Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 624
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Eur J Neurosci ; 60(1): 3643-3658, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38698531

ABSTRACT

The pedunculopontine tegmental nucleus of the brainstem (PPTg) has extensive interconnections and neuronal-behavioural correlates. It is implicated in movement control and sensorimotor integration. We investigated whether single neuron activity in freely moving rats is correlated with components of skilled forelimb movement, and whether individual neurons respond to both motor and sensory events. We found that individual PPTg neurons showed changes in firing rate at different times during the reach. This type of temporally specific modulation is like activity seen elsewhere in voluntary movement control circuits, such as the motor cortex, and suggests that PPTg neural activity is related to different specific events occurring during the reach. In particular, many neuronal modulations were time-locked to the end of the extension phase of the reach, when fine distal movements related to food grasping occur, indicating strong engagement of PPTg in this phase of skilled individual forelimb movements. In addition, some neurons showed brief periods of apparent oscillatory firing in the theta range at specific phases of the reach-to-grasp movement. When movement-related neurons were tested with tone stimuli, many also responded to this auditory input, allowing for sensorimotor integration at the cellular level. Together, these data extend the concept of the PPTg as an integrative structure in generation of complex movements, by showing that this function extends to the highly coordinated control of the forelimb during skilled reach to grasp movement, and that sensory and motor-related information converges on single neurons, allowing for direct integration at the cellular level.


Subject(s)
Neurons , Pedunculopontine Tegmental Nucleus , Theta Rhythm , Animals , Pedunculopontine Tegmental Nucleus/physiology , Neurons/physiology , Rats , Male , Theta Rhythm/physiology , Movement/physiology , Forelimb/physiology , Rats, Long-Evans , Action Potentials/physiology , Acoustic Stimulation/methods
2.
Eur J Neurosci ; 59(12): 3422-3444, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679044

ABSTRACT

Drug dependence is characterized by a switch in motivation wherein a positively reinforcing substance can become negatively reinforcing. Put differently, drug use can transform from a form of pleasure-seeking to a form of relief-seeking. Ventral tegmental area (VTA) GABA neurons form an anatomical point of divergence between two double dissociable pathways that have been shown to be functionally implicated and necessary for these respective motivations to seek drugs. The tegmental pedunculopontine nucleus (TPP) is necessary for opiate conditioned place preferences (CPP) in previously drug-naïve rats and mice, whereas dopaminergic (DA) transmission in the nucleus accumbens (NAc) is necessary for opiate CPP in opiate-dependent and withdrawn (ODW) rats and mice. Here, we show that this switch in functional anatomy is contingent upon the gap junction-forming protein, connexin-36 (Cx36), in VTA GABA neurons. Intra-VTA infusions of the Cx36 blocker, mefloquine, in ODW rats resulted in a reversion to a drug-naïve-like state wherein the TPP was necessary for opiate CPP and where opiate withdrawal aversions were lost. Consistent with these data, conditional knockout mice lacking Cx36 in GABA neurons (GAD65-Cre;Cx36 fl(CFP)/fl(CFP)) exhibited a perpetual drug-naïve-like state wherein opiate CPP was always DA independent, and opiate withdrawal aversions were absent even in mice subjected to an opiate dependence and withdrawal induction protocol. Further, viral-mediated rescue of Cx36 in VTA GABA neurons was sufficient to restore their susceptibility to an ODW state wherein opiate CPP was DA dependent. Our findings reveal a functional role for VTA gap junctions that has eluded prevailing circuit models of addiction.


Subject(s)
Connexins , GABAergic Neurons , Gap Junctions , Opioid-Related Disorders , Ventral Tegmental Area , Animals , Male , Mice , Rats , Connexins/metabolism , Connexins/genetics , GABAergic Neurons/metabolism , GABAergic Neurons/drug effects , Gap Junction delta-2 Protein , Gap Junctions/metabolism , Gap Junctions/drug effects , Mefloquine/pharmacology , Opioid-Related Disorders/metabolism , Opioid-Related Disorders/physiopathology , Pedunculopontine Tegmental Nucleus/metabolism , Pedunculopontine Tegmental Nucleus/drug effects , Rats, Sprague-Dawley , Ventral Tegmental Area/metabolism , Ventral Tegmental Area/drug effects
3.
Brain ; 146(3): 1053-1064, 2023 03 01.
Article in English | MEDLINE | ID: mdl-35485491

ABSTRACT

Free-water imaging can predict and monitor dopamine system degeneration in people with Parkinson's disease. It can also enhance the sensitivity of traditional diffusion tensor imaging (DTI) metrics for indexing neurodegeneration. However, these tools are yet to be applied to investigate cholinergic system degeneration in Parkinson's disease, which involves both the pedunculopontine nucleus and cholinergic basal forebrain. Free-water imaging, free-water-corrected DTI and volumetry were used to extract structural metrics from the cholinergic basal forebrain and pedunculopontine nucleus in 99 people with Parkinson's disease and 46 age-matched controls. Cognitive ability was tracked over 4.5 years. Pearson's partial correlations revealed that free-water-corrected DTI metrics in the pedunculopontine nucleus were associated with performance on cognitive tasks that required participants to make rapid choices (behavioural flexibility). Volumetric, free-water content and DTI metrics in the cholinergic basal forebrain were elevated in a sub-group of people with Parkinson's disease with evidence of cognitive impairment, and linear mixed modelling revealed that these metrics were differently associated with current and future changes to cognition. Free water and free-water-corrected DTI can index cholinergic degeneration that could enable stratification of patients in clinical trials of cholinergic interventions for cognitive decline. In addition, degeneration of the pedunculopontine nucleus impairs behavioural flexibility in Parkinson's disease, which may explain this region's role in increased risk of falls.


Subject(s)
Basal Forebrain , Parkinson Disease , Pedunculopontine Tegmental Nucleus , Humans , Parkinson Disease/complications , Diffusion Tensor Imaging , Basal Forebrain/diagnostic imaging , Cholinergic Agents , Water , Cholinergic Neurons
4.
Br J Anaesth ; 132(2): 320-333, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37953203

ABSTRACT

BACKGROUND: The neural mechanisms underlying sevoflurane-induced loss of consciousness and recovery of consciousness after anaesthesia remain unknown. We investigated whether glutamatergic pedunculopontine tegmental nucleus (PPT) neurones are involved in the regulation of states of consciousness under sevoflurane anaesthesia. METHODS: In vivo fibre photometry combined with electroencephalography (EEG)/electromyography recording was used to record changes in the activity of glutamatergic PPT neurones under sevoflurane anaesthesia. Chemogenetic and cortical EEG recordings were used to explore their roles in the induction of and emergence from sevoflurane anaesthesia. Optogenetic methods combined with EEG recordings were used to explore the roles of glutamatergic PPT neurones and of the PPT-ventral tegmental area pathway in maintenance of anaesthesia. RESULTS: The population activity of glutamatergic PPT neurones was reduced before sevoflurane-induced loss of righting reflex and gradually recovered after return of righting reflex. Chemogenetic inhibition of glutamatergic PPT neurones accelerated induction of anaesthesia (hM4Di-CNO vs mCherry-CNO, 76 [17] vs 121 [27] s, P<0.0001) and delayed emergence from sevoflurane anaesthesia (278 [98] vs 145 [53] s, P<0.0001) but increased sevoflurane sensitivity. Optogenetic stimulation of glutamatergic PPT neurons or of the PPT-ventral tegmental area pathway promoted cortical activation and behavioural emergence during steady-state sevoflurane anaesthesia, reduced the depth of anaesthesia, and caused cortical arousal during sevoflurane-induced EEG burst suppression. CONCLUSIONS: Glutamatergic PPT neurones regulate induction and emergence of sevoflurane anaesthesia.


Subject(s)
Pedunculopontine Tegmental Nucleus , Sevoflurane , Unconsciousness , Animals , Mice , Electroencephalography , Neurons , Sevoflurane/pharmacology , Unconsciousness/chemically induced
5.
Int J Mol Sci ; 25(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891832

ABSTRACT

The loss of midbrain dopaminergic (DA) neurons is the fundamental pathological feature of Parkinson's disease (PD). PD causes chronic pain in two-thirds of patients. Recent studies showed that the activation of the pedunculopontine tegmental nucleus (PPTg) can effectively relieve inflammatory pain and neuropathic pain. The PPTg is located in the pontomesencephalic tegmentum, a target of deep brain stimulation (DBS) treatment in PD, and is involved in motor control and sensory integration. To test whether the lesion of midbrain DA neurons induced pain hypersensitivity, and whether the chemogenetic activation of the PPTg could modulate the pain, the AAV-hM3Dq receptor was transfected and expressed into the PPTg neurons of 6-hydroxydopamine-lesioned mice. In this study, von Frey, open field, and adhesive tape removal tests were used to assess animals' pain sensitivity, locomotor activity, and sensorimotor function and somatosensory perception, respectively. Here, we found that the lesion of midbrain DA neurons induced a minor deficit in voluntary movement but did not affect sensorimotor function and somatosensory perception in the tape removal test. The results showed that lesion led to pain hypersensitivity, which could be alleviated both by levodopa and by the chemogenetic activation of the PPTg. Activating the PPTg may be a potential therapeutic strategy to relieve pain phenotypes in PD.


Subject(s)
Dopaminergic Neurons , Mesencephalon , Pedunculopontine Tegmental Nucleus , Animals , Pedunculopontine Tegmental Nucleus/metabolism , Dopaminergic Neurons/metabolism , Mice , Mesencephalon/metabolism , Male , Parkinson Disease/therapy , Parkinson Disease/physiopathology , Pain/etiology , Pain/metabolism , Mice, Inbred C57BL , Deep Brain Stimulation/methods , Disease Models, Animal , Levodopa/pharmacology , Oxidopamine
6.
Hum Brain Mapp ; 44(9): 3781-3794, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37186095

ABSTRACT

The pedunculopontine nucleus (PPN) is a small brainstem structure and has attracted attention as a potentially effective deep brain stimulation (DBS) target for the treatment of Parkinson's disease (PD). However, the in vivo location of PPN remains poorly described and barely visible on conventional structural magnetic resonance (MR) images due to a lack of high spatial resolution and tissue contrast. This study aims to delineate the PPN on a high-resolution (HR) atlas and investigate the visibility of the PPN in individual quantitative susceptibility mapping (QSM) images. We combine a recently constructed Montreal Neurological Institute (MNI) space unbiased QSM atlas (MuSus-100), with an implicit representation-based self-supervised image super-resolution (SR) technique to achieve an atlas with improved spatial resolution. Then guided by a myelin staining histology human brain atlas, we localize and delineate PPN on the atlas with improved resolution. Furthermore, we examine the feasibility of directly identifying the approximate PPN location on the 3.0-T individual QSM MR images. The proposed SR network produces atlas images with four times the higher spatial resolution (from 1 to 0.25 mm isotropic) without a training dataset. The SR process also reduces artifacts and keeps superb image contrast for further delineating small deep brain nuclei, such as PPN. Using the myelin staining histological atlas as guidance, we first identify and annotate the location of PPN on the T1-weighted (T1w)-QSM hybrid MR atlas with improved resolution in the MNI space. Then, we relocate and validate that the optimal targeting site for PPN-DBS is at the middle-to-caudal part of PPN on our atlas. Furthermore, we confirm that the PPN region can be identified in a set of individual QSM images of 10 patients with PD and 10 healthy young adults. The contrast ratios of the PPN to its adjacent structure, namely the medial lemniscus, on images of different modalities indicate that QSM substantially improves the visibility of the PPN both in the atlas and individual images. Our findings indicate that the proposed SR network is an efficient tool for small-size brain nucleus identification. HR QSM is promising for improving the visibility of the PPN. The PPN can be directly identified on the individual QSM images acquired at the 3.0-T MR scanners, facilitating a direct targeting of PPN for DBS surgery.


Subject(s)
Deep Brain Stimulation , Pedunculopontine Tegmental Nucleus , Young Adult , Humans , Magnetic Resonance Imaging/methods , Pedunculopontine Tegmental Nucleus/diagnostic imaging , Brain/diagnostic imaging , Brain Mapping/methods , Deep Brain Stimulation/methods
7.
J Neurosci ; 41(19): 4262-4275, 2021 05 12.
Article in English | MEDLINE | ID: mdl-33789917

ABSTRACT

Animals, including humans, readily learn to avoid harmful and threatening situations by moving in response to cues that predict the threat (e.g., fire alarm, traffic light). During a negatively reinforced sensory-guided locomotor action, known as signaled active avoidance, animals learn to avoid a harmful unconditioned stimulus (US) by moving away when signaled by a harmless conditioned stimulus (CS) that predicts the threat. CaMKII-expressing neurons in the pedunculopontine tegmentum area (PPT) of the midbrain locomotor region have been shown to play a critical role in the expression of this learned behavior, but the activity of these neurons during learned behavior is unknown. Using calcium imaging fiber photometry in freely behaving mice, we show that PPT neurons sharply activate during presentation of the auditory CS that predicts the threat before onset of avoidance movement. PPT neurons activate further during the succeeding CS-driven avoidance movement, or during the faster US-driven escape movement. PPT neuron activation was weak during slow spontaneous movements but correlated sharply with movement speed and, therefore, with the urgency of the behavior. Moreover, using optogenetics, we found that these neurons must discharge during the signaled avoidance interval for naive mice to effectively learn the active avoidance behavior. As an essential hub for signaled active avoidance, neurons in the midbrain tegmentum process the conditioned cue that predicts the threat and discharge sharply relative to the speed or apparent urgency of the avoidance (learned) and escape (innate) responses.SIGNIFICANCE STATEMENT During signaled active avoidance behavior, subjects move away to avoid a threat when directed by an innocuous sensory stimulus. Using imaging methods in freely behaving mice, we found that the activity of neurons in a part of the midbrain, known as the pedunculopontime tegmentum, increases during the presentation of the innocuous sensory stimulus that predicts the threat and also during the expression of the learned behavior as mice move away to avoid the threat. In addition, inhibiting these neurons abolishes the ability of mice to learn the behavior. Thus, neurons in this part of the midbrain code and are essential for signaled active avoidance behavior.


Subject(s)
Avoidance Learning/physiology , Locomotion/physiology , Tegmentum Mesencephali/physiology , Acoustic Stimulation , Animals , Cues , Escape Reaction/physiology , Mice , Mice, Inbred C57BL , Neuroimaging , Neurons/physiology , Optogenetics , Pedunculopontine Tegmental Nucleus/physiology , Photometry
8.
J Neurosci ; 41(40): 8390-8402, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34413208

ABSTRACT

The pedunculopontine nucleus (PPN) is a reticular collection of neurons at the junction of the midbrain and pons, playing an important role in modulating posture and locomotion. Deep brain stimulation of the PPN has been proposed as an emerging treatment for patients with Parkinson's disease (PD) or multiple system atrophy (MSA) who have gait-related atypical parkinsonian syndromes. In this study, we investigated PPN activities during gait to better understand its functional role in locomotion. Specifically, we investigated whether PPN activity is rhythmically modulated by gait cycles during locomotion. PPN local field potential (LFP) activities were recorded from PD or MSA patients with gait difficulties during stepping in place or free walking. Simultaneous measurements from force plates or accelerometers were used to determine the phase within each gait cycle at each time point. Our results showed that activities in the alpha and beta frequency bands in the PPN LFPs were rhythmically modulated by the gait phase within gait cycles, with a higher modulation index when the stepping rhythm was more regular. Meanwhile, the PPN-cortical coherence was most prominent in the alpha band. Both gait phase-related modulation in the alpha/beta power and the PPN-cortical coherence in the alpha frequency band were spatially specific to the PPN and did not extend to surrounding regions. These results suggest that alternating PPN modulation may support gait control. Whether enhancing alternating PPN modulation by stimulating in an alternating fashion could positively affect gait control remains to be tested.SIGNIFICANCE STATEMENT The therapeutic efficacy of pedunculopontine nucleus (PPN) deep brain stimulation (DBS) and the extent to which it can improve quality of life are still inconclusive. Understanding how PPN activity is modulated by stepping or walking may offer insight into how to improve the efficacy of PPN DBS in ameliorating gait difficulties. Our study shows that PPN alpha and beta activity was modulated by the gait phase, and that this was most pronounced when the stepping rhythm was regular. It remains to be tested whether enhancing alternating PPN modulation by stimulating in an alternating fashion could positively affect gait control.


Subject(s)
Alpha Rhythm/physiology , Beta Rhythm/physiology , Deep Brain Stimulation/methods , Gait/physiology , Pedunculopontine Tegmental Nucleus/physiology , Aged , Electroencephalography/methods , Female , Humans , Male , Middle Aged , Multiple System Atrophy/physiopathology , Multiple System Atrophy/therapy , Parkinson Disease/physiopathology , Parkinson Disease/therapy
9.
J Neurosci ; 41(7): 1529-1552, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33328292

ABSTRACT

The basal ganglia are important for movement and reinforcement learning. Using mice of either sex, we found that the main basal ganglia GABAergic output in the midbrain, the substantia nigra pars reticulata (SNr), shows movement-related neural activity during the expression of a negatively reinforced signaled locomotor action known as signaled active avoidance; this action involves mice moving away during a warning signal to avoid a threat. In particular, many SNr neurons deactivate during active avoidance responses. However, whether SNr deactivation has an essential role driving or regulating active avoidance responses is unknown. We found that optogenetic excitation of SNr or striatal GABAergic fibers that project to an area in the pedunculopontine tegmentum (PPT) within the midbrain locomotor region abolishes signaled active avoidance responses, while optogenetic inhibition of SNr cells (mimicking the SNr deactivation observed during an active avoidance behavior) serves as an effective conditioned stimulus signal to drive avoidance responses by disinhibiting PPT neurons. However, preclusion of SNr deactivation, or direct inhibition of SNr fibers in the PPT, does not impair the expression of signaled active avoidance, indicating that SNr output does not drive the expression of a signaled locomotor action mediated by the midbrain. Consistent with a permissive regulatory role, SNr output provides information about the state of the ongoing action to downstream structures that mediate the action.SIGNIFICANCE STATEMENT During signaled active avoidance behavior, subjects move away to avoid a threat when directed by an innocuous sensory stimulus. Excitation of GABAergic cells in the substantia nigra pars reticulata (SNr), the main output of the basal ganglia, blocks signaled active avoidance, while inhibition of SNr cells is an effective stimulus to drive active avoidance. Interestingly, many SNr cells inhibit their firing during active avoidance responses, suggesting that SNr inhibition could be driving avoidance responses by disinhibiting downstream areas. However, interfering with the modulation of SNr cells does not impair the behavior. Thus, SNr may regulate the active avoidance movement in downstream areas that mediate the behavior, but does not drive it.


Subject(s)
Basal Ganglia/physiology , Locomotion/physiology , Mesencephalon/physiology , Animals , Avoidance Learning/physiology , Female , Male , Mice , Nerve Fibers/physiology , Neural Pathways/physiology , Neurons/physiology , Optogenetics , Pars Reticulata/physiology , Pedunculopontine Tegmental Nucleus/physiology , gamma-Aminobutyric Acid/physiology
10.
J Neurosci Res ; 100(11): 2090-2106, 2022 11.
Article in English | MEDLINE | ID: mdl-36107107

ABSTRACT

The subthalamic nucleus (STN), substantia nigra pars reticulata (SNr), and pedunculopontine tegmental nucleus (PPTg) are reciprocally connected brain regions that play significant roles in the motor control. However, the electrophysiological relationship among the STN, SNr, and PPTg remains controversial. The present study was designed to further explore the mutual electrophysiological relationship of these brain regions from the perspective of the PPTg-STN-SNr neural circuit. The neuronal activities in the STN and SNr were simultaneously recorded while the PPTg was stimulated in anesthetized rats. The activation of PPTg induced excitatory responses of both the STN and SNr neurons. Comparisons of excitation latencies between the STN and SNr were made to distinguish the excitation evoked from the PPTg-STN-SNr pathway. Additionally, two types of excitatory responses and various inhibitory responses with different latencies in the SNr were recorded. The SNr responses could also be classified into five different response categories, which might attribute to projections within different neural circuits. Neuronal recordings were analyzed in different electrophysiological features (i.e., interspike interval [ISI] mode, ISI asymmetry index, ISI coefficient of variance, firing rate, burst index, and trough peak duration), and different response patterns of neurons had their specific features in neuronal activities. These findings indicated the complex interactions among the STN, SNr, and PPTg electrophysiologically, and provided insights into exploring information transmission mechanisms underlying these circuits.


Subject(s)
Pars Reticulata , Pedunculopontine Tegmental Nucleus , Subthalamic Nucleus , Animals , Neurons/physiology , Rats , Rats, Sprague-Dawley , Substantia Nigra/metabolism
11.
J Neural Transm (Vienna) ; 129(12): 1469-1479, 2022 12.
Article in English | MEDLINE | ID: mdl-36222971

ABSTRACT

Prior studies indicate more severe brainstem cholinergic deficits in Progressive Supranuclear Palsy (PSP) compared to Parkinson's disease (PD), but the extent and topography of subcortical deficits remains poorly understood. The objective of this study is to investigate differential cholinergic systems changes in progressive supranuclear palsy (PSP, n = 8) versus Parkinson's disease (PD, n = 107) and older controls (n = 19) using vesicular acetylcholine transporter [18F]-fluoroethoxybenzovesamicol (FEOBV) positron emission tomography (PET). A whole-brain voxel-based PET analysis using Statistical Parametric Mapping (SPM) software (SPM12) for inter-group comparisons using parametric [18F]-FEOBV DVR images. Voxel-based analyses showed lower FEOBV binding in the tectum, metathalamus, epithalamus, pulvinar, bilateral frontal opercula, anterior insulae, superior temporal pole, anterior cingulum, some striatal subregions, lower brainstem, and cerebellum in PSP versus PD (p < 0.05; false discovery rate-corrected). More severe and diffuse reductions were present in PSP vs controls. Higher frequency of midbrain cholinergic losses was seen in PSP compared to the PD participants using 5th percentile normative cut-off values (χ2 = 4.12, p < 0.05). When compared to PD, these findings suggested disease-specific cholinergic vulnerability in the tectum, striatal cholinergic interneurons, and projections from the pedunculopontine nucleus, medial vestibular nucleus, and the cholinergic forebrain in PSP.


Subject(s)
Parkinson Disease , Pedunculopontine Tegmental Nucleus , Supranuclear Palsy, Progressive , Humans , Supranuclear Palsy, Progressive/diagnostic imaging , Parkinson Disease/diagnostic imaging , Parkinson Disease/metabolism , Positron-Emission Tomography/methods , Pedunculopontine Tegmental Nucleus/metabolism , Cholinergic Agents
12.
Clin Exp Hypertens ; 44(4): 366-371, 2022 May 19.
Article in English | MEDLINE | ID: mdl-35261308

ABSTRACT

BACKGROUND: The pedunculopontine tegmental nucleus (PPT) is involved in cardiovascular regulation. The presence of mu (µ) opioid receptors in the PPT nucleus has been determined. In the present study, the role of this nucleus in normotensive conditions and then the role of these receptors on cardiovascular function in hypotension induced by hemorrhage (HEM) were investigated. METHOD: Animals were divided into the following groups: Group 1: control, Group 2: HEM, Group 3: morphine at dose 100 nmol (a general opioid receptor agonist), Group 4: naloxone at dose 100 nmol (a general opioid receptor antagonist), Group 5: morphine + HEM, and Group 6: naloxone + HEM. After anesthesia, two femoral arteries were cannulated to record the cardiovascular parameters and blood withdrawal. Two minutes after induction of HEM, drugs were injected into the nucleus, and cardiovascular parameters were measured. Changes (Δ) in cardiovascular responses due to drug injection and HEM were calculated and compared to control and HEM groups. RESULTS: HEM significantly reduced changes in systolic and mean arterial pressures and increased heart rate changes compared to control. Morphine microinjection in normotensive and HEM rats significantly decreased systolic blood pressure, mean arterial pressure, and heart rate, and naloxone significantly increased all these parameters. CONCLUSION: This study showed that the PPT nucleus plays a role in modulating the cardiovascular responses induced by HEM. The µ opioid receptor of the PPT nucleus in the normotensive and HEM rats have inhibitory effects on blood pressure and heart rate mainly, and these effects are eliminated by naloxone microinjection.


Subject(s)
Hypotension , Pedunculopontine Tegmental Nucleus , Animals , Rats , Blood Pressure , Receptors, Opioid , Naloxone/pharmacology , Femoral Artery , Hemorrhage , Morphine Derivatives , Receptors, Opioid, mu
13.
Clin Exp Hypertens ; 44(4): 297-305, 2022 May 19.
Article in English | MEDLINE | ID: mdl-35266430

ABSTRACT

BACKGROUND: The cardiovascular effects of nicotinic receptors of cholinergic system in the pedunculopontine tegmental nucleus (PPT) were shown. OBJECTIVE: In the following, the cardiovascular effects of the muscarinic receptor, another receptor in this system, were examined. METHODS: Rats were divided into eight groups: 1) control; 2 and 3) Ach (acetylcholine, an agonist) 90 and 150 nmol; 4 and 5) Atr (atropine; a muscarinic antagonist) 3 and 9 nmol; 6) Atr 3 + Ach 150; 7) Atr 9 + Ach 150; and 8) Atr 3 + hexamethonium (Hexa; 300 nmol) + Ach 150. After anesthesia, cannulation of the femoral artery was performed, and then the mean arterial pressure (MAP), systolic blood pressure (SBP), and heart rate (HR) were recorded using a power lab apparatus. RESULTS: Following drug microinjection, the maximum change (Δ) in MAP, SBP, and HR was calculated and analyzed. Both doses of Ach (90 and 150) significantly decreased ΔMAP and ΔSBP but could not change ΔHR. Neither of the doses of Atr significantly affected ΔMAP, ΔSBP, and ΔHR. Co-injection of Atr 3 + Ach 150 only increased ΔHR, but Atr 9 + Ach 150 decreased ΔMAP and ΔSBP than Ach 150 alone. The effect of the co-injection of Atr 9 + Hexa 300 + Ach 150 was also the same as the Atr 9 + Ach 150 group. CONCLUSION: The present results revealed that cholinergic muscarinic receptors in the PPT have an inhibitory effect on MAP and SBP with no important effect on HR.


Subject(s)
Pedunculopontine Tegmental Nucleus , Rats , Animals , Atropine/pharmacology , Acetylcholine/pharmacology , Receptors, Muscarinic/physiology , Cholinergic Agents
14.
Acta Neurochir (Wien) ; 164(2): 575-585, 2022 02.
Article in English | MEDLINE | ID: mdl-35029762

ABSTRACT

OBJECTIVES: Gait-related symptoms like postural instability and gait disorders (PIGD) inexorably worsen with Parkinson's disease (PD) deterioration and become refractory to current available medical treatment and deep brain stimulation (DBS) of conventional targets. Pedunculopontine nucleus (PPN) deep brain stimulation (DBS) is a promising method to treat PIGD. This prospective study aimed to clarify the clinical application of PPN-DBS and to explore effects of caudal PPN stimulation on PIGD. METHODS: Five consecutive PD patients with severe medication-resistant postural instability and gait disorders accepted caudal PPN-DBS. LEAD-DBS toolbox was used to reconstruct and visualize the electrodes based on pre- and postoperative images. Outcomes were assessed with Movement Disorder Society (MDS)-Sponsored Revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS), gait-specific questionnaires, and objective gait analysis with GAITRite system. RESULTS: MDS-UPDRS subitems 35-38 scores were improved at postoperative 6 months (mean, 4.40 vs 11.00; p = 0.0006) and 12 months (mean, 5.60 vs 11.00; p = 0.0013) compared with baseline, and scores at 6 months were slightly lower than scores at 12 months (mean, 4.40 vs 5.60; p = 0.0116). Gait and Falls Questionnaire, New Freezing of Gait Questionnaire, and Falls Questionnaire scores also significantly improved at postoperative 6 months and 12 months compared with baseline. In addition, cadence, bilateral step length, and bilateral stride length significantly increased when PPN On-stimulation compared with Off-stimulation. CONCLUSIONS: This study suggested that caudal PPN low-frequency stimulation improved PIGD for PD patients at the 6- and 12-month period.


Subject(s)
Deep Brain Stimulation , Gait Disorders, Neurologic , Parkinson Disease , Pedunculopontine Tegmental Nucleus , Deep Brain Stimulation/methods , Gait , Gait Disorders, Neurologic/etiology , Gait Disorders, Neurologic/therapy , Humans , Parkinson Disease/complications , Parkinson Disease/therapy , Pedunculopontine Tegmental Nucleus/physiology , Prospective Studies
15.
Neuromodulation ; 25(6): 925-934, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34435731

ABSTRACT

BACKGROUND: Deep brain stimulation (DBS) of the pedunculopontine nucleus (PPN) has been reported to improve gait disturbances in Parkinson's disease (PD); however, there are controversies on the radiological and electrophysiological techniques for intraoperative and postoperative confirmation of the target and determination of optimal stimulation parameters. OBJECTIVES: We investigated the correlation between the location of the estimated PPN (ePPN) and neuronal activity collected during intraoperative electrophysiological mapping to evaluate the role of microelectrode recording (MER) in identifying the effective stimulation site in two PD patients. MATERIALS AND METHODS: Bilateral PPN DBS was performed in two patients who had suffered from levodopa refractory gait disturbance. They had been implanted previously with DBS in the internal globus pallidus and the subthalamic nucleus, respectively. The PPN was determined on MRI and identified by intraoperative MER. Neuronal activity recorded was analyzed for mean discharge rate, bursting, and oscillatory activity. The effects were assessed by clinical ratings for motor signs before and after surgery. RESULTS: The PPN location was detected by MER. Groups of neurons characterized by tonic discharges were found 9-10 mm below the thalamus. The mean discharge rate in the ePPN was 19.1 ± 15.1 Hz, and 33% of the neurons of the ePPN responded with increased discharge rate during passive manipulation of the limbs and orofacial structures. PPN DBS with bipolar stimulation at a frequency range 10-30 Hz improved gait disturbances in both patients. Although PPN DBS provided therapeutic effects post-surgery in both cases, the effects waned after a year in case 1 and three years in case 2. CONCLUSIONS: Estimation of stimulation site within the PPN is possible by combining physiological guidance using MER and MRI findings. The PPN is a potential target for gait disturbances, although the efficacy of PPN DBS may depend on the location of the electrode and the stimulation parameters.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Pedunculopontine Tegmental Nucleus , Subthalamic Nucleus , Deep Brain Stimulation/methods , Globus Pallidus/physiology , Humans , Microelectrodes , Parkinson Disease/diagnostic imaging , Parkinson Disease/therapy , Pedunculopontine Tegmental Nucleus/physiology , Subthalamic Nucleus/diagnostic imaging
16.
Int J Mol Sci ; 24(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36613953

ABSTRACT

The pedunculopontine tegmental nucleus (PPN) regulates the activity of dopaminergic cells in the ventral tegmental area (VTA). In this study, the role of opioid receptors (OR) in the PPN on motivated behaviors was investigated by using a model of feeding induced by electrical VTA-stimulation (Es-VTA) in rats (male Wistar; n = 91). We found that the OR excitation by morphine and their blocking by naloxone within the PPN caused a change in the analyzed motivational behavior and neuronal activation. The opioid injections into the PPN resulted in a marked, dose-dependent increase/decrease in latency to feeding response (FR), which corresponded with increased neuronal activity (c-Fos protein), in most of the analyzed brain structures. Morphine dosed at 1.25/1.5 µg into the PPN significantly reduced behavior induced by Es-VTA, whereas morphine dosed at 0.25/0.5 µg into the PPN did not affect this behavior. The opposite effect was observed after the naloxone injection into the PPN, where its lowest doses of 2.5/5.0 µg shortened the FR latency. However, its highest dose of 25.0 µg into the PPN nucleus did not cause FR latency changes. In conclusion, the level of OR arousal in the PPN can modulate the activity of the reward system.


Subject(s)
Pedunculopontine Tegmental Nucleus , Ventral Tegmental Area , Rats , Male , Animals , Analgesics, Opioid/pharmacology , Proto-Oncogene Proteins c-fos , Pedunculopontine Tegmental Nucleus/physiology , Rats, Wistar , Morphine/pharmacology , Naloxone/pharmacology , Dopaminergic Neurons , Electric Stimulation
17.
J Neural Transm (Vienna) ; 128(5): 659-670, 2021 May.
Article in English | MEDLINE | ID: mdl-33779812

ABSTRACT

Deep brain stimulation of the pedunculopontine nucleus is a promising surgical procedure for the treatment of Parkinsonian gait and balance dysfunction. It has, however, produced mixed clinical results that are poorly understood. We used tractography with the aim to rationalise this heterogeneity. A cohort of eight patients with postural instability and gait disturbance (Parkinson's disease subtype) underwent pre-operative structural and diffusion MRI, then progressed to deep brain stimulation targeting the pedunculopontine nucleus. Pre-operative and follow-up assessments were carried out using the Gait and Falls Questionnaire, and Freezing of Gait Questionnaire. Probabilistic diffusion tensor tractography was carried out between the stimulating electrodes and both cortical and cerebellar regions of a priori interest. Cortical surface reconstructions were carried out to measure cortical thickness in relevant areas. Structural connectivity between stimulating electrode and precentral gyrus (r = 0.81, p = 0.01), Brodmann areas 1 (r = 0.78, p = 0.02) and 2 (r = 0.76, p = 0.03) were correlated with clinical improvement. A negative correlation was also observed for the superior cerebellar peduncle (r = -0.76, p = 0.03). Lower cortical thickness of the left parietal lobe and bilateral premotor cortices were associated with greater pre-operative severity of symptoms. Both motor and sensory structural connectivity of the stimulated surgical target characterises the clinical benefit, or lack thereof, from surgery. In what is a challenging region of brainstem to effectively target, these results provide insights into how this can be better achieved. The mechanisms of action are likely to have both motor and sensory components, commensurate with the probable nature of the underlying dysfunction.


Subject(s)
Deep Brain Stimulation , Gait Disorders, Neurologic , Parkinson Disease , Pedunculopontine Tegmental Nucleus , Gait , Gait Disorders, Neurologic/diagnostic imaging , Gait Disorders, Neurologic/etiology , Gait Disorders, Neurologic/therapy , Humans , Parkinson Disease/diagnostic imaging , Parkinson Disease/therapy , Pedunculopontine Tegmental Nucleus/diagnostic imaging
18.
Stereotact Funct Neurosurg ; 99(4): 287-294, 2021.
Article in English | MEDLINE | ID: mdl-33279909

ABSTRACT

BACKGROUND: Deep brain stimulation (DBS) of the pedunculopontine nucleus (PPN) has been investigated for the treatment of levodopa-refractory gait dysfunction in parkinsonian disorders, with equivocal results so far. OBJECTIVES: To summarize the clinical outcomes of PPN-DBS-treated patients at our centre and elicit any patterns that may guide future research. MATERIALS AND METHODS: Pre- and post-operative objective overall motor and gait subsection scores as well as patient-reported outcomes were recorded for 6 PPN-DBS-treated patients, 3 with Parkinson's disease (PD), and 3 with progressive supranuclear palsy (PSP). Electrodes were implanted unilaterally in the first 3 patients and bilaterally in the latter 3, using an MRI-guided MRI-verified technique. Stimulation was initiated at 20-30 Hz and optimized in an iterative manner. RESULTS: Unilaterally treated patients did not demonstrate significant improvements in gait questionnaires, UPDRS-III or PSPRS scores or their respective gait subsections. This contrasted with at least an initial response in bilaterally treated patients. Diurnal cycling of stimulation in a PD patient with habituation to the initial benefit reproduced substantial improvements in freezing of gait (FOG) 3 years post-operatively. Among the PSP patients, 1 with a parkinsonian subtype had a sustained improvement in FOG while another with Richardson syndrome (PSP-RS) did not benefit. CONCLUSIONS: PPN-DBS remains an investigational treatment for levodopa-refractory FOG. This series corroborates some previously reported findings: bilateral stimulation may be more effective than unilateral stimulation; the response in PSP patients may depend on the disease subtype; and diurnal cycling of stimulation to overcome habituation merits further investigation.


Subject(s)
Deep Brain Stimulation , Gait Disorders, Neurologic , Parkinson Disease , Pedunculopontine Tegmental Nucleus , Gait Disorders, Neurologic/etiology , Gait Disorders, Neurologic/therapy , Humans , Levodopa , Parkinson Disease/therapy
19.
J Neurosci ; 39(24): 4727-4737, 2019 06 12.
Article in English | MEDLINE | ID: mdl-30952811

ABSTRACT

The main excitatory inputs to the striatum arising from the cortex and the thalamus innervate both striatal spiny projection neurons and interneurons. These glutamatergic inputs to striatal GABAergic interneurons have been suggested to regulate the spike timing of striatal projection neurons via feedforward inhibition. Understanding how different excitatory inputs are integrated within the striatal circuitry and how they regulate striatal output is crucial for understanding basal ganglia function and related behaviors. Here, using VGLUT2 mice from both sexes, we report the existence of a glutamatergic projection from the mesencephalic locomotor region to the striatum that avoids the spiny neurons and selectively innervates interneurons. Specifically, optogenetic activation of glutamatergic axons from the pedunculopontine nucleus induced monosynaptic excitation in most recorded striatal cholinergic interneurons and GABAergic fast-spiking interneurons. Optogenetic stimulation in awake head-fixed mice consistently induced an increase in the firing rate of putative cholinergic interneurons and fast-spiking interneurons. In contrast, this stimulation did not induce excitatory responses in spiny neurons but rather disynaptic inhibitory responses ex vivo and a decrease in their firing rate in vivo, suggesting a feedforward mechanism mediating the inhibition of spiny projection neurons through the selective activation of striatal interneurons. Furthermore, unilateral stimulation of pedunculopontine nucleus glutamatergic axons in the striatum induced ipsilateral head rotations consistent with the inhibition of striatal output neurons. Our results demonstrate the existence of a unique interneuron-specific midbrain glutamatergic input to the striatum that exclusively recruits feedforward inhibition mechanisms.SIGNIFICANCE STATEMENT Glutamatergic inputs to the striatum have been shown to target both striatal projection neurons and interneurons and have been proposed to regulate spike timing of the projection neurons in part through feedforward inhibition. Here, we reveal the existence of a midbrain source of glutamatergic innervation to the striatum, originating in the pedunculopontine nucleus. Remarkably, this novel input selectively targets striatal interneurons, avoiding the projection neurons. Furthermore, we show that this selective innervation of interneurons can regulate the firing of the spiny projection neurons and inhibit the striatal output via feedforward inhibition. Together, our results describe a unique source of excitatory innervation to the striatum which selectively recruits feedforward inhibition of spiny neurons without any accompanying excitation.


Subject(s)
Interneurons/physiology , Neostriatum/cytology , Neostriatum/physiology , Neural Inhibition/physiology , Neurons/physiology , Pedunculopontine Tegmental Nucleus/cytology , Pedunculopontine Tegmental Nucleus/physiology , gamma-Aminobutyric Acid/physiology , Animals , Animals, Genetically Modified , Axons/physiology , Basal Ganglia/physiology , Female , Locomotion/physiology , Male , Mesencephalon/physiology , Mice , Nerve Net/cytology , Nerve Net/physiology , Optogenetics , Parasympathetic Nervous System/physiology , Vesicular Glutamate Transport Protein 2/genetics
20.
J Neurosci ; 39(23): 4576-4594, 2019 06 05.
Article in English | MEDLINE | ID: mdl-30936242

ABSTRACT

An innocuous sensory stimulus that reliably signals an upcoming aversive event can be conditioned to elicit locomotion to a safe location before the aversive outcome ensues. The neural circuits that mediate the expression of this signaled locomotor action, known as signaled active avoidance, have not been identified. While exploring sensorimotor midbrain circuits in mice of either sex, we found that excitation of GABAergic cells in the substantia nigra pars reticulata blocks signaled active avoidance by inhibiting cells in the pedunculopontine tegmental nucleus (PPT), not by inhibiting cells in the superior colliculus or thalamus. Direct inhibition of putative-glutamatergic PPT cells, excitation of GABAergic PPT cells, or excitation of GABAergic afferents in PPT, abolish signaled active avoidance. Conversely, excitation of putative-glutamatergic PPT cells, or inhibition of GABAergic PPT cells, can be tuned to drive avoidance responses. The PPT is an essential junction for the expression of signaled active avoidance gated by nigral and other synaptic afferents.SIGNIFICANCE STATEMENT When a harmful situation is signaled by a sensory stimulus (e.g., street light), subjects typically learn to respond with active or passive avoidance responses that circumvent the threat. During signaled active avoidance behavior, subjects move away to avoid a threat signaled by a preceding innocuous stimulus. We identified a part of the midbrain essential to process the signal and avoid the threat. Inhibition of neurons in this area eliminates avoidance responses to the signal but preserves escape responses caused by presentation of the threat. The results highlight an essential part of the neural circuits that mediate signaled active avoidance behavior.


Subject(s)
Avoidance Learning/physiology , Escape Reaction/physiology , GABAergic Neurons/physiology , Nerve Net/physiology , Pars Reticulata/physiology , Pedunculopontine Tegmental Nucleus/physiology , Animals , Avoidance Learning/drug effects , Avoidance Learning/radiation effects , Brain Mapping , Carrier Proteins/genetics , Carrier Proteins/radiation effects , Clozapine/analogs & derivatives , Clozapine/pharmacology , Conditioning, Classical , Dependovirus/genetics , Drinking Behavior , Electroshock , Escape Reaction/drug effects , Escape Reaction/radiation effects , Gain of Function Mutation , Genes, Reporter , Genetic Vectors/administration & dosage , Light , Mice , Noise/adverse effects , Optogenetics , Pars Reticulata/cytology , Reaction Time , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/radiation effects , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/radiation effects , Superior Colliculi/cytology , Superior Colliculi/physiology , Thalamus/cytology , Thalamus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL