Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters

Publication year range
1.
Cell Biol Toxicol ; 40(1): 69, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136868

ABSTRACT

Many persistent organic pollutants (POPs) are suspected endocrine disruptors and it is important to investigate their effects at low concentrations relevant to human exposure. Here, the OECD test guideline #456 steroidogenesis assay was downscaled to a 96-well microplate format to screen 24 POPs for their effects on viability, and testosterone and estradiol synthesis using the human adrenocortical cell line H295R. The compounds (six polyfluoroalkyl substances, five organochlorine pesticides, ten polychlorinated biphenyls and three polybrominated diphenyl ethers) were tested at human-relevant levels (1 nM to 10 µM). Increased estradiol synthesis, above the OECD guideline threshold of 1.5-fold solvent control, was shown after exposure to 10 µM PCB-156 (153%) and PCB-180 (196%). Interestingly, the base hormone synthesis varied depending on the cell batch. An alternative data analysis using a linear mixed-effects model that include multiple independent experiments and considers batch-dependent variation was therefore applied. This approach revealed small but statistically significant effects on estradiol or testosterone synthesis for 17 compounds. Increased testosterone levels were demonstrated even at 1 nM for PCB-74 (18%), PCB-99 (29%), PCB-118 (16%), PCB-138 (19%), PCB-180 (22%), and PBDE-153 (21%). The MTT assay revealed significant effects on cell viability after exposure to 1 nM of perfluoroundecanoic acid (12%), 3 nM PBDE-153 (9%), and 10 µM of PCB-156 (6%). This shows that some POPs can interfere with endocrine signaling at concentrations found in human blood, highlighting the need for further investigation into the toxicological mechanisms of POPs and their mixtures at low concentrations relevant to human exposure.


Subject(s)
Cell Survival , Endocrine Disruptors , Persistent Organic Pollutants , Polychlorinated Biphenyls , Testosterone , Humans , Testosterone/biosynthesis , Testosterone/metabolism , Persistent Organic Pollutants/metabolism , Endocrine Disruptors/toxicity , Endocrine Disruptors/pharmacology , Cell Survival/drug effects , Polychlorinated Biphenyls/toxicity , Halogenated Diphenyl Ethers/toxicity , Estradiol/metabolism , Estrogens , Cell Line , Pesticides/toxicity , Hydrocarbons, Chlorinated/toxicity
2.
Environ Sci Technol ; 58(33): 14740-14752, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39103310

ABSTRACT

Plastics are invading nearly all ecosystems on earth, acting as emerging repositories for toxic organic pollutants and thereby imposing substantial threats to ecological integrity. The colonization of plastics by microorganisms, forming the plastisphere, has garnered attention due to its potential influence on biogeochemical cycles. However, the capability of plastisphere microorganisms to attenuate organohalide pollutants remains to be evaluated. This study revealed that the plastisphere, collected from coastal ecosystems, harbors unique microbiomes, while the natural accumulation of organohalide pollutants on plastics may favor the proliferation of organohalide-respiring bacteria (OHRB). Laboratory tests further elucidated the high potential of plastisphere microbiota to reductively dehalogenate a variety of organohalide pollutants. Notably, over 70% tested plastisphere completely debrominated tetrabromobisphenol A (TBBPA) and polybrominated diphenyl ethers (PBDEs) to nonhalogenated products, whereas polychlorinated biphenyls (PCBs) were converted to lower congeners under anaerobic conditions. Dehalococcoides, Dehalogenimonas, and novel Dehalococcoidia populations might contribute to the observed dehalogenation based on their growth during incubation and positive correlations with the quantity of halogens removed. Intriguingly, large fractions of these OHRB populations were identified in a lack of the currently known TBBPA/PBDEs/PCBs reductive dehalogenase (RDase) genes, suggesting the presence of novel RDase genes. Microbial community analyses identified organohalides as a crucial factor in determining the composition, diversity, interaction, and assembly of microbes derived from the plastisphere. Collectively, this study underscores the overlooked roles of the plastisphere in the natural attenuation of persistent organohalide pollutants and sheds light on the unignorable impacts of organohalide compounds on the microbial ecology of the plastisphere.


Subject(s)
Microbiota , Plastics , Persistent Organic Pollutants/metabolism , Bacteria/metabolism , Halogenated Diphenyl Ethers/metabolism , Biodegradation, Environmental
3.
Environ Sci Technol ; 58(33): 14797-14811, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39120259

ABSTRACT

Short-, medium-, and long-chain chlorinated paraffins (CPs) (SCCPs, MCCPs, and LCCPs) and dechloranes are chemicals of emerging concern; however, little is known of their bioaccumulative potential compared to legacy contaminants in marine mammals. Here, we analyzed SCCPs, MCCPs, LCCPs, 7 dechloranes, 4 emerging brominated flame retardants, and 64 legacy contaminants, including polychlorinated biphenyls (PCBs), in the blubber of 46 individual marine mammals, representing 10 species, from Norway. Dietary niche was modeled based on stable isotopes of nitrogen and carbon in the skin/muscle to assess the contaminant accumulation in relation to diet. SCCPs and dechlorane-602 were strongly positively correlated with legacy contaminants and highest in killer (Orcinus orca) and sperm (Physeter macrocephalus) whales (median SCCPs: 160 ng/g lw; 230 ng/g lw and median dechlorane-602: 3.8 ng/g lw; 2.0 ng/g lw, respectively). In contrast, MCCPs and LCCPs were only weakly correlated to recalcitrant legacy contaminants and were highest in common minke whales (Balaenoptera acutorostrata; median MCCPs: 480 ng/g lw and LCCPs: 240 ng/g lw). The total contaminant load in all species was dominated by PCBs and legacy chlorinated pesticides (63-98%), and MCCPs dominated the total CP load (42-68%, except 11% in the long-finned pilot whale Globicephala melas). Surprisingly, we found no relation between contaminant concentrations and dietary niche, suggesting that other large species differences may be masking effects of diet such as lifespan or biotransformation and elimination capacities. CP and dechlorane concentrations were higher than in other marine mammals from the (sub)Arctic, and they were present in a killer whale neonate, indicating bioaccumulative properties and a potential for maternal transfer in these predominantly unregulated chemicals.


Subject(s)
Persistent Organic Pollutants , Animals , Norway , Persistent Organic Pollutants/metabolism , Hydrocarbons, Chlorinated/metabolism , Paraffin/metabolism , Mammals/metabolism , Environmental Monitoring , Flame Retardants/metabolism , Diet , Polychlorinated Biphenyls/metabolism
4.
Environ Res ; 252(Pt 3): 119035, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38685302

ABSTRACT

Lake Baikal, the largest freshwater lake by volume, provides drinking water and aquatic food supplies to over 2.5 million people. However, the lake has been contaminated with recalcitrant pollutants released from surrounding industrial complexes, agriculture, and natural lands, thereby increasing the risk of their bioaccumulation in fish and seals. Yet, a collective analysis of historical concentration data and their bioaccumulation potential as well as what factors drive their accumulation in fish or seals remains largely unknown. We analyzed concentration data from 42 studies collected between 1985 and 2019 in water, sediment, fish, and seals of Lake Baikal. Heavy metals had the highest concentrations in water and biota followed closely by polycyclic aromatic hydrocarbons (PAHs) and organochlorines. Among organochlorines, polychlorinated biphenyls (PCBs) showed the highest levels in water, surpassing hexachlorocyclohexane (HCH) concentrations, particularly after normalizing to solubility. While naphthalene and phenanthrene exhibited the highest average concentrations among polycyclic aromatic hydrocarbons (PAHs), their relative concentrations significantly decreased upon solubility normalization. The analysis confirmed that bioconcentration and biomagnification of organochlorine pesticides, PCBs, PAHs, and heavy metals depend primarily on source strength to drive their concentration in water and secondarily on their chemical characteristics as evidenced by the higher concentrations of low-solubility PCBs and high molecular weight PAHs in water and sediment. The differential biomagnification patterns of Cu, Hg, and Zn compared to Pb are attributed to their distinct sources and bioavailability, with Cu, Hg, and Zn showing more pronounced biomagnification due to prolonged industrial release, in contrast to the declining Pb levels. Dibenzo-p-dioxins were detected in sediment and seals, but not in water or fish compartments. These data highlight the importance of addressing even low concentrations of organic and inorganic pollutants and the need for more consistent and frequent monitoring to ensure the future usability of this and other similar essential natural resources.


Subject(s)
Environmental Monitoring , Lakes , Metals, Heavy , Persistent Organic Pollutants , Water Pollutants, Chemical , Lakes/chemistry , Water Pollutants, Chemical/analysis , Metals, Heavy/analysis , Persistent Organic Pollutants/metabolism , Animals , Fishes/metabolism , Geologic Sediments/chemistry , Geologic Sediments/analysis , Bioaccumulation , Siberia , Caniformia , Polychlorinated Biphenyls/analysis , Polycyclic Aromatic Hydrocarbons/analysis
5.
Sheng Li Xue Bao ; 76(4): 631-642, 2024 Aug 25.
Article in Zh | MEDLINE | ID: mdl-39192795

ABSTRACT

In recent decades, there has been a consistent decline in semen quality across the globe, with environmental pollution emerging as the predominant factor. Persistent organic pollutants (POPs) have garnered considerable attention due to their potent biological toxicity and resistance to natural degradation. Within this class of pollutants, polycyclic aromatic hydrocarbons (PAHs) and halogenated aromatic hydrocarbons (HAHs) have been identified as detrimental agents that can disrupt cellular physiological functions by activating aryl hydrocarbon receptor (AhR). However, the precise role of AhR in the adverse effects of environmental pollutants on male mammalian fertility remains incompletely understood. This article provides a comprehensive review of the impact of various environmental pollutants, specifically PAHs such as benzo[a]pyrene, 3-methylcholanthrene, and 7,12-dimethylbenzo[a]anthracene, HAHs including 2,3,7,8-tetrachlorodibenzo-p-dioxins, polychlorinated biphenyls, polybrominated diphenyl ethers, and the pollutant complex PM2.5, as well as cigarette smoke condensates, on male mammalian reproductive function. Additionally, this review focuses on the role of the AhR in mediating these effects. The objective of this review is to elucidate the involvement of AhR in the regulation of male mammalian fertility, thereby offering insights for prospective investigations into the interplay between AhR and male reproductive function, as well as the etiology of idiopathic male infertility in clinic.


Subject(s)
Environmental Pollutants , Infertility, Male , Polycyclic Aromatic Hydrocarbons , Receptors, Aryl Hydrocarbon , Receptors, Aryl Hydrocarbon/metabolism , Male , Animals , Environmental Pollutants/toxicity , Environmental Pollutants/adverse effects , Humans , Polycyclic Aromatic Hydrocarbons/adverse effects , Polycyclic Aromatic Hydrocarbons/toxicity , Infertility, Male/chemically induced , Infertility, Male/etiology , Infertility, Male/metabolism , Polychlorinated Biphenyls/adverse effects , Polychlorinated Biphenyls/toxicity , Fertility/drug effects , Halogenated Diphenyl Ethers/adverse effects , Halogenated Diphenyl Ethers/toxicity , Persistent Organic Pollutants/adverse effects , Persistent Organic Pollutants/metabolism
6.
Reprod Fertil Dev ; 35(3): 294-305, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36403477

ABSTRACT

CONTEXT: The destruction of granulosa cells (GCs), the main functional cell type in the ovary, prevents steroid hormone production, which in turn may damage oocytes, resulting in ovarian failure. The accumulation of a number of persistent organic pollutants (POPs) in the ovarian follicular fluid (FF) has been documented, which raises serious questions regarding their impact on female fertility. AIMS: We aimed to determine whether a mixture of POPs reflecting the profile found in FF influences mouse GCs or oocyte function and viability. METHODS: A mixture of POPs, comprising perfluorooctanoate, perfluorooctane sulfonate, 2,2-dichlorodiphenyldichloroethylene, polychlorinated biphenyl 153, and hexachlorobenzene, was used. In addition to using the exact concentration of POPs previously measured in human FF, we tested two other mixtures, one with10-fold lower and another with 10-fold higher concentrations of each POP. KEY RESULTS: Steroidogenesis was disrupted in GCs by the POP mixture, as demonstrated by lower oestradiol and progesterone secretion and greater lipid droplet accumulation. Furthermore, the POP mixture reduced GC viability and increased apoptosis, assessed using caspase-3 activity. The POP mixture significantly increased the number of oocytes that successfully progressed to the second meiotic metaphase and the oocyte reactive oxygen species (ROS) concentration. CONCLUSIONS: Thus, a mixture of POPs that are typically present in human FF has detrimental effects on ovarian function: it reduces the viability of GCs, and increases the oocyte concentrations of ROS. IMPLICATIONS: These results indicate that chronic exposure to POPs adversely affects female reproductive health.


Subject(s)
Environmental Pollutants , Persistent Organic Pollutants , Female , Animals , Humans , Mice , Reactive Oxygen Species/metabolism , Persistent Organic Pollutants/metabolism , Granulosa Cells/metabolism , Oocytes/metabolism , Environmental Pollutants/toxicity
7.
J Appl Toxicol ; 43(12): 1859-1871, 2023 12.
Article in English | MEDLINE | ID: mdl-37528559

ABSTRACT

In the North Sea and North Atlantic coastal areas, fish experience relatively high background levels of persistent organic pollutants. This study aimed to compare the mode of action of environmentally relevant concentrations of mixtures of halogenated compounds in Atlantic cod. Juvenile male cod with mean weight of 840 g were exposed by gavage to dietary mixtures of chlorinated (PCBs, DDT analogs, chlordane, lindane, and toxaphene), brominated (PBDEs), and fluorinated (PFOS) compounds for 4 weeks. One group received a combined mixture of all three compound groups. The results showed that the accumulated levels of chemicals in cod liver after 4 weeks of exposure reflected concentrations found in wild fish in this region. Pathway analysis revealed that the treatment effects by each of the three groups of chemicals (chlorinated, brominated, and fluorinated) converged on activation of the unfolded protein response (UPR). Upstream regulator analysis predicted that almost all the key transcription factors (XBP1, ERN1, ATF4, EIF2AK3, and NFE2L2) regulating the UPR were significantly activated. No additive effect was observed in cod co-treated with all three compound groups. In conclusion, the genome-wide transcriptomic study suggests that the UPR pathway is a sensitive common target of halogenated organic environmental pollutants in fish.


Subject(s)
Environmental Pollutants , Gadus morhua , Polychlorinated Biphenyls , Water Pollutants, Chemical , Animals , Male , Gadus morhua/metabolism , Persistent Organic Pollutants/metabolism , Persistent Organic Pollutants/pharmacology , Liver , Polychlorinated Biphenyls/analysis , Environmental Pollutants/analysis , Water Pollutants, Chemical/analysis
8.
Anal Bioanal Chem ; 414(3): 1245-1258, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34668045

ABSTRACT

Persistent organic pollutants (POPs) are xenobiotic chemicals of global concern due to their long-range transport capabilities, persistence, ability to bioaccumulate, and potential to have negative effects on human health and the environment. Identifying POPs in both the environment and human body is therefore essential for assessing potential health risks, but their diverse range of chemical classes challenge analytical techniques. Currently, platforms coupling chromatography approaches with mass spectrometry (MS) are the most common analytical methods employed to evaluate both parent POPs and their respective metabolites and/or degradants in samples ranging from d rinking water to biofluids. Unfortunately, different types of analyses are commonly needed to assess both the parent and metabolite/degradant POPs from the various chemical classes. The multiple time-consuming analyses necessary thus present a number of technical and logistical challenges when rapid evaluations are needed and sample volumes are limited. To address these challenges, we characterized 64 compounds including parent per- and polyfluoroalkyl substances (PFAS), pesticides, polychlorinated biphenyls (PCBs), industrial chemicals, and pharmaceuticals and personal care products (PPCPs), in addition to their metabolites and/or degradants, using ion mobility spectrometry coupled with MS (IMS-MS) as a potential rapid screening technique. Different ionization sources including electrospray ionization (ESI) and atmospheric pressure photoionization (APPI) were employed to determine optimal ionization for each chemical. Collectively, this study advances the field of exposure assessment by structurally characterizing the 64 important environmental pollutants, assessing their best ionization sources, and evaluating their rapid screening potential with IMS-MS.


Subject(s)
Persistent Organic Pollutants/chemistry , Persistent Organic Pollutants/metabolism , Environmental Monitoring/methods , Humans , Ion Mobility Spectrometry/methods , Mass Spectrometry/methods , Pesticides/analysis , Pesticides/metabolism , Pharmaceutical Preparations/analysis , Pharmaceutical Preparations/metabolism , Polychlorinated Biphenyls/analysis , Polychlorinated Biphenyls/metabolism
9.
Sci Total Environ ; 912: 168877, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38013104

ABSTRACT

Persistent organic pollutants (POPs) in soil show high environmental risk due to their high toxicity and low biodegradability. Studies have demonstrated the degradation function of microbial extracellular polymeric substances (EPS) on POPs in various matrices. However, the degradation mechanisms and the factors that influence the process in soil have not been clearly illustrated. In this review, the characteristics of EPS were introduced and the possible mechanisms of EPS on degradation of organic pollutants (e.g., external electron transfer, photodegradation, and enzyme catalysis) were comprehensively discussed. In addition, the environmental conditions (e.g., UV, nutrients, and redox potential) that could influence the production and degradation-related active components of EPS were addressed. Moreover, the current approaches on the application of EPS in biotechnology were summarized. Further, the future perspectives of enhancement on degradation of POPs by regulating EPS were discussed. Overall, this review could provide a new thought on remediation of POPs by widely-existing EPS in soil with low-cost and minimized eco-disturbance.


Subject(s)
Environmental Pollutants , Environmental Restoration and Remediation , Soil Pollutants , Waste Management , Extracellular Polymeric Substance Matrix/chemistry , Persistent Organic Pollutants/metabolism , Soil , Environmental Pollutants/metabolism , Soil Pollutants/analysis
10.
Environ Pollut ; 340(Pt 2): 122765, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37913975

ABSTRACT

Persistent organic pollutants (POPs) are lipophilic compounds that bioaccumulate in animals and biomagnify within food webs. Many POPs are endocrine disrupting compounds that impact vertebrate development. POPs accumulate in the Arctic via global distillation and thereby impact high trophic level vertebrates as well as people who live a subsistence lifestyle. The Arctic also contains thousands of point sources of pollution, such as formerly used defense (FUD) sites. Sivuqaq (St. Lawrence Island), Alaska was used by the U.S. military during the Cold War and FUD sites on the island remain point sources of POP contamination. We examined the effects of POP exposure on ninespine stickleback (Pungitius pungitius) collected from Troutman Lake in the village of Gambell as a model for human exposure and disease. During the Cold War, Troutman Lake was used as a dump site by the U.S. military. We found that PCB concentrations in stickleback exceeded the U.S. Environmental Protection Agency's guideline for unlimited consumption despite these fish being low trophic level organisms. We examined effects at three levels of biological organization: gene expression, endocrinology, and histomorphology. We found that ninespine stickleback from Troutman Lake exhibited suppressed gonadal development compared to threespine stickleback (Gasterosteus aculeatus) studied elsewhere. Troutman Lake stickleback also displayed two distinct hepatic phenotypes, one with lipid accumulation and one with glycogen-type vacuolation. We compared the transcriptomic profiles of these liver phenotypes using RNA sequencing and found significant upregulation of genes involved in ribosomal and metabolic pathways in the lipid accumulation group. Additionally, stickleback displaying liver lipid accumulation had significantly fewer thyroid follicles than the vacuolated phenotype. Our study and previous work highlight health concerns for people and wildlife due to pollution hotspots in the Arctic, and the need for health-protective remediation.


Subject(s)
Environmental Pollutants , Smegmamorpha , Animals , Humans , Alaska , Persistent Organic Pollutants/metabolism , Lakes , Fishes/genetics , Smegmamorpha/metabolism , Environmental Pollutants/metabolism , Gene Expression , Lipids
11.
Environ Toxicol Chem ; 43(7): 1557-1568, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38695729

ABSTRACT

Persistent organic pollutants pose a great threat to amphibian populations, but information on the bioaccumulation of contaminants in amphibians remains scarce. To examine the tissue distribution and maternal transfer of organic halogenated pollutants (OHPs) in frogs, seven types of tissues from black-spotted frog (muscle, liver, kidney, stomach, intestine, heart, and egg) were collected from an e-waste-polluted area in South China. Among the seven frog tissues, median total OHP concentrations of 2.3 to 9.7 µg/g lipid weight were found (in 31 polychlorinated biphenyl [PCB] individuals and 15 polybrominated diphenyl ether [PBDE], dechlorane plus [syn-DP and anti-DP], bexabromobenzene [HBB], polybrominated biphenyl] PBB153 and -209], and decabromodiphenyl ethane [DBDPE] individuals). Sex-specific differences in contaminant concentration and compound compositions were observed among the frog tissues, and eggs had a significantly higher contaminant burden on the whole body of female frogs. In addition, a significant sex difference in the concentration ratios of other tissues to the liver was observed in most tissues except for muscle. These results suggest that egg production may involve the mobilization of other maternal tissues besides muscle, which resulted in the sex-specific distribution. Different parental tissues had similar maternal transfer mechanisms; factors other than lipophilicity (e.g., molecular size and proteinophilic characteristics) could influence the maternal transfer of OHPs in frogs. Environ Toxicol Chem 2024;43:1557-1568. © 2024 SETAC.


Subject(s)
Persistent Organic Pollutants , Animals , Female , Tissue Distribution , Male , Persistent Organic Pollutants/metabolism , Environmental Monitoring , Halogenated Diphenyl Ethers/metabolism , Anura/metabolism , China , Ranidae/metabolism , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis
12.
Chemosphere ; 355: 141852, 2024 May.
Article in English | MEDLINE | ID: mdl-38556179

ABSTRACT

With industrialisation and the rapidly growing agricultural demand, many organic compounds have been leaked into the environment, causing serious damage to the biosphere. Persistent organic pollutants (POPs) are a type of toxic chemicals that are resistant to degradation through normal chemical, biological or photolytic approaches. With their stable chemical structures, POPs can be accumulated in the environment, and transported through wind and water, causing global environmental issues. Many researches have been conducted to remediate POPs contamination using various kinds of biological methods, and significant results have been seen. Microalgae-bacteria consortium is a newly developed concept for biological technology in contamination treatment, with the synergetic effects between microalgae and bacteria, their potential for pollutants degradation can be further released. In this review, two types of POPs (polychlorinated biphenyls and polycyclic aromatic hydrocarbons) are selected as the targeted pollutants to give a systematic analysis of the biodegradation through microalgae and bacteria, including the species selection, the identification of dominant enzymes, as well as the real application performance of the consortia. In the end, some outlooks and suggestions are given to further guide the development of applying microalgae-bacteria consortia in remediating POPs contamination. In general, the coculturing of microalgae and bacteria is a novel and efficient way to fulfil the advanced treatment of POPs in soil or liquid phase, and both monooxygenase and dioxygenase belonging to oxygenase play a vital role in the biodegradation of PCBs and PAHs. This review provides a general guide in the future investigation of biological treatment of POPs.


Subject(s)
Bacteria , Biodegradation, Environmental , Microalgae , Persistent Organic Pollutants , Polychlorinated Biphenyls , Microalgae/metabolism , Bacteria/metabolism , Bacteria/classification , Persistent Organic Pollutants/metabolism , Polychlorinated Biphenyls/metabolism , Polychlorinated Biphenyls/analysis , Polycyclic Aromatic Hydrocarbons/metabolism , Polycyclic Aromatic Hydrocarbons/analysis , Microbial Consortia
13.
Chemosphere ; 359: 142253, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38714250

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are a large class of stable toxic chemicals which have ended up in the environment and in organisms in significant concentrations. Toxicokinetic models are needed to facilitate extrapolation of bioaccumulation data across PFAS congeners and species. For the present study, we carried out an inventory of accumulation processes specific for PFAS, deviating from traditional Persistent Organic Pollutants (POPs). In addition, we reviewed toxicokinetic models on PFAS reported in literature, classifying them according to the number of compartments distinguished as a one-compartment model (1-CM), two-compartment model (2- CM) or a multi-compartment model, (multi-CM) as well as the accumulation processes included and the parameters used. As the inventory showed that simple 1-CMs were lacking, we developed a generic 1-CM of ourselves to include PFAS specific processes and validated the model for legacy perfluoroalkyl acids. Predicted summed elimination constants were accurate for long carbon chains (>C6), indicating that the model properly represented toxicokinetic processes for most congeners. Results for urinary elimination rate constants were mixed, which might be caused by the exclusion of reabsorption processes (renal reabsorption, enterohepatic circulation). The 1-CM needs to be improved further in order to better predict individual elimination pathways. Besides that, more data on PFAS-transporter specific processes are needed to extrapolate across PFAS congeners and species.


Subject(s)
Bioaccumulation , Fluorocarbons , Fluorocarbons/metabolism , Humans , Toxicokinetics , Persistent Organic Pollutants/metabolism , Environmental Monitoring , Environmental Pollutants/metabolism , Models, Biological
14.
Environ Pollut ; 359: 124696, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39122174

ABSTRACT

Human hair is increasingly employed as a non-invasive biomonitoring matrix for exposure to organic contaminants (OCs). Decontamination procedures are generally needed to remove external contamination from hair prior to analysis of OCs. Despite various existing decontamination protocols, their impacts on internally incorporated (endogenous) OCs in hair remain poorly understood. This study aims to quantitatively assess the impact of decontamination procedures on endogenous OCs in hair, and investigate optimal decontamination processes and factors influencing the removal of endogenous OCs. In this study, guinea pig was exposed to 6 OCs (triphenyl phosphate (TPHP), tris(1,3-dichloro-2-propyl) phosphate (TDCPP), and tri-n-butyl phosphate (TNBP), bisphenol A (BPA), perfluorooctanoic acid (PFOA), and phenanthrene (PHE)), and 6 decontamination procedures with different solvents (methanol, n-hexane, acetone, ultrapure water, Triton X-100, and sodium dodecyl sulfate) were used to rinse exposed guinea pig hair. All OCs and three metabolites (diphenyl phosphate (DPHP), dibutyl phosphate (DBP), and bis(1,3-dichloro-2-propyl) phosphate (BDCPP)) were detected in the majority of washing solutions. The decontamination procedures apparently resulted in the release of endogenous OCs from hair. The percentages of residual OCs in hair exhibited a linear or exponential decrease with more washing cycles. Furthermore, the residuals of OCs in hair washed with organic and aqueous solvents showed negative correlations with molecular weight, polarizability, and their initial concentrations. Although these findings need to be validated with a broader range of OCs, the results obtained in this study provide compelling evidence that current hair decontamination procedures have significant impacts on the analysis of endogenous OCs in hair. Therefore, it is important to interpret quantitative data on hair OC concentrations with caution and to thoroughly consider each decontamination procedure during analysis.


Subject(s)
Biological Monitoring , Decontamination , Hair , Decontamination/methods , Hair/chemistry , Guinea Pigs , Animals , Fluorocarbons/metabolism , Fluorocarbons/analysis , Persistent Organic Pollutants/metabolism , Benzhydryl Compounds , Phenols/analysis , Caprylates , Organophosphates/metabolism , Phenanthrenes/metabolism , Environmental Monitoring/methods
15.
Sci Total Environ ; 933: 173212, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38759481

ABSTRACT

Persistent organic pollutants (POPs), such as polychlorinated diphenyls (PCBs) and brominated diphenyl ethers (PBDEs), are ubiquitous in the pet cat's living environment and are ingested through dietary intake and environmental exposure such as house dust. Cats are known to be susceptible to chronic kidney disease (CKD) and exposure to POPs may be associated with CKD. However, no studies have been conducted on the renal accumulation and health effects of POPs in cats. The objective of this study was to elucidate the accumulation of PCBs, PBDEs, and organochlorine pesticides (OCPs) in the kidneys of domestic cats and discuss their potential impact on feline health. We report here that cats specifically accumulate POPs in their kidneys. Tissue samples were collected from the kidneys, livers, and muscles of cats and the concentrations of POPs in these tissues were analyzed in this study. The results showed that these compounds accumulated significantly higher in the kidney compared to other tissues. In addition, the ability to accumulate in the kidney was higher in cats than in other animals, suggesting that cats have a unique pattern of POPs accumulation in their kidneys, which is thought to occur because cats store a significant number of lipid droplets in the proximal tubules of the kidneys. This unique feature suggests that lipophilic POPs may accumulate in these lipid droplets during the excretory process. Accumulation of certain POPs in the kidneys causes necrosis and sloughing of renal tubular epithelial cells, which may be associated with CKD, a common disease in cats. This study provides valuable insight into understanding the renal accumulation and risk of POPs in cats and provides essential knowledge for developing strategies to protect the health and welfare of domestic cats.


Subject(s)
Halogenated Diphenyl Ethers , Kidney , Persistent Organic Pollutants , Animals , Cats , Kidney/metabolism , Halogenated Diphenyl Ethers/metabolism , Persistent Organic Pollutants/metabolism , Polychlorinated Biphenyls/metabolism , Environmental Exposure , Pesticides/metabolism , Pets , Hydrocarbons, Chlorinated/metabolism , Environmental Pollutants/metabolism
16.
Toxicol Sci ; 200(2): 213-227, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38724241

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) have become internationally recognized over the past three decades as persistent organic pollutants used in the production of various consumer and industrial goods. Research efforts continue to gauge the risk that historically used, and newly produced, PFAS may cause to human health. Numerous studies report toxic effects of PFAS on the human liver as well as increased serum cholesterol levels in adults. A major concern with PFAS, also dubbed "forever chemicals," is that they accumulate in the liver and kidney and persist in serum. The mechanisms responsible for their disposition and excretion in humans are poorly understood. A better understanding of the interaction of PFAS with liver transporters, as it pertains to the disposition of PFAS and other xenobiotics, could provide mechanistic insight into human health effects and guide efforts toward risk assessment of compounds in development. This review summarizes the current state of the literature on the emerging relationships (eg, substrates, inhibitors, modulators of gene expression) between PFAS and specific hepatic transporters. The adaptive and toxicological responses of hepatocytes to PFAS that reveal linkages to pathologies and epidemiological findings are highlighted. The evidence suggests that our understanding of the molecular landscape of PFAS must improve to determine their impact on the expression and function of hepatocyte transporters that play a key role in PFAS or other xenobiotic disposition. From here, we can assess what role these changes may have in documented human health outcomes.


Subject(s)
Fluorocarbons , Liver , Humans , Liver/drug effects , Liver/metabolism , Fluorocarbons/toxicity , Animals , Membrane Transport Proteins/metabolism , Risk Assessment , Persistent Organic Pollutants/toxicity , Persistent Organic Pollutants/metabolism , Environmental Pollutants/toxicity
17.
J Hazard Mater ; 476: 134926, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38909470

ABSTRACT

This study investigated the large-scale distributions of persistent toxic substances (PTSs) and heavy metals in sediments of the Yellow Sea, collected from six transects between latitudes 32 and 37 degrees north (n = 35). Elevated concentrations of polychlorinated biphenyls (PCBs) were detected near the mainland, with a predominance of low-chlorinated congeners (di to tetra, ∼60%), indicative of atmospheric deposition. Analysis of traditional and emerging polycyclic aromatic hydrocarbons (t-PAHs and e-PAHs) revealed notable enrichment in the Central Yellow Sea Mud Zone (CYSM), attributing fossil fuel combustion as the significant source. Styrene oligomers and alkylphenols exhibited notable accumulation near the Han River Estuary in South Korea and the Yangtze River Estuary in China, respectively. The accumulation of heavy metals was predominantly observed in the CYSM, with element-specific distribution patterns. Cluster analysis revealed distinct distribution patterns for PTSs and metals, highlighting their source-dependent and grain size-dependent behaviors. In addition, the distribution and accumulation of PTSs tended to depend on their partitioning coefficients, such as the octanol-air partition coefficient (log KOA) and octanol-water partition coefficient (log KOW). This study offers valuable insights into the sources, transport, and fate of hazardous substances in the Yellow Sea, emphasizing the necessity for targeted environmental management strategies.


Subject(s)
Environmental Monitoring , Geologic Sediments , Metals, Heavy , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Geologic Sediments/chemistry , Geologic Sediments/analysis , Water Pollutants, Chemical/analysis , China , Metals, Heavy/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Oceans and Seas , Persistent Organic Pollutants/metabolism , Polychlorinated Biphenyls/analysis
18.
Environ Sci Pollut Res Int ; 31(7): 10648-10660, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38198094

ABSTRACT

Persistent organic pollutants (POPs) are toxic chemicals that can accumulate in the human body, and particularly in adipose tissue. POPs can induce metabolic diseases via mitochondrial dysfunction and can also cause cancer, obesity, and cardiovascular and neurodegenerative diseases. Although the effects of POPs were studied by evaluating mitochondrial function, which is fundamental in investigating the etiologies of various metabolic diseases, the physiological impact of POPs released by the decomposition of fat in adipose tissue is barely understood. Therefore, to investigate the mitochondrial dysfunction caused by POPs released from adipose tissue to other organs, zebrafish were exposed to POPs and placed into four groups: control (C), obesity control (OC), obesity control with POPs (OP), and POP exposure with obesity and caloric restriction (OPR). Next, the activities of the mitochondrial respiratory complexes and the levels of ATP production, reactive oxygen species/reactive nitrogen species (ROS/RNS), and antioxidants, such as glutathione and superoxide dismutase, were measured in the brain, eyes, and liver, as these are the major organs most susceptible to metabolic diseases. POPs released from adipose tissue showed a stronger effect than the direct effects of obesity and POPs on mitochondrial enzyme activity in the brain and eye. Released POPs increased mitochondrial complex I activity and decreased mitochondrial complex II activity compared with normal, obesity, and POP-treated conditions in the brain and eyes. However, the mitochondrial complexes' activities in the liver were affected more by obesity and POPs. In the liver, the mitochondrial enzyme activities of the OPR group seemed to recover to the control level, but it was slightly lowered in the OC and OP groups. Independently, the ROS/RNS and antioxidant levels were not affected by obesity, POPs, or the released POPs in the brain, eye, and liver. The results indicate that POPs stored in adipose tissue and released during fat decomposition did not affect oxidative stress but could affect mitochondrial respiratory enzymes in organ dependent manner. This study is meaningful in that it provides experimental evidence that stored POPs affect specific organs for prolonged periods and can be linked to various diseases in advance.


Subject(s)
Environmental Pollutants , Metabolic Diseases , Mitochondrial Diseases , Animals , Humans , Persistent Organic Pollutants/metabolism , Reactive Oxygen Species/metabolism , Zebrafish , Obesity , Adipose Tissue/metabolism , Environmental Pollutants/toxicity , Liver/metabolism , Brain/metabolism , Mitochondria/metabolism
19.
Chemosphere ; 349: 140939, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38101477

ABSTRACT

From 2005 to 2019, three gadoid species, Atlantic cod (Gadus morhua), haddock (Melanogrammus aeglefinus) and saithe (Pollachius virens), were sampled approximately every third year in the northeastern part of the North Sea. Liver samples were analyzed to investigate levels and temporal trends of six groups of persistent organic pollutants (POPs): polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT) and its degradation products, hexachlorocyclohexanes (HCHs), hexachlorobenzene (HCB), trans-nonachlor (TNC), and polybrominated diphenyl ethers (PBDEs). Some of the highest average concentrations were found in cod, the levels otherwise being similar between the three species and mostly below established threshold values. The levels of all the contaminants except HCB and TNC were higher than previously reported for cod and haddock in the Barents Sea. Significantly decreasing levels were found for Σ7PCBs, ΣDDTs, ΣHCHs and Σ15PBDEs in all three species, and for TNC in haddock and saithe, while there was no significant trend for TNC in cod. HCB levels increased significantly in cod and haddock and showed only a minor decrease in saithe. The observed time trends of legacy POPs demonstrate the persistence of some of the studied pollutants despite efforts to eliminate them from the marine environment.


Subject(s)
Environmental Pollutants , Gadiformes , Gadus morhua , Polychlorinated Biphenyls , Water Pollutants, Chemical , Animals , Persistent Organic Pollutants/metabolism , Hexachlorobenzene/metabolism , North Sea , Environmental Monitoring , Water Pollutants, Chemical/analysis , Polychlorinated Biphenyls/metabolism , Liver/metabolism , Gadiformes/metabolism , Environmental Pollutants/metabolism , Gadus morhua/metabolism , Halogenated Diphenyl Ethers/metabolism
20.
Chemosphere ; 362: 142637, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38885769

ABSTRACT

The contamination status on persistent organic pollutants (POPs) in the Croatian terrestrial ecosystem was investigated by analyzing two classes of contaminants in adipose tissue of male European brown bear (Ursus arctos, N = 27) collected in 2021 and 2022. In addition to seven indicator polychlorinated biphenyls (PCBs), for the first time seven polybrominated diphenyl ethers (PBDEs) were analyzed in terrestrial species from this region. Sum of mass fractions detected in adipose tissue ranged from 0.011 to 0.463 ng g-1 lipid weight (lw) for the PBDEs, and from 0.652 to 30.17 ng g-1 lw for PCBs, with two orders of magnitude difference in the median value for these two groups of POPs (PBDEs: 0.022 ng g-1 lw; PCBs: 2.307 ng g-1 lw). PCBs dominated over PBDEs with a share of over 94 % of the total mass fractions of both groups of analyzed POPs. Results of the comparison of the PCB levels in the adipose tissue of brown bears reported here and in previous investigation from this region showed decrease in PCB-28, but increase of PCB-118 and PCB-180, while other congeners seemed to have reached a steady-state level in the environment over a ten-year period. Among the compounds analyzed in this study, BDE-47, PCB-153 and PCB-180 were the dominant congeners. Somewhat higher sum of PCBs was measured in April compared to October, although not statistically significant, indicating possible impact of winter hibernation causing concentration of lipophilic compounds due to body fat loss. Revealed POP levels in brown bears are consistent with the data on the low contamination of the Croatian terrestrial ecosystem in general.


Subject(s)
Adipose Tissue , Environmental Monitoring , Halogenated Diphenyl Ethers , Polychlorinated Biphenyls , Ursidae , Polychlorinated Biphenyls/analysis , Polychlorinated Biphenyls/metabolism , Halogenated Diphenyl Ethers/metabolism , Animals , Ursidae/metabolism , Adipose Tissue/metabolism , Adipose Tissue/chemistry , Male , Persistent Organic Pollutants/metabolism , Croatia , Environmental Pollutants/metabolism , Environmental Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL