Pollutants, Chemical , Animals , Humans , West Virginia , Ecosystem , Fluorocarbons/analysis , Liver , Water Pollutants, Chemical/analysis
11.
Oecologia ; 204(1): 13-24, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38227253

ABSTRACT

The measurement of stable isotope values of individual compounds, such as amino acids (AAs), has become a powerful tool in animal ecology and ecophysiology. As with any emerging technique, questions remain regarding the capabilities and limitations of this approach, including how metabolism and tissue synthesis impact the isotopic values of individual AAs and subsequent multivariate patterns. We measured carbon isotope (δ13C) values of essential (AAESS) and nonessential (AANESS) AAs in bone collagen, whisker, muscle, and liver from ten southern sea otters (Enhydra lutris nereis) that stranded in Monterey Bay, California. Sea otters in this population exhibit high degrees of individual dietary specialization, making this an excellent dataset to explore differences in AA δ13C values among tissues in a wild population. We found the δ13C values of the AANESS glutamic acid, proline, serine, and glycine and the AAESS threonine differed significantly among tissues, indicating possible isotopic discrimination during tissue synthesis. Threonine δ13C values were higher in liver relative to bone collagen and muscle, which may indicate catabolism of threonine for gluconeogenesis, an interpretation further supported by correlations between the δ13C values of threonine and its gluconeogenic products glycine and serine in liver. This intraindividual isotopic variation yielded different ecological interpretations among tissues; for 6/10 of the sea otter individuals analyzed, at least one tissue indicated reliance on a different primary producer source than the other tissues. Our results highlight the importance of gluconeogenesis in a carnivorous marine mammal and indicate that metabolic processes influence AAESS and AANESS δ13C values and multivariate AA δ13C patterns.


Subject(s)
Otters , Humans , Animals , Carbon Isotopes , Amino Acids , Threonine , Glycine , Serine , Collagen , California
12.
Dis Aquat Organ ; 157: 73-80, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38421009

ABSTRACT

A novel papillomavirus (PV) associated with hyperplastic nodules scattered over the muco-cutaneous border of the oral cavity of a dead, wild, subadult northern sea otter Enhydra lutris kenyoni (NSO) in 2004 in Homer, Alaska, USA, was genetically characterized. Primers for the amplification of 2 large overlapping DNA fragments that contained the complete genome of the NSO PV were designed. Sanger methodology generated sequences from which new specific primers were designed for the primer-walking approach. The NSO PV genome consists of 8085 nucleotides and contains an early region composed of E6, E7, E1, and E2 open reading frames (ORFs), an E4 ORF (contained within E2) lacking an in-frame proximal ATG start codon, an unusually long (907 nucleotide) stretch lacking any ORFs, a late region that contains the capsid genes L2 and L1, and a non-coding regulatory region (ncRR). This NSO PV has been tentatively named Enhydra lutris kenyoni PV2 (ElkPV2). Pairwise and multiple sequence alignments of the complete L1 ORF nucleotides and concatenated E1-E2-L1 amino acid sequences showed that the NSO PV is a novel PV, phylogenetically most closely related to southern sea otter PV1. The carboxy end of the E6 oncoprotein does not contain the PDZ-binding motif with a strong correlation with oncogenicity, suggesting a low-risk PV, which is in agreement with histopathological findings. However, the ElkPV2 E7 oncoprotein does contain the retinoblastoma (pRb) binding domain LXCXE (LQCYE in ElkPV2), associated with oncogenicity in some high-risk PVs. Further studies on the prevalence and clinical significance of ElkPV2 infections in NSO are needed.


Subject(s)
Lambdapapillomavirus , Otters , Animals , Alaska/epidemiology , Nucleotides , Oncogene Proteins
13.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Article in English | MEDLINE | ID: mdl-33836567

ABSTRACT

Consumer and predator foraging behavior can impart profound trait-mediated constraints on community regulation that scale up to influence the structure and stability of ecosystems. Here, we demonstrate how the behavioral response of an apex predator to changes in prey behavior and condition can dramatically alter the role and relative contribution of top-down forcing, depending on the spatial organization of ecosystem states. In 2014, a rapid and dramatic decline in the abundance of a mesopredator (Pycnopodia helianthoides) and primary producer (Macrocystis pyrifera) coincided with a fundamental change in purple sea urchin (Strongylocentrotus purpuratus) foraging behavior and condition, resulting in a spatial mosaic of kelp forests interspersed with patches of sea urchin barrens. We show that this mosaic of adjacent alternative ecosystem states led to an increase in the number of sea otters (Enhydra lutris nereis) specializing on urchin prey, a population-level increase in urchin consumption, and an increase in sea otter survivorship. We further show that the spatial distribution of sea otter foraging efforts for urchin prey was not directly linked to high prey density but rather was predicted by the distribution of energetically profitable prey. Therefore, we infer that spatially explicit sea otter foraging enhances the resistance of remnant forests to overgrazing but does not directly contribute to the resilience (recovery) of forests. These results highlight the role of consumer and predator trait-mediated responses to resource mosaics that are common throughout natural ecosystems and enhance understanding of reciprocal feedbacks between top-down and bottom-up forcing on the regional stability of ecosystems.


Subject(s)
Ecosystem , Feeding Behavior , Food Chain , Otters/physiology , Sea Urchins , Animals , Population Density , Predatory Behavior
14.
An Acad Bras Cienc ; 96(3): e20231171, 2024.
Article in English | MEDLINE | ID: mdl-39166618

ABSTRACT

A scientometric analysis of the Neotropical Otter is essential to establish the progress in studies with the species, in order to improve its conservation status. This study aimed to identify, categorize, and evaluate published scientific papers on Lontra longicaudis. Quantitative data was analyzed through absolute and relative frequencies, represented by tables and maps. The results showed that the publications on the Neotropical Otter increased since 1993 and have been primarily published in a specific journal (IUCN Otter Spec. Group Bull.) on the subfamily Lutrinae. Most authors reside in countries such as Brazil, Mexico, and Colombia, and publish predominantly in English. The majority of studies were conducted with free-living specimens, notably in the Brazilian state of Rio Grande do Sul and in Mexico. The most commonly used keywords match the most frequent subjects: "place of occurrence" and "diet". Despite the increase in publications, research on the Neotropical Otter is still largely limited to Brazil, Mexico, and sites near research institutions. Gaps on essential information for the species conservation, such as its biology, ecology, and behavior, were identified. The need for further studies on the Neotropical Otter in all the territory it inhabits is evident.


Subject(s)
Otters , Animals , Otters/classification , Bibliometrics , Brazil , Conservation of Natural Resources , Mexico
15.
J Helminthol ; 98: e4, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38167343

ABSTRACT

Via molecular and morphological analyses, we describe adult specimens of a new species of Versteria (Cestoda: Taeniidae) infecting mink and river otter (Carnivora: Mustelidae) in Western Canada, as well as larval forms from muskrat and mink. These sequences closely matched those reported from adult specimens from Colorado and Oregon, as well as larval infections in humans and a captive orangutan. We describe here a new species from British Columbia and Alberta (Canada), Versteria rafei n. sp., based upon morphological diagnostic characteristics and genetic distance and phylogeny. Versteria rafei n. sp. differs from the three other described species of the genus in the smaller scolex and cirrus sac. It also differs from V. mustelae (Eurasia) and V. cuja (South America) by having an armed cirrus, which is covered in hair-like bristles, and in the shape of its hooks, with a long thorn-like blade, and short or long handle (vs. a short sharply curved blade and no difference in handle size in previously described species). The poorly known V. brachyacantha (Central Africa) also has an armed cirrus and similarly shaped hooks. However, it differs from the new species in the number and size of hooks. Phylogenetic analysis of the cox1 and nad1 mitochondrial regions showed that our specimens clustered with isolates from undescribed adults and larval infections in North America, and separate from V. cuja, confirming them to be a distinct species from the American Clade.


Subject(s)
Cestoda , Cestode Infections , Otters , Humans , Animals , Mink , Phylogeny , Alberta
16.
Environ Monit Assess ; 196(8): 707, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970695

ABSTRACT

Microplastics (MP) are omnipresent in a wide range of environments, constituting a potential threat for aquatic and terrestrial wildlife. Effects in consumers range from physical injuries to pathological reactions. Due to potential bioaccumulation of MP, predators are of particular concern for MP induced health effects. The Eurasian otter is an apex predator in (semi-)aquatic habitats feeding primarily on fish. Furthermore, the species is classified as "near threatened" on the IUCN Red List. Thus, the Eurasian otter is of conservation concern and may serve as a bioindicator for MP pollution. Feces can be used to detect pollutants, including MP. Initial studies confirmed the presence of MP in otter feces (= spraints). However, as specific, validated protocols targeting at an efficient and standardized extraction of MP from otter spraints are missing, experimental results reported from different groups are challenging to compare. Therefore, we (i) present steps towards a standardized protocol for the extraction of MP from otter feces, (ii) give recommendations for field sample collection of otter spraints, and (iii) provide a user-friendly step-by-step workflow for MP extraction and analysis. Applying this framework to field samples from five study sites along the River Inn (n = 50), we detected MP of different sizes and shapes (ranging from microfibers to road abrasion and tire wear) in all otter spraint samples.


Subject(s)
Environmental Monitoring , Feces , Microplastics , Otters , Rivers , Water Pollutants, Chemical , Animals , Environmental Monitoring/methods , Rivers/chemistry , Feces/chemistry , Water Pollutants, Chemical/analysis , Microplastics/analysis
17.
J Zoo Wildl Med ; 55(2): 511-520, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38875209

ABSTRACT

Lymphoproliferative neoplasia has been reported in both free-ranging sea otters and those in managed care, but little information is available on the management of this neoplastic disease in this species. This case series describes clinical lymphoma in four northern sea otters (Enhydra lutris kenyoni) in managed care. Two otters presented with Stage 5 lymphoma with evidence of hematologic spread resulting in leukemia. Two additional otters presented with Stage 3 disease. Immunophenotypes in these cases included disseminated large B-cell lymphoma and lymphoblastic lymphoma of potential T-cell origin. Cases were managed with multiagent chemotherapy protocols including prednisone, L-asparaginase, cyclophosphamide, vincristine, cytosine arabinoside, lomustine, and doxorubicin. Unique approaches included the use of a vascular access port in one case and development of an autologous vaccine in another. Survival time ranged from 81 to 409 days. Diagnosis, staging, and treatment with multiagent protocols is recommended for the management of lymphoma in sea otters.


Subject(s)
Otters , Animals , Female , Male , Lymphoma/veterinary , Lymphoma/drug therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
18.
J Gen Virol ; 104(12)2023 12.
Article in English | MEDLINE | ID: mdl-38059490

ABSTRACT

Repeat spillover of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into new hosts has highlighted the critical role of cross-species transmission of coronaviruses and establishment of new reservoirs of virus in pandemic and epizootic spread of coronaviruses. Species particularly susceptible to SARS-CoV-2 spillover include Mustelidae (mink, ferrets and related animals), cricetid rodents (hamsters and related animals), felids (domestic cats and related animals) and white-tailed deer. These predispositions led us to screen British wildlife with sarbecovirus-specific quantitative PCR and pan coronavirus PCR assays for SARS-CoV-2 using samples collected during the human pandemic to establish if widespread spillover was occurring. Fourteen wildlife species (n=402) were tested, including: two red foxes (Vulpes vulpes), 101 badgers (Meles meles), two wild American mink (Neogale vison), 41 pine marten (Martes martes), two weasels (Mustela nivalis), seven stoats (Mustela erminea), 108 water voles (Arvicola amphibius), 39 bank voles (Myodes glareolous), 10 field voles (Microtus agrestis), 15 wood mice (Apodemus sylvaticus), one common shrew (Sorex aranaeus), two pygmy shrews (Sorex minutus), two hedgehogs (Erinaceus europaeus) and 75 Eurasian otters (Lutra lutra). No cases of SARS-CoV-2 were detected in any animals, but a novel minacovirus related to mink and ferret alphacoronaviruses was detected in stoats recently introduced to the Orkney Islands. This group of viruses is of interest due to pathogenicity in ferrets. The impact of this virus on the health of stoat populations remains to be established.


Subject(s)
Alphacoronavirus , COVID-19 , Deer , Otters , Viruses , Animals , Humans , Cats , Mice , Animals, Wild , Ferrets , Mink , SARS-CoV-2/genetics , COVID-19/veterinary , Arvicolinae
19.
Mol Ecol ; 32(2): 281-298, 2023 01.
Article in English | MEDLINE | ID: mdl-34967471

ABSTRACT

The genetic consequences of species-wide declines are rarely quantified because the timing and extent of the decline varies across the species' range. The sea otter (Enhydra lutris) is a unique model in this regard. Their dramatic decline from thousands to fewer than 100 individuals per population occurred range-wide and nearly simultaneously due to the 18th-19th century fur trade. Consequently, each sea otter population represents an independent natural experiment of recovery after extreme population decline. We designed sequence capture probes for 50 Mb of sea otter exonic and neutral genomic regions. We sequenced 107 sea otters from five populations that span the species range to high coverage (18-76×) and three historical Californian samples from ~1500 and ~200 years ago to low coverage (1.5-3.5×). We observe distinct population structure and find that sea otters in California are the last survivors of a divergent lineage isolated for thousands of years and therefore warrant special conservation concern. We detect signals of extreme population decline in every surviving sea otter population and use this demographic history to design forward-in-time simulations of coding sequence. Our simulations indicate that this decline could lower the fitness of recovering populations for generations. However, the simulations also demonstrate how historically low effective population sizes prior to the fur trade may have mitigated the effects of population decline on genetic health. Our comprehensive approach shows how demographic inference from genomic data, coupled with simulations, allows assessment of extinction risk and different models of recovery.


Subject(s)
Otters , Humans , Animals , Otters/genetics , Population Density , Genomics
20.
Mol Ecol ; 32(2): 278-280, 2023 01.
Article in English | MEDLINE | ID: mdl-36440474

ABSTRACT

Quantifying the impact of human activity on the capacity of populations to persist is paramount to conservation biology, as numerous species and populations have already been driven to or beyond the brink of extinction. Those populations that persist are often a sobering example of the evolutionary power of human-disturbance, such as the loss of tusks in African elephants resulting from ivory harvesting (Campbell-Staton et al., 2021) and rapid life-history evolution in northern Atlantic cod in response to fisheries (Olsen et al., 2004). These evolutionary responses reflect a delicate interplay between demographic and selective processes (e.g., evolutionary rescue: Bell & Gonzalez, 2009; Gomulkiewicz & Holt, 1995), both of which can modify genetic variation for fitness. While quantifying fitness remains a difficult challenge, generalizable insights into the evolutionary consequences of population collapse can be provided in systems with independent demographic shifts in response to human activity. Unfortunately, such was the case for sea otter populations across its range in the 18th and 19th centuries, where the fur-trade had catastrophic, range-wide effects on sea otter (Enhydra lutris) populations. In a From the Cover article in this issue of Molecular Ecology, Beichman et al. (2022) combine a population genomic spatiotemporal data set and theoretical simulations not only to quantify past demographic change in response to sea otter exploitation, but also to understand the consequences of population collapse on species persistence.


Subject(s)
Otters , Animals , Humans , Otters/genetics , Demography
SELECTION OF CITATIONS
SEARCH DETAIL