Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.026
Filter
Add more filters

Publication year range
1.
Annu Rev Biochem ; 93(1): 211-231, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38603556

ABSTRACT

Almost all outer membrane proteins (OMPs) in Gram-negative bacteria contain a ß-barrel domain that spans the outer membrane (OM). To reach the OM, OMPs must be translocated across the inner membrane by the Sec machinery, transported across the crowded periplasmic space through the assistance of molecular chaperones, and finally assembled (folded and inserted into the OM) by the ß-barrel assembly machine. In this review, we discuss how considerable new insights into the contributions of these factors to OMP biogenesis have emerged in recent years through the development of novel experimental, computational, and predictive methods. In addition, we describe recent evidence that molecular machines that were thought to function independently might interact to form dynamic intermembrane supercomplexes. Finally, we discuss new results that suggest that OMPs are inserted primarily near the middle of the cell and packed into supramolecular structures (OMP islands) that are distributed throughout the OM.


Subject(s)
Bacterial Outer Membrane Proteins , Molecular Chaperones , Bacterial Outer Membrane Proteins/metabolism , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/chemistry , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/chemistry , Protein Transport , Protein Folding , Gram-Negative Bacteria/metabolism , Gram-Negative Bacteria/genetics , Bacterial Outer Membrane/metabolism , Models, Molecular , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/chemistry , SEC Translocation Channels/metabolism , SEC Translocation Channels/genetics , SEC Translocation Channels/chemistry , Periplasm/metabolism
2.
Cell ; 168(1-2): 172-185.e15, 2017 Jan 12.
Article in English | MEDLINE | ID: mdl-28086090

ABSTRACT

Pathogenic Vibrio cholerae remains a major human health concern. V. cholerae has a characteristic curved rod morphology, with a longer outer face and a shorter inner face. The mechanism and function of this curvature were previously unknown. Here, we identify and characterize CrvA, the first curvature determinant in V. cholerae. CrvA self-assembles into filaments at the inner face of cell curvature. Unlike traditional cytoskeletons, CrvA localizes to the periplasm and thus can be considered a periskeletal element. To quantify how curvature forms, we developed QuASAR (quantitative analysis of sacculus architecture remodeling), which measures subcellular peptidoglycan dynamics. QuASAR reveals that CrvA asymmetrically patterns peptidoglycan insertion rather than removal, causing more material insertions into the outer face than the inner face. Furthermore, crvA is quorum regulated, and CrvA-dependent curvature increases at high cell density. Finally, we demonstrate that CrvA promotes motility in hydrogels and confers an advantage in host colonization and pathogenesis.


Subject(s)
Vibrio cholerae/cytology , Vibrio cholerae/pathogenicity , Amino Acid Sequence , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Locomotion , Mice , Peptidoglycan/metabolism , Periplasm/metabolism , Sequence Alignment , Vibrio cholerae/genetics , Vibrio cholerae/metabolism , Virulence
3.
Cell ; 166(2): 369-379, 2016 Jul 14.
Article in English | MEDLINE | ID: mdl-27293188

ABSTRACT

It is still unclear what molecular forces drive chaperone-mediated protein folding. Here, we obtain a detailed mechanistic understanding of the forces that dictate the four key steps of chaperone-client interaction: initial binding, complex stabilization, folding, and release. Contrary to the common belief that chaperones recognize unfolding intermediates by their hydrophobic nature, we discover that the model chaperone Spy uses long-range electrostatic interactions to rapidly bind to its unfolded client protein Im7. Short-range hydrophobic interactions follow, which serve to stabilize the complex. Hydrophobic collapse of the client protein then drives its folding. By burying hydrophobic residues in its core, the client's affinity to Spy decreases, which causes client release. By allowing the client to fold itself, Spy circumvents the need for client-specific folding instructions. This mechanism might help explain how chaperones can facilitate the folding of various unrelated proteins.


Subject(s)
Carrier Proteins/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Molecular Chaperones/metabolism , Periplasmic Proteins/metabolism , Protein Folding , Carrier Proteins/metabolism , Entropy , Hydrophobic and Hydrophilic Interactions , Periplasm/chemistry , Static Electricity
4.
Nature ; 620(7973): 445-452, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37495693

ABSTRACT

To replicate inside macrophages and cause tuberculosis, Mycobacterium tuberculosis must scavenge a variety of nutrients from the host1,2. The mammalian cell entry (MCE) proteins are important virulence factors in M. tuberculosis1,3, where they are encoded by large gene clusters and have been implicated in the transport of fatty acids4-7 and cholesterol1,4,8 across the impermeable mycobacterial cell envelope. Very little is known about how cargos are transported across this barrier, and it remains unclear how the approximately ten proteins encoded by a mycobacterial mce gene cluster assemble to transport cargo across the cell envelope. Here we report the cryo-electron microscopy (cryo-EM) structure of the endogenous Mce1 lipid-import machine of Mycobacterium smegmatis-a non-pathogenic relative of M. tuberculosis. The structure reveals how the proteins of the Mce1 system assemble to form an elongated ABC transporter complex that is long enough to span the cell envelope. The Mce1 complex is dominated by a curved, needle-like domain that appears to be unrelated to previously described protein structures, and creates a protected hydrophobic pathway for lipid transport across the periplasm. Our structural data revealed the presence of a subunit of the Mce1 complex, which we identified using a combination of cryo-EM and AlphaFold2, and name LucB. Our data lead to a structural model for Mce1-mediated lipid import across the mycobacterial cell envelope.


Subject(s)
Bacterial Proteins , Cryoelectron Microscopy , Lipids , Membrane Transport Proteins , Mycobacterium tuberculosis , Virus Internalization , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/ultrastructure , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/ultrastructure , Mycobacterium tuberculosis/chemistry , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/ultrastructure , Tuberculosis/microbiology , Virulence Factors/chemistry , Virulence Factors/metabolism , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/ultrastructure , Periplasm/metabolism , Protein Domains , Hydrophobic and Hydrophilic Interactions , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Multiprotein Complexes/ultrastructure
5.
Mol Cell ; 81(15): 3145-3159.e7, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34214465

ABSTRACT

Hershey and Chase used bacteriophage T2 genome delivery inside Escherichia coli to demonstrate that DNA, not protein, is the genetic material. Seventy years later, our understanding of viral genome delivery in prokaryotes remains limited, especially for short-tailed phages of the Podoviridae family. These viruses expel mysterious ejection proteins found inside the capsid to form a DNA-ejectosome for genome delivery into bacteria. Here, we reconstitute the phage T7 DNA-ejectosome components gp14, gp15, and gp16 and solve the periplasmic tunnel structure at 2.7 Å resolution. We find that gp14 forms an outer membrane pore, gp15 assembles into a 210 Å hexameric DNA tube spanning the host periplasm, and gp16 extends into the host cytoplasm forming a ∼4,200 residue hub. Gp16 promotes gp15 oligomerization, coordinating peptidoglycan hydrolysis, DNA binding, and lipid insertion. The reconstituted gp15:gp16 complex lacks channel-forming activity, suggesting that the pore for DNA passage forms only transiently during genome ejection.


Subject(s)
Bacteriophage T7/genetics , DNA, Viral/chemistry , Periplasm/chemistry , Viral Core Proteins/chemistry , Computational Biology , Cryoelectron Microscopy , Cytoplasm/chemistry , DNA, Viral/metabolism , Lipid Bilayers/metabolism , Periplasm/genetics , Periplasm/metabolism , Podoviridae/chemistry , Podoviridae/genetics , Viral Core Proteins/metabolism
6.
Nature ; 608(7923): 626-631, 2022 08.
Article in English | MEDLINE | ID: mdl-35896743

ABSTRACT

Emissions of the critical ozone-depleting and greenhouse gas nitrous oxide (N2O) from soils and industrial processes have increased considerably over the last decades1-3. As the final step of bacterial denitrification, N2O is reduced to chemically inert N2 (refs. 1,4) in a reaction that is catalysed by the copper-dependent nitrous oxide reductase (N2OR) (ref. 5). The assembly of its unique [4Cu:2S] active site cluster CuZ requires both the ATP-binding-cassette (ABC) complex NosDFY and the membrane-anchored copper chaperone NosL (refs. 4,6). Here we report cryo-electron microscopy structures of Pseudomonas stutzeri NosDFY and its complexes with NosL and N2OR, respectively. We find that the periplasmic NosD protein contains a binding site for a Cu+ ion and interacts specifically with NosL in its nucleotide-free state, whereas its binding to N2OR requires a conformational change that is triggered by ATP binding. Mutually exclusive structures of NosDFY in complex with NosL and with N2OR reveal a sequential metal-trafficking and assembly pathway for a highly complex copper site. Within this pathway, NosDFY acts as a mechanical energy transducer rather than as a transporter. It links ATP hydrolysis in the cytoplasm to a conformational transition of the NosD subunit in the periplasm, which is required for NosDFY to switch its interaction partner so that copper ions are handed over from the chaperone NosL to the enzyme N2OR.


Subject(s)
Bacterial Proteins , Cryoelectron Microscopy , Nitrous Oxide , Oxidoreductases , Pseudomonas stutzeri , Adenosine Triphosphate/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/ultrastructure , Binding Sites , Copper/chemistry , Copper/metabolism , Cytoplasm/enzymology , Molecular Chaperones/metabolism , Nitrous Oxide/metabolism , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Oxidoreductases/ultrastructure , Periplasm/enzymology , Protein Binding , Protein Conformation , Pseudomonas stutzeri/cytology , Pseudomonas stutzeri/enzymology
7.
Nature ; 593(7859): 445-448, 2021 05.
Article in English | MEDLINE | ID: mdl-33981042

ABSTRACT

Mycobacterium tuberculosis is the cause of one of the most important infectious diseases in humans, which leads to 1.4 million deaths every year1. Specialized protein transport systems-known as type VII secretion systems (T7SSs)-are central to the virulence of this pathogen, and are also crucial for nutrient and metabolite transport across the mycobacterial cell envelope2,3. Here we present the structure of an intact T7SS inner-membrane complex of M. tuberculosis. We show how the 2.32-MDa ESX-5 assembly, which contains 165 transmembrane helices, is restructured and stabilized as a trimer of dimers by the MycP5 protease. A trimer of MycP5 caps a central periplasmic dome-like chamber that is formed by three EccB5 dimers, with the proteolytic sites of MycP5 facing towards the cavity. This chamber suggests a central secretion and processing conduit. Complexes without MycP5 show disruption of the EccB5 periplasmic assembly and increased flexibility, which highlights the importance of MycP5 for complex integrity. Beneath the EccB5-MycP5 chamber, dimers of the EccC5 ATPase assemble into three bundles of four transmembrane helices each, which together seal the potential central secretion channel. Individual cytoplasmic EccC5 domains adopt two distinctive conformations that probably reflect different secretion states. Our work suggests a previously undescribed mechanism of protein transport and provides a structural scaffold to aid in the development of drugs against this major human pathogen.


Subject(s)
Cryoelectron Microscopy , Mycobacterium tuberculosis , Type VII Secretion Systems/metabolism , Type VII Secretion Systems/ultrastructure , Cytosol/chemistry , Cytosol/metabolism , Models, Molecular , Mycobacterium tuberculosis/chemistry , Mycobacterium tuberculosis/ultrastructure , Periplasm/chemistry , Periplasm/metabolism , Protein Domains , Protein Multimerization , Protein Stability , Tuberculosis/virology , Type VII Secretion Systems/chemistry
8.
Proc Natl Acad Sci U S A ; 121(28): e2402543121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38959031

ABSTRACT

The outer membrane (OM) of gram-negative bacteria serves as a vital organelle that is densely populated with OM proteins (OMPs) and plays pivotal roles in cellular functions and virulence. The assembly and insertion of these OMPs into the OM represent a fundamental process requiring specialized molecular chaperones. One example is the translocation and assembly module (TAM), which functions as a transenvelope chaperone promoting the folding of specific autotransporters, adhesins, and secretion systems. The catalytic unit of TAM, TamA, comprises a catalytic ß-barrel domain anchored within the OM and three periplasmic polypeptide-transport-associated (POTRA) domains that recruit the TamB subunit. The latter acts as a periplasmic ladder that facilitates the transport of unfolded OMPs across the periplasm. In addition to their role in recruiting the auxiliary protein TamB, our data demonstrate that the POTRA domains mediate interactions with the inner surface of the OM, ultimately modulating the membrane properties. Through the integration of X-ray crystallography, molecular dynamic simulations, and biomolecular interaction methodologies, we located the membrane-binding site on the first and second POTRA domains. Our data highlight a binding preference for phosphatidylglycerol, a minor lipid constituent present in the OM, which has been previously reported to facilitate OMP assembly. In the context of the densely OMP-populated membrane, this association may serve as a mechanism to secure lipid accessibility for nascent OMPs through steric interactions with existing OMPs, in addition to creating favorable conditions for OMP biogenesis.


Subject(s)
Bacterial Outer Membrane Proteins , Escherichia coli Proteins , Bacterial Outer Membrane/metabolism , Bacterial Outer Membrane Proteins/metabolism , Bacterial Outer Membrane Proteins/chemistry , Escherichia coli/metabolism , Escherichia coli/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Models, Molecular , Molecular Chaperones/metabolism , Molecular Chaperones/chemistry , Periplasm/metabolism , Protein Domains , Protein Folding
9.
Proc Natl Acad Sci U S A ; 121(29): e2404958121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38985767

ABSTRACT

Hydrogen production through water splitting is a vital strategy for renewable and sustainable clean energy. In this study, we developed an approach integrating nanomaterial engineering and synthetic biology to establish a bionanoreactor system for efficient hydrogen production. The periplasmic space (20 to 30 nm) of an electroactive bacterium, Shewanella oneidensis MR-1, was engineered to serve as a bionanoreactor to enhance the interaction between electrons and protons, catalyzed by hydrogenases for hydrogen generation. To optimize electron transfer, we used the microbially reduced graphene oxide (rGO) to coat the electrode, which improved the electron transfer from the electrode to the cells. Native MtrCAB protein complex on S. oneidensis and self-assembled iron sulfide (FeS) nanoparticles acted in tandem to facilitate electron transfer from an electrode to the periplasm. To enhance proton transport, S. oneidensis MR-1 was engineered to express Gloeobacter rhodopsin (GR) and the light-harvesting antenna canthaxanthin. This led to efficient proton pumping when exposed to light, resulting in a 35.6% increase in the rate of hydrogen production. The overexpression of native [FeFe]-hydrogenase further improved the hydrogen production rate by 56.8%. The bionanoreactor engineered in S. oneidensis MR-1 achieved a hydrogen yield of 80.4 µmol/mg protein/day with a Faraday efficiency of 80% at a potential of -0.75 V. This periplasmic bionanoreactor combines the strengths of both nanomaterial and biological components, providing an efficient approach for microbial electrosynthesis.


Subject(s)
Graphite , Hydrogen , Shewanella , Hydrogen/metabolism , Shewanella/metabolism , Shewanella/genetics , Graphite/metabolism , Hydrogenase/metabolism , Hydrogenase/genetics , Electron Transport , Bioreactors , Synthetic Biology/methods , Electrodes , Rhodopsins, Microbial/metabolism , Rhodopsins, Microbial/genetics , Periplasm/metabolism , Bioelectric Energy Sources/microbiology
10.
Proc Natl Acad Sci U S A ; 121(25): e2319903121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38870058

ABSTRACT

Biofilm formation and surface attachment in multiple Alphaproteobacteria is driven by unipolar polysaccharide (UPP) adhesins. The pathogen Agrobacterium tumefaciens produces a UPP adhesin, which is regulated by the intracellular second messenger cyclic diguanylate monophosphate (c-di-GMP). Prior studies revealed that DcpA, a diguanylate cyclase-phosphodiesterase, is crucial in control of UPP production and surface attachment. DcpA is regulated by PruR, a protein with distant similarity to enzymatic domains known to coordinate the molybdopterin cofactor (MoCo). Pterins are bicyclic nitrogen-rich compounds, several of which are produced via a nonessential branch of the folate biosynthesis pathway, distinct from MoCo. The pterin-binding protein PruR controls DcpA activity, fostering c-di-GMP breakdown and dampening its synthesis. Pterins are excreted, and we report here that PruR associates with these metabolites in the periplasm, promoting interaction with the DcpA periplasmic domain. The pteridine reductase PruA, which reduces specific dihydro-pterin molecules to their tetrahydro forms, imparts control over DcpA activity through PruR. Tetrahydromonapterin preferentially associates with PruR relative to other related pterins, and the PruR-DcpA interaction is decreased in a pruA mutant. PruR and DcpA are encoded in an operon with wide conservation among diverse Proteobacteria including mammalian pathogens. Crystal structures reveal that PruR and several orthologs adopt a conserved fold, with a pterin-specific binding cleft that coordinates the bicyclic pterin ring. These findings define a pterin-responsive regulatory mechanism that controls biofilm formation and related c-di-GMP-dependent phenotypes in A. tumefaciens and potentially acts more widely in multiple proteobacterial lineages.


Subject(s)
Agrobacterium tumefaciens , Bacterial Proteins , Biofilms , Cyclic GMP , Pterins , Biofilms/growth & development , Agrobacterium tumefaciens/metabolism , Agrobacterium tumefaciens/genetics , Pterins/metabolism , Cyclic GMP/metabolism , Cyclic GMP/analogs & derivatives , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Proteobacteria/metabolism , Proteobacteria/genetics , Molybdenum Cofactors , Periplasm/metabolism , Periplasmic Proteins/metabolism , Periplasmic Proteins/genetics , Periplasmic Binding Proteins/metabolism , Periplasmic Binding Proteins/genetics , Gene Expression Regulation, Bacterial
11.
Nature ; 584(7821): 479-483, 2020 08.
Article in English | MEDLINE | ID: mdl-32788728

ABSTRACT

Lipopolysaccharide (LPS) resides in the outer membrane of Gram-negative bacteria where it is responsible for barrier function1,2. LPS can cause death as a result of septic shock, and its lipid A core is the target of polymyxin antibiotics3,4. Despite the clinical importance of polymyxins and the emergence of multidrug resistant strains5, our understanding of the bacterial factors that regulate LPS biogenesis is incomplete. Here we characterize the inner membrane protein PbgA and report that its depletion attenuates the virulence of Escherichia coli by reducing levels of LPS and outer membrane integrity. In contrast to previous claims that PbgA functions as a cardiolipin transporter6-9, our structural analyses and physiological studies identify a lipid A-binding motif along the periplasmic leaflet of the inner membrane. Synthetic PbgA-derived peptides selectively bind to LPS in vitro and inhibit the growth of diverse Gram-negative bacteria, including polymyxin-resistant strains. Proteomic, genetic and pharmacological experiments uncover a model in which direct periplasmic sensing of LPS by PbgA coordinates the biosynthesis of lipid A by regulating the stability of LpxC, a key cytoplasmic biosynthetic enzyme10-12. In summary, we find that PbgA has an unexpected but essential role in the regulation of LPS biogenesis, presents a new structural basis for the selective recognition of lipids, and provides opportunities for future antibiotic discovery.


Subject(s)
Cell Membrane/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli/chemistry , Escherichia coli/pathogenicity , Lipopolysaccharides/chemistry , Lipopolysaccharides/metabolism , Amidohydrolases/chemistry , Amidohydrolases/metabolism , Amino Acid Motifs , Bacterial Outer Membrane/chemistry , Bacterial Outer Membrane/metabolism , Binding Sites , Cell Membrane/metabolism , Enzyme Stability , Escherichia coli/cytology , Escherichia coli/drug effects , Genes, Essential , Hydrolases/chemistry , Hydrolases/metabolism , Lipid A/chemistry , Lipid A/metabolism , Lipopolysaccharides/biosynthesis , Microbial Sensitivity Tests , Microbial Viability/drug effects , Models, Molecular , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Peptide Fragments/pharmacology , Periplasm/chemistry , Periplasm/metabolism , Protein Binding , Virulence
12.
Proc Natl Acad Sci U S A ; 120(41): e2309607120, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37792514

ABSTRACT

A large number of small membrane proteins have been uncovered in bacteria, but their mechanism of action has remained mostly elusive. Here, we investigate the mechanism of a physiologically important small protein, MgrB, which represses the activity of the sensor kinase PhoQ and is widely distributed among enterobacteria. The PhoQ/PhoP two-component system is a master regulator of the bacterial virulence program and interacts with MgrB to modulate bacterial virulence, fitness, and drug resistance. A combination of cross-linking approaches with functional assays and protein dynamic simulations revealed structural rearrangements due to interactions between MgrB and PhoQ near the membrane/periplasm interface and along the transmembrane helices. These interactions induce the movement of the PhoQ catalytic domain and the repression of its activity. Without MgrB, PhoQ appears to be much less sensitive to antimicrobial peptides, including the commonly used C18G. In the presence of MgrB, C18G promotes MgrB to dissociate from PhoQ, thus activating PhoQ via derepression. Our findings reveal the inhibitory mechanism of the small protein MgrB and uncover its importance in antimicrobial peptide sensing.


Subject(s)
Antimicrobial Peptides , Bacterial Proteins , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Membrane Proteins/metabolism , Periplasm/metabolism , Gene Expression Regulation, Bacterial
13.
Proc Natl Acad Sci U S A ; 119(18): e2117633119, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35476526

ABSTRACT

Surface sensing is a critical process that promotes the transition to a biofilm lifestyle. Several surface-sensing mechanisms have been described for a range of species, most involving surface appendages, such as flagella and pili. Pseudomonas aeruginosa uses the Wsp chemosensory-like signal transduction pathway to sense surfaces and promote biofilm formation. The methyl-accepting chemotaxis protein WspA recognizes an unknown surface-associated signal and initiates a phosphorylation cascade that activates the diguanylate cyclase WspR. We conducted a screen for Wsp-activating compounds and found that chemicals that impact the cell envelope induce Wsp signaling, increase intracellular c-di-GMP levels, and can promote surface attachment. To isolate the Wsp system from other P. aeruginosa surface-sensing systems, we heterologously expressed it in Escherichia coli and found it sufficient for sensing surfaces and the chemicals identified in our screen. Using well-characterized reporters for different E. coli cell envelope stress responses, we then determined that Wsp sensitivity overlapped with multiple E. coli cell envelope stress-response systems. Using mutational and CRISPRi analysis, we found that misfolded proteins in the periplasm appear to be a major stimulus of the Wsp system. Finally, we show that surface attachment appears to have an immediate, observable effect on cell envelope integrity. Collectively, our results provide experimental evidence that cell envelope stress represents an important feature of surface sensing in P. aeruginosa.


Subject(s)
Cell Wall , Pseudomonas aeruginosa , Biofilms , Cell Membrane/metabolism , Periplasm , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism
14.
Proc Natl Acad Sci U S A ; 119(18): e2119907119, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35471908

ABSTRACT

The Porphyromonas gingivalis type IX secretion system (T9SS) promotes periodontal disease by secreting gingipains and other virulence factors. By in situ cryoelectron tomography, we report that the P. gingivalis T9SS consists of 18 PorM dimers arranged as a large, caged ring in the periplasm. Near the outer membrane, PorM dimers interact with a PorKN ring complex of ∼52 nm in diameter. PorMKN translocation complexes of a given T9SS adopt distinct conformations energized by the proton motive force, suggestive of different activation states. At the inner membrane, PorM associates with a cytoplasmic complex that exhibits 12-fold symmetry and requires both PorM and PorL for assembly. Activated motors deliver substrates across the outer membrane via one of eight Sov translocons arranged in a ring. The T9SSs are unique among known secretion systems in bacteria and eukaryotes in their assembly as supramolecular machines composed of apparently independently functioning translocation motors and export pores.


Subject(s)
Bacterial Proteins , Porphyromonas gingivalis , Bacterial Proteins/metabolism , Bacterial Secretion Systems/metabolism , Periplasm/metabolism , Virulence Factors/metabolism
15.
Proc Natl Acad Sci U S A ; 119(11): e2117245119, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35254893

ABSTRACT

SignificanceHow flagella sense complex environments and control bacterial motility remain fascinating questions. Here, we deploy cryo-electron tomography to determine in situ structures of the flagellar motor in wild-type and mutant cells of Borrelia burgdorferi, revealing that three flagellar proteins (FliL, MotA, and MotB) form a unique supramolecular complex in situ. Importantly, FliL not only enhances motor function by forming a ring around the stator complex MotA/MotB in its extended, active conformation but also facilitates assembly of the stator complex around the motor. Our in situ data provide insights into how cooperative remodeling of the FliL-stator supramolecular complex helps regulate the collective ion flux and establishes the optimal function of the flagellar motor to guide bacterial motility in various environments.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/ultrastructure , Flagella/ultrastructure , Membrane Proteins/chemistry , Membrane Proteins/ultrastructure , Periplasm/ultrastructure , Bacterial Physiological Phenomena , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Borrelia burgdorferi , Flagella/metabolism , Gene Expression Regulation, Bacterial , Membrane Proteins/metabolism , Models, Biological , Models, Molecular , Molecular Motor Proteins/genetics , Molecular Motor Proteins/metabolism , Periplasm/metabolism
16.
PLoS Genet ; 18(7): e1010180, 2022 07.
Article in English | MEDLINE | ID: mdl-35816552

ABSTRACT

Methionine residues are particularly sensitive to oxidation by reactive oxygen or chlorine species (ROS/RCS), leading to the appearance of methionine sulfoxide in proteins. This post-translational oxidation can be reversed by omnipresent protein repair pathways involving methionine sulfoxide reductases (Msr). In the periplasm of Escherichia coli, the enzymatic system MsrPQ, whose expression is triggered by the RCS, controls the redox status of methionine residues. Here we report that MsrPQ synthesis is also induced by copper stress via the CusSR two-component system, and that MsrPQ plays a role in copper homeostasis by maintaining the activity of the copper efflux pump, CusCFBA. Genetic and biochemical evidence suggest the metallochaperone CusF is the substrate of MsrPQ and our study reveals that CusF methionines are redox sensitive and can be restored by MsrPQ. Thus, the evolution of a CusSR-dependent synthesis of MsrPQ allows conservation of copper homeostasis under aerobic conditions by maintenance of the reduced state of Met residues in copper-trafficking proteins.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Copper/metabolism , Copper Transport Proteins/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Metallochaperones/genetics , Metallochaperones/metabolism , Methionine/metabolism , Oxidation-Reduction , Periplasm/metabolism
17.
Proc Natl Acad Sci U S A ; 119(36): e2208662119, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36037338

ABSTRACT

In gram-negative bacteria, lipoproteins are vital structural components of the outer membrane (OM) and crucial elements of machineries central to the physiology of the cell envelope. A dedicated apparatus, the Lol system, is required for the correct localization of OM lipoproteins and is essential for viability. The periplasmic chaperone LolA is central to this trafficking pathway, accepting triacylated lipoproteins from the inner membrane transporter LolCDE, before carrying them across the periplasm to the OM receptor LolB. Here, we report a crystal structure of liganded LolA, generated in vivo, revealing the molecular details of lipoprotein association. The structure highlights how LolA, initially primed to receive lipoprotein by interaction with LolC, further opens to accommodate the three ligand acyl chains in a precise conformation within its cavity. LolA forms extensive interactions with the acyl chains but not with any residue of the cargo, explaining the chaperone's ability to transport structurally diverse lipoproteins. Structural characterization of a ligandedLolA variant incapable of lipoprotein release reveals aberrant association, demonstrating the importance of the LolCDE-coordinated, sequential opening of LolA for inserting lipoprotein in a manner productive for subsequent trafficking. Comparison with existing structures of LolA in complex with LolC or LolCDE reveals substantial overlap of the lipoprotein and LolC binding sites within the LolA cavity, demonstrating that insertion of lipoprotein acyl chains physically disengages the chaperone protein from the transporter by perturbing interaction with LolC. Taken together, our data provide a key step toward a complete understanding of a fundamentally important trafficking pathway.


Subject(s)
Escherichia coli Proteins , Periplasmic Binding Proteins , Protein Transport , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Carrier Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Ligands , Lipoproteins/metabolism , Models, Molecular , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Periplasm/metabolism , Periplasmic Binding Proteins/chemistry , Periplasmic Binding Proteins/genetics , Periplasmic Binding Proteins/metabolism , Protein Structure, Tertiary , Protein Transport/genetics
18.
J Biol Chem ; 299(11): 105314, 2023 11.
Article in English | MEDLINE | ID: mdl-37797696

ABSTRACT

Enzymatic modifications of bacterial exopolysaccharides enhance immune evasion and persistence during infection. In the Gram-negative opportunistic pathogen Pseudomonas aeruginosa, acetylation of alginate reduces opsonic killing by phagocytes and improves reactive oxygen species scavenging. Although it is well known that alginate acetylation in P. aeruginosa requires AlgI, AlgJ, AlgF, and AlgX, how these proteins coordinate polymer modification at a molecular level remains unclear. Here, we describe the structural characterization of AlgF and its protein interaction network. We characterize direct interactions between AlgF and both AlgJ and AlgX in vitro and demonstrate an association between AlgF and AlgX, as well as AlgJ and AlgI, in P. aeruginosa. We determine that AlgF does not exhibit acetylesterase activity and is unable to bind to polymannuronate in vitro. Therefore, we propose that AlgF functions to mediate protein-protein interactions between alginate acetylation enzymes, forming the periplasmic AlgJFXK (AlgJ-AlgF-AlgX-AlgK) acetylation and export complex required for robust biofilm formation.


Subject(s)
Alginates , Pseudomonas aeruginosa , Acetylation , Alginates/chemistry , Bacterial Proteins/metabolism , Biofilms , Periplasm/metabolism , Protein Processing, Post-Translational , Pseudomonas aeruginosa/metabolism
19.
J Am Chem Soc ; 146(13): 9252-9260, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38500259

ABSTRACT

The rapid spread of antimicrobial resistance across bacterial pathogens poses a serious risk to the efficacy and sustainability of available treatments. This puts pressure on research concerning the development of new drugs. Here, we present an in-cell NMR-based research strategy to monitor the activity of the enzymes located in the periplasmic space delineated by the inner and outer membranes of Gram-negative bacteria. We demonstrate its unprecedented analytical power in monitoring in situ and in real time (i) the hydrolysis of ß-lactams by ß-lactamases, (ii) the interaction of drugs belonging to the ß-lactam family with their essential targets, and (iii) the binding of inhibitors to these enzymes. We show that in-cell NMR provides a powerful analytical tool for investigating new drugs targeting the molecular components of the bacterial periplasm.


Subject(s)
Anti-Bacterial Agents , Periplasm , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Periplasm/metabolism , Bacteria , beta-Lactams , beta-Lactamases/metabolism , Magnetic Resonance Spectroscopy
20.
Mol Microbiol ; 119(4): 423-438, 2023 04.
Article in English | MEDLINE | ID: mdl-36756756

ABSTRACT

Copper avidly binds thiols and is redox active, and it follows that one element of copper toxicity may be the generation of undesirable disulfide bonds in proteins. In the present study, copper oxidized the model thiol N-acetylcysteine in vitro. Alkaline phosphatase (AP) requires disulfide bonds for activity, and copper activated reduced AP both in vitro and when it was expressed in the periplasm of mutants lacking their native disulfide-generating system. However, AP was not activated when it was expressed in the cytoplasm of copper-overloaded cells. Similarly, this copper stress failed to activate OxyR, a transcription factor that responds to the creation of a disulfide bond. The elimination of cellular disulfide-reducing systems did not change these results. Nevertheless, in these cells, the cytoplasmic copper concentration was high enough to impair growth and completely inactivate enzymes with solvent-exposed [4Fe-4S] clusters. Experiments with N-acetylcysteine determined that the efficiency of thiol oxidation is limited by the sluggish pace at which oxygen regenerates copper(II) through oxidation of the thiyl radical-Cu(I) complex. We conclude that this slow step makes copper too inefficient a catalyst to create disulfide stress in the thiol-rich cytoplasm, but it can still impact the few thiol-containing proteins in the periplasm. It also ensures that copper accumulates intracellularly in the Cu(I) valence.


Subject(s)
Copper , Escherichia coli , Copper/metabolism , Escherichia coli/metabolism , Periplasm/metabolism , Acetylcysteine/metabolism , Cytoplasm/metabolism , Bacteria/metabolism , Oxidation-Reduction , Transcription Factors/metabolism , Sulfhydryl Compounds/metabolism , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Disulfides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL