Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 748
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 16(12): 1245-52, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26502404

ABSTRACT

Despite the importance of signaling lipids, many questions remain about their function because few tools are available for charting lipid gradients in vivo. Here we generated a sphingosine 1-phosphate (S1P) reporter mouse and used this mouse to define the distribution of S1P in the spleen. Unexpectedly, the presence of blood did not serve as a predictor of the concentration of signaling-available S1P. Large areas of the red pulp had low concentrations of S1P, while S1P was sensed by cells inside the white pulp near the marginal sinus. The lipid phosphate phosphatase LPP3 maintained low S1P concentrations in the spleen and enabled efficient shuttling of marginal zone B cells. The exquisitely tight regulation of S1P availability might explain how a single lipid can simultaneously orchestrate the movements of many cells of the immune system.


Subject(s)
Lysophospholipids/metabolism , Sphingosine/analogs & derivatives , Spleen/metabolism , Animals , Antigens, Differentiation/metabolism , B-Lymphocytes/metabolism , Cell Line , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Macrophages/metabolism , Mice, Knockout , Mice, Transgenic , Microscopy, Confocal , Mutant Proteins/genetics , Mutant Proteins/metabolism , Phosphatidate Phosphatase/genetics , Phosphatidate Phosphatase/metabolism , Receptors, Lysosphingolipid/genetics , Receptors, Lysosphingolipid/metabolism , Sialic Acid Binding Ig-like Lectin 1/metabolism , Sphingosine/metabolism , Sphingosine-1-Phosphate Receptors , Spleen/cytology , Red Fluorescent Protein
2.
Proc Natl Acad Sci U S A ; 121(39): e2404395121, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39292743

ABSTRACT

Adult central nervous system (CNS) neurons down-regulate growth programs after injury, leading to persistent regeneration failure. Coordinated lipids metabolism is required to synthesize membrane components during axon regeneration. However, lipids also function as cell signaling molecules. Whether lipid signaling contributes to axon regeneration remains unclear. In this study, we showed that lipin1 orchestrates mechanistic target of rapamycin (mTOR) and STAT3 signaling pathways to determine axon regeneration. We established an mTOR-lipin1-phosphatidic acid/lysophosphatidic acid-mTOR loop that acts as a positive feedback inhibitory signaling, contributing to the persistent suppression of CNS axon regeneration following injury. In addition, lipin1 knockdown (KD) enhances corticospinal tract (CST) sprouting after unilateral pyramidotomy and promotes CST regeneration following complete spinal cord injury (SCI). Furthermore, lipin1 KD enhances sensory axon regeneration after SCI. Overall, our research reveals that lipin1 functions as a central regulator to coordinate mTOR and STAT3 signaling pathways in the CNS neurons and highlights the potential of lipin1 as a promising therapeutic target for promoting the regeneration of motor and sensory axons after SCI.


Subject(s)
Axons , Motor Neurons , Nerve Regeneration , Phosphatidate Phosphatase , STAT3 Transcription Factor , Signal Transduction , Spinal Cord Injuries , TOR Serine-Threonine Kinases , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Spinal Cord Injuries/genetics , Animals , Axons/metabolism , Axons/physiology , Nerve Regeneration/physiology , STAT3 Transcription Factor/metabolism , TOR Serine-Threonine Kinases/metabolism , Phosphatidate Phosphatase/metabolism , Phosphatidate Phosphatase/genetics , Motor Neurons/metabolism , Motor Neurons/physiology , Mice , Phosphatidic Acids/metabolism , Sensory Receptor Cells/metabolism , Female , Pyramidal Tracts/metabolism , Pyramidal Tracts/pathology
3.
Plant Cell ; 35(5): 1548-1571, 2023 04 20.
Article in English | MEDLINE | ID: mdl-36718530

ABSTRACT

Inter-organelle communication is an integral subcellular process in cellular homeostasis. In plants, cellular membrane lipids are synthesized in the plastids and endoplasmic reticulum (ER). However, the crosstalk between these organelles in lipid biosynthesis remains largely unknown. Here, we show that a pair of lipid phosphate phosphatases (LPPs) with differential subcellular localizations is required for ER glycerolipid metabolism in Arabidopsis (Arabidopsis thaliana). LPPα2 and LPPε1, which function as phosphatidic acid phosphatases and thus catalyze the core reaction in glycerolipid metabolism, were differentially localized at ER and chloroplast outer envelopes despite their similar tissue expression pattern. No mutant phenotype was observed in single knockout mutants; however, genetic suppression of these LPPs affected pollen growth and ER phospholipid biosynthesis in mature siliques and seeds with compromised triacylglycerol biosynthesis. Although chloroplast-localized, LPPε1 was localized close to the ER and ER-localized LPPα2. This proximal localization is functionally relevant, because overexpression of chloroplastic LPPε1 enhanced ER phospholipid and triacylglycerol biosynthesis similar to the effect of LPPα2 overexpression in mature siliques and seeds. Thus, ER glycerolipid metabolism requires a chloroplast-localized enzyme in Arabidopsis, representing the importance of inter-organelle communication in membrane lipid homeostasis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Phosphatidate Phosphatase/genetics , Phosphatidate Phosphatase/metabolism , Endoplasmic Reticulum/metabolism , Phospholipids/metabolism , Membrane Lipids/metabolism , Lipid Metabolism/genetics , Triglycerides/metabolism
4.
J Biol Chem ; 300(1): 105587, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38141768

ABSTRACT

The Saccharomyces cerevisiae Nem1-Spo7 protein phosphatase complex dephosphorylates and thereby activates Pah1 at the nuclear/endoplasmic reticulum membrane. Pah1, a phosphatidate phosphatase catalyzing the dephosphorylation of phosphatidate to produce diacylglycerol, is one of the most highly regulated enzymes in lipid metabolism. The diacylglycerol produced in the lipid phosphatase reaction is utilized for the synthesis of triacylglycerol that is stored in lipid droplets. Disruptions of the Nem1-Spo7/Pah1 phosphatase cascade cause a plethora of physiological defects. Spo7, the regulatory subunit of the Nem1-Spo7 complex, is required for the Nem1 catalytic function and interacts with the acidic tail of Pah1. Spo7 contains three conserved homology regions (CR1-3) that are important for the interaction with Nem1, but its region for the interaction with Pah1 is unknown. Here, by deletion and site-specific mutational analyses of Spo7, we revealed that the C-terminal basic tail (residues 240-259) containing five arginine and two lysine residues is important for the Nem1-Spo7 complex-mediated dephosphorylation of Pah1 and its cellular function (triacylglycerol synthesis, lipid droplet formation, maintenance of nuclear/endoplasmic reticulum membrane morphology, and cell growth at elevated temperatures). The glutaraldehyde cross-linking analysis of synthetic peptides indicated that the Spo7 basic tail interacts with the Pah1 acidic tail. This work advances our understanding of the Spo7 function and the Nem1-Spo7/Pah1 phosphatase cascade in yeast lipid synthesis.


Subject(s)
Membrane Proteins , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Diglycerides/biosynthesis , Nuclear Proteins/metabolism , Phosphatidate Phosphatase/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Triglycerides/biosynthesis , Membrane Proteins/genetics , Membrane Proteins/metabolism
5.
J Biol Chem ; 300(8): 107572, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39009344

ABSTRACT

In Saccharomyces cerevisiae, Pah1 phosphatidate (PA) phosphatase, which catalyzes the Mg2+-dependent dephosphorylation of PA to produce diacylglycerol, plays a key role in utilizing PA for the synthesis of the neutral lipid triacylglycerol and thereby controlling the PA-derived membrane phospholipids. The enzyme function is controlled by its subcellular location as regulated by phosphorylation and dephosphorylation. Pah1 is initially inactivated in the cytosol through phosphorylation by multiple protein kinases and then activated via its recruitment and dephosphorylation by the protein phosphatase Nem1-Spo7 at the nuclear/endoplasmic reticulum membrane where the PA phosphatase reaction occurs. Many of the protein kinases that phosphorylate Pah1 have yet to be characterized with the identification of the target residues. Here, we established Pah1 as a bona fide substrate of septin-associated Hsl1, a protein kinase involved in mitotic morphogenesis checkpoint signaling. The Hsl1 activity on Pah1 was dependent on reaction time and the amounts of protein kinase, Pah1, and ATP. The Hsl1 phosphorylation of Pah1 occurred on Ser-748 and Ser-773, and the phosphorylated protein exhibited a 5-fold reduction in PA phosphatase catalytic efficiency. Analysis of cells expressing the S748A and S773A mutant forms of Pah1 indicated that Hsl1-mediated phosphorylation of Pah1 promotes membrane phospholipid synthesis at the expense of triacylglycerol, and ensures the dependence of Pah1 function on the Nem1-Spo7 protein phosphatase. This work advances the understanding of how Hsl1 facilitates membrane phospholipid synthesis through the phosphorylation-mediated regulation of Pah1.


Subject(s)
Phosphatidate Phosphatase , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Membrane Proteins , Nuclear Proteins , Phosphatidate Phosphatase/metabolism , Phosphatidate Phosphatase/genetics , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics
6.
J Biol Chem ; 300(1): 105560, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38097185

ABSTRACT

The PAH1-encoded phosphatidate (PA) phosphatase is a major source of diacylglycerol for the production of the storage lipid triacylglycerol and a key regulator for the de novo phospholipid synthesis in Saccharomyces cerevisiae. The catalytic function of Pah1 depends on its membrane localization which is mediated through its phosphorylation by multiple protein kinases and dephosphorylation by the Nem1-Spo7 protein phosphatase complex. The full-length Pah1 is composed of a catalytic core (N-LIP and HAD-like domains, amphipathic helix, and the WRDPLVDID domain) and non-catalytic regulatory sequences (intrinsically disordered regions, RP domain, and acidic tail) for phosphorylation and interaction with Nem1-Spo7. How the catalytic core regulates Pah1 localization and cellular function is not clear. In this work, we analyzed a variant of Pah1 (i.e., Pah1-CC (catalytic core)) that is composed only of the catalytic core. Pah1-CC expressed on a low-copy plasmid complemented the pah1Δ mutant phenotypes (e.g., nuclear/ER membrane expansion, reduced levels of triacylglycerol, and lipid droplet formation) without requiring Nem1-Spo7. The cellular function of Pah1-CC was supported by its PA phosphatase activity mostly associated with the membrane fraction. Although functional, Pah1-CC was distinct from Pah1 in the protein and enzymological properties, which include overexpression toxicity, association with heat shock proteins, and significant reduction of the Vmax value. These findings on the Pah1 catalytic core enhance the understanding of its structural requirements for membrane localization and activity control.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Phosphatidate Phosphatase/metabolism , Catalytic Domain , Triglycerides/metabolism , Nuclear Proteins/metabolism
7.
EMBO J ; 40(22): e107958, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34617598

ABSTRACT

Cells dynamically adapt organelle size to current physiological demand. Organelle growth requires membrane biogenesis and therefore needs to be coordinated with lipid metabolism. The endoplasmic reticulum (ER) can undergo massive expansion, but the underlying regulatory mechanisms are largely unclear. Here, we describe a genetic screen for factors involved in ER membrane expansion in budding yeast and identify the ER transmembrane protein Ice2 as a strong hit. We show that Ice2 promotes ER membrane biogenesis by opposing the phosphatidic acid phosphatase Pah1, called lipin in metazoa. Specifically, Ice2 inhibits the conserved Nem1-Spo7 complex and thus suppresses the dephosphorylation and activation of Pah1. Furthermore, Ice2 cooperates with the transcriptional regulation of lipid synthesis genes and helps to maintain cell homeostasis during ER stress. These findings establish the control of the lipin phosphatase complex as an important mechanism for regulating ER membrane biogenesis.


Subject(s)
Endoplasmic Reticulum/metabolism , Intracellular Membranes/metabolism , Membrane Proteins/metabolism , Phosphatidate Phosphatase/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum Stress , Gene Expression Regulation, Fungal , Lipid Metabolism , Membrane Proteins/genetics , Multiprotein Complexes/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Organic Chemicals/metabolism , Phosphatidate Phosphatase/genetics , Phosphorylation , Repressor Proteins/genetics , Repressor Proteins/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Unfolded Protein Response
8.
Plant Physiol ; 195(2): 1506-1520, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38401529

ABSTRACT

Galactolipids comprise the majority of chloroplast membranes in plants, and their biosynthesis requires dephosphorylation of phosphatidic acid at the chloroplast envelope membranes. In Arabidopsis (Arabidopsis thaliana), the lipid phosphate phosphatases LPPγ, LPPε1, and LPPε2 have been previously implicated in chloroplast lipid assembly, with LPPγ being essential, as null mutants were reported to exhibit embryo lethality. Here, we show that lppγ mutants are in fact viable and that LPPγ, LPPε1, and LPPε2 do not appear to have central roles in the plastid pathway of membrane lipid biosynthesis. Redundant LPPγ and LPPε1 activity at the outer envelope membrane is important for plant development, and the respective lppγ lppε1 double mutant exhibits reduced flux through the ER pathway of galactolipid synthesis. While LPPε2 is imported and associated with interior chloroplast membranes, its role remains elusive and does not include basal nor phosphate limitation-induced biosynthesis of glycolipids. The specific physiological roles of LPPγ, LPPε1, and LPPε2 are yet to be uncovered, as does the identity of the phosphatidic acid phosphatase required for plastid galactolipid biosynthesis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Chloroplasts , Galactolipids , Phosphatidate Phosphatase , Phospholipids , Arabidopsis/genetics , Arabidopsis/metabolism , Chloroplasts/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Galactolipids/metabolism , Phospholipids/metabolism , Phosphatidate Phosphatase/metabolism , Phosphatidate Phosphatase/genetics , Mutation , Gene Expression Regulation, Plant , Endoplasmic Reticulum/metabolism , Plastids/metabolism , Phosphoric Monoester Hydrolases/metabolism , Phosphoric Monoester Hydrolases/genetics
9.
Plant Physiol ; 196(2): 763-772, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38917229

ABSTRACT

Pollen germination and pollen tube elongation require rapid phospholipid production and remodeling in membrane systems that involve both de novo synthesis and turnover. Phosphatidic acid phosphohydrolase (PAH) and lysophosphatidylcholine acyltransferase (LPCAT) are 2 key enzymes in membrane lipid maintenance. PAH generates diacylglycerol (DAG), a necessary precursor for the de novo synthesis of phosphatidylcholine (PC), while LPCAT reacylates lysophosphatidylcholine to PC and plays an essential role in the remodeling of membrane lipids. In this study, we investigated the synthetic defects of pah and lpcat mutations in sexual reproduction of Arabidopsis (Arabidopsis thaliana) and explored the prospect of pistil lipid provision to pollen tube growth. The combined deficiencies of lpcat and pah led to decreased pollen tube growth in the pistil and reduced male transmission. Interestingly, pistils of the lipid mutant dgat1 ameliorated the male transmission deficiencies of pah lpcat pollen. In contrast, pollination with a nonspecific phospholipase C (NPC) mutant exacerbated the fertilization impairment of the pah lpcat pollen. Given the importance of DAG in lipid metabolism and its contrasting changes in the dgat1 and npc mutants, we further investigated whether DAG supplement in synthetic media could influence pollen performance. DAG was incorporated into phospholipids of germinating pollen and stimulated pollen tube growth. Our study provides evidence that pistil-derived lipids contribute to membrane lipid synthesis in pollen tube growth, a hitherto unknown role in synergistic pollen-pistil interactions.


Subject(s)
Arabidopsis , Flowers , Pollen Tube , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/physiology , Arabidopsis/metabolism , Pollen Tube/growth & development , Pollen Tube/genetics , Pollen Tube/metabolism , Flowers/genetics , Flowers/growth & development , Flowers/physiology , Fertility/drug effects , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Mutation , Diglycerides/metabolism , 1-Acylglycerophosphocholine O-Acyltransferase/metabolism , 1-Acylglycerophosphocholine O-Acyltransferase/genetics , Phosphatidate Phosphatase/metabolism , Phosphatidate Phosphatase/genetics , Pollination , Lipid Metabolism , Pollen/growth & development , Pollen/genetics , Pollen/metabolism
10.
EMBO Rep ; 24(12): e57238, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37929625

ABSTRACT

Interferons (IFN) are crucial antiviral and immunomodulatory cytokines that exert their function through the regulation of a myriad of genes, many of which are not yet characterized. Here, we reveal that lipin-2, a phosphatidic acid phosphatase whose mutations produce an autoinflammatory syndrome known as Majeed syndrome in humans, is regulated by IFN in a STAT-1-dependent manner. Lipin-2 inhibits viral replication both in vitro and in vivo. Moreover, lipin-2 also acts as a regulator of inflammation in a viral context by reducing the signaling through TLR3 and the generation of ROS and release of mtDNA that ultimately activate the NLRP3 inflammasome. Inhibitors of mtDNA release from mitochondria restrict IL-1ß production in lipin-2-deficient animals in a model of viral infection. Finally, analyses of databases from COVID-19 patients show that LPIN2 expression levels negatively correlate with the severity of the disease. Overall, these results uncover novel regulatory mechanisms of the IFN response driven by lipin-2 and open new perspectives for the future management of patients with LPIN2 mutations.


Subject(s)
DNA, Mitochondrial , Interferons , Animals , Humans , Phosphatidate Phosphatase/genetics , Phosphatidate Phosphatase/metabolism
11.
J Biol Chem ; 299(8): 105025, 2023 08.
Article in English | MEDLINE | ID: mdl-37423305

ABSTRACT

The Saccharomyces cerevisiae PAH1-encoded phosphatidate (PA) phosphatase, which catalyzes the Mg2+-dependent dephosphorylation of PA to produce diacylglycerol, is one of the most highly regulated enzymes in lipid metabolism. The enzyme controls whether cells utilize PA to produce membrane phospholipids or the major storage lipid triacylglycerol. PA levels, which are regulated by the enzyme reaction, also control the expression of UASINO-containing phospholipid synthesis genes via the Henry (Opi1/Ino2-Ino4) regulatory circuit. Pah1 function is largely controlled by its cellular location, which is mediated by phosphorylation and dephosphorylation. Multiple phosphorylations sequester Pah1 in the cytosol and protect it from 20S proteasome-mediated degradation. The endoplasmic reticulum-associated Nem1-Spo7 phosphatase complex recruits and dephosphorylates Pah1 allowing the enzyme to associate with and dephosphorylate its membrane-bound substrate PA. Pah1 contains domains/regions that include the N-LIP and haloacid dehalogenase-like catalytic domains, N-terminal amphipathic helix for membrane binding, C-terminal acidic tail for Nem1-Spo7 interaction, and a conserved tryptophan within the WRDPLVDID domain required for enzyme function. Through bioinformatics, molecular genetics, and biochemical approaches, we identified a novel RP (regulation of phosphorylation) domain that regulates the phosphorylation state of Pah1. We showed that the ΔRP mutation results in a 57% reduction in the endogenous phosphorylation of the enzyme (primarily at Ser-511, Ser-602, and Ser-773/Ser-774), an increase in membrane association and PA phosphatase activity, but reduced cellular abundance. This work not only identifies a novel regulatory domain within Pah1 but emphasizes the importance of the phosphorylation-based regulation of Pah1 abundance, location, and function in yeast lipid synthesis.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Phosphorylation , Phosphatidate Phosphatase/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Lipids , Nuclear Proteins/metabolism
12.
J Biol Chem ; 299(5): 104683, 2023 05.
Article in English | MEDLINE | ID: mdl-37030502

ABSTRACT

In the yeast Saccharomyces cerevisiae, the Nem1-Spo7 complex is a protein phosphatase that activates Pah1 phosphatidate phosphatase at the nuclear-endoplasmic reticulum membrane for the synthesis of triacylglycerol. The Nem1-Spo7/Pah1 phosphatase cascade largely controls whether phosphatidate is partitioned into the storage lipid triacylglycerol or into membrane phospholipids. The regulated synthesis of the lipids is crucial for diverse physiological processes during cell growth. Spo7 in the protein phosphatase complex is required as a regulatory subunit for the Nem1 catalytic subunit to dephosphorylate Pah1. The regulatory subunit contains three conserved homology regions (CR1, CR2, and CR3). Previous work showed that the hydrophobicity of LLI (residues 54-56) within CR1 is important for Spo7 function in the Nem1-Spo7/Pah1 phosphatase cascade. In this work, by deletion and site-specific mutational analyses, we revealed that CR2 and CR3 are also required for Spo7 function. Mutations in any one of the conserved regions were sufficient to disrupt the function of the Nem1-Spo7 complex. We determined that the uncharged hydrophilicity of STN (residues 141-143) within CR2 was required for Nem1-Spo7 complex formation. In addition, the hydrophobicity of LL (residues 217 and 219) within CR3 was important for Spo7 stability, which indirectly affected complex formation. Finally, we showed the loss of Spo7 CR2 or CR3 function by the phenotypes (e.g., reduced amounts of triacylglycerol and lipid droplets, temperature sensitivity) that are attributed to defects in membrane translocation and dephosphorylation of Pah1 by the Nem1-Spo7 complex. These findings advance knowledge of the Nem1-Spo7 complex and its role in lipid synthesis regulation.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Phosphoric Monoester Hydrolases/metabolism , Phosphatidate Phosphatase/metabolism , Phospholipids/metabolism , Triglycerides/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nuclear Proteins/metabolism
13.
J Neurochem ; 168(9): 3050-3062, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38994820

ABSTRACT

Lysophosphatidic acid (LPA) is a bioactive phospholipid that participates in critical processes in neural development and adult brain function and is implicated in various pathophysiological conditions. Along with its six well-characterized receptors, atypical regulators of LPA signaling have also been suggested, including phospholipid phosphatase-related proteins (PLPPRs). PLPPRs have been mostly studied in the developing brain where they control LPA-dependent axon guidance, cortical network hyperexcitability, and glutamatergic neurotransmission. PLPPR4 and PLPPR3 represent two closely related proteins reported to localize predominantly in dendrites and axons, respectively, and differ in their developmental expression patterns. Herein, we have revised the expression patterns of PLPPRs in the cerebellum, dorsal and ventral hippocampus, prefrontal cortex (PFC), nucleus accumbens, and striatum during development and in the adult using quantitative PCR. Expression patterns of Plppr2,4 and 5 were consistent with previous studies, whereas Plppr3 and Plppr1 exhibited a unique expression profile in nucleus accumbens (NAc) and striatum in later developmental and adult stages, which we verified at the protein level for PLPPR3. To investigate neuron type-specific expression at the single cell level, we developed a bioinformatic tool to analyze recent single-cell RNA-sequencing data in the cerebral cortex and hippocampus of adult mice. Our analysis revealed a widespread but also selective adult neuron-type expression with higher expression levels of Plppr3, Plppr1, and Plppr5 in GABAergic and Plppr4 and Plppr2 in glutamatergic neurons. PLPPR4 has been identified as a post-synaptic modulator of LPA levels in glutamatergic synapses operating via an uptake mechanism, to control LPA-dependent cortical network hyperexcitability. Using subcellular fractionation experiments, we found that both PLPPR4 and PLPPR3 are co-expressed in adult synaptosomal membranes. Furthermore, flow cytometry experiments in HEK293 cells showed comparable LPA uptake by PLPPR4 and PLPPR3, whereas PLPRR3, but not PLPPR4, induced also uptake of monoacylglycerol, the dephosphorylation product of LPA. We propose that synaptic LPA may be subject to both pre-synaptic and post-synaptic mechanisms of regulation by PLPPRs in addition to LPARs in developing and adult synapses.


Subject(s)
Lysophospholipids , Animals , Lysophospholipids/metabolism , Lysophospholipids/biosynthesis , Mice , Mice, Inbred C57BL , Male , Synaptic Transmission/physiology , Signal Transduction/physiology , Neurons/metabolism , Synapses/metabolism , Phosphatidate Phosphatase/metabolism , Phosphatidate Phosphatase/biosynthesis , Phosphatidate Phosphatase/genetics , Female , Brain/metabolism , Brain/growth & development , Central Nervous System/metabolism , Central Nervous System/growth & development
14.
J Transl Med ; 22(1): 664, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014470

ABSTRACT

BACKGROUND: Duchenne muscular dystrophy (DMD) is a progressive and devastating muscle disease, resulting from the absence of dystrophin. This leads to cell membrane instability, susceptibility to contraction-induced muscle damage, subsequent muscle degeneration, and eventually disability and early death of patients. Currently, there is no cure for DMD. Our recent studies identified that lipin1 plays a critical role in maintaining myofiber stability and integrity. However, lipin1 gene expression levels are dramatically reduced in the skeletal muscles of DMD patients and mdx mice. METHODS: To identify whether increased lipin1 expression could prevent dystrophic pathology, we employed unique muscle-specific mdx:lipin1 transgenic (mdx:lipin1Tg/0) mice in which lipin1 was restored in the dystrophic muscle of mdx mice, intramuscular gene delivery, as well as cell culture system. RESULTS: We found that increased lipin1 expression suppressed muscle degeneration and inflammation, reduced fibrosis, strengthened membrane integrity, and resulted in improved muscle contractile and lengthening force, and muscle performance in mdx:lipin1Tg/0 compared to mdx mice. To confirm the role of lipin1 in dystrophic muscle, we then administered AAV1-lipin1 via intramuscular injection in mdx mice. Consistently, lipin1 restoration inhibited myofiber necroptosis and lessened muscle degeneration. Using a cell culture system, we further found that differentiated primary mdx myoblasts had elevated expression levels of necroptotic markers and medium creatine kinase (CK), which could be a result of sarcolemmal damage. Most importantly, increased lipin1 expression levels in differentiated myoblasts from mdx:lipin1Tg/0 mice substantially inhibited the elevation of necroptotic markers and medium CK levels. CONCLUSIONS: Overall, our data suggest that lipin1 is a promising therapeutic target for the treatment of dystrophic muscles.


Subject(s)
Mice, Inbred mdx , Muscle, Skeletal , Muscular Dystrophy, Duchenne , Phosphatidate Phosphatase , Animals , Muscular Dystrophy, Duchenne/pathology , Muscular Dystrophy, Duchenne/metabolism , Phosphatidate Phosphatase/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Mice, Transgenic , Mice , Muscle Contraction , Molecular Targeted Therapy , Mice, Inbred C57BL , Genetic Therapy , Male
15.
Biotechnol Bioeng ; 121(1): 403-408, 2024 01.
Article in English | MEDLINE | ID: mdl-37749915

ABSTRACT

The efficient hydrolysis of lignocellulosic biomass into fermentable sugars is key for viable economic production of biofuels and biorenewable chemicals from second-generation feedstocks. Consolidated bioprocessing (CBP) combines lignocellulose saccharification and chemical production in a single step. To avoid wasting valuable resources during CBP, the selective secretion of enzymes (independent or attached to the surface) based on the carbon source available is advantageous. To enable enzyme expression and secretion based on extracellular glucose levels, we implemented a G-protein-coupled receptor (GPCR)-based extracellular glucose sensor; this allows the secretion and display of cellulases in the presence of the cellulosic fraction of lignocellulose by leveraging cellobiose-dependent signal amplification. We focused on the glucose-responsiveness of the HXT1 promoter and engineered PHXT1 by changing its core to that of the strong promoter PTHD3 , increasing extracellular enzyme activity by 81%. We then demonstrated glucose-mediated expression and cell-surface display of the ß-glucosidase BglI on the surface of Saccharomyces cerevisiae. The display system was further optimized by re-directing fatty acid pools from lipid droplet synthesis toward formation of membrane precursors via knock-out of PAH1. This resulted in an up to 4.2-fold improvement with respect to the baseline strain. Finally, we observed cellobiose-dependent signal amplification of the system with an increase in enzymatic activity of up to 3.1-fold when cellobiose was added.


Subject(s)
Cellulose , Saccharomyces cerevisiae Proteins , Cellulose/metabolism , Cellobiose/metabolism , Fermentation , Saccharomyces cerevisiae/metabolism , beta-Glucosidase , Glucose/metabolism , Phosphatidate Phosphatase/metabolism , Saccharomyces cerevisiae Proteins/metabolism
16.
Mol Biol Rep ; 51(1): 578, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38668789

ABSTRACT

Mg2+-independent phosphatidic acid phosphatase (PAP2), diacylglycerol pyrophosphate phosphatase 1 (Dpp1) is a membrane-associated enzyme in Saccharomyces cerevisiae. The enzyme is responsible for inducing the breakdown of ß-phosphate from diacylglycerol pyrophosphate (DGPP) into phosphatidate (PA) and then removes the phosphate from PA to give diacylglycerol (DAG). In this study through RNAi suppression, we have demonstrated that Trypanosoma brucei diacylglycerol pyrophosphate phosphatase 1 (TbDpp1) procyclic form production is not required for parasite survival in culture. The steady-state levels of triacylglycerol (TAG), the number of lipid droplets, and the PA content are all maintained constant through the inducible down-regulation of TbDpp1. Furthermore, the localization of C-terminally tagged variants of TbDpp1 in the lysosome was demonstrated by immunofluorescence microscopy.


Subject(s)
Glycerol/analogs & derivatives , Lysosomes , Trypanosoma brucei brucei , Trypanosoma brucei brucei/enzymology , Trypanosoma brucei brucei/genetics , Lysosomes/metabolism , Lysosomes/enzymology , Triglycerides/metabolism , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Phosphatidate Phosphatase/metabolism , Phosphatidate Phosphatase/genetics , RNA Interference , Diphosphates/metabolism , Phosphoric Monoester Hydrolases/metabolism , Phosphoric Monoester Hydrolases/genetics , Diglycerides/metabolism , Phosphatidic Acids/metabolism
17.
Biophys J ; 122(22): 4382-4394, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37853695

ABSTRACT

The ß-barrel assembly machinery (BAM) complex is responsible for inserting outer membrane proteins (OMPs) into the Escherichia coli outer membrane. The SecYEG translocon inserts inner membrane proteins into the inner membrane and translocates both soluble proteins and nascent OMPs into the periplasm. Recent reports describe Sec possibly playing a direct role in OMP biogenesis through interactions with the soluble polypeptide transport-associated (POTRA) domains of BamA (the central OMP component of BAM). Here we probe the diffusion behavior of these protein complexes using photoactivatable super-resolution localization microscopy and single-particle tracking in live E. coli cells of BAM and SecYEG components BamA and SecE and compare them to other outer and inner membrane proteins. To accurately measure trajectories on the highly curved cell surface, three-dimensional tracking was performed using double-helix point-spread function microscopy. All proteins tested exhibit two diffusive modes characterized by "slow" and "fast" diffusion coefficients. We implement a diffusion coefficient analysis as a function of the measurement lag time to separate positional uncertainty from true mobility. The resulting true diffusion coefficients of the slow and fast modes showed a complete immobility of full-length BamA constructs in the time frame of the experiment, whereas the OMP OmpLA displayed a slow diffusion consistent with the high viscosity of the outer membrane. The periplasmic POTRA domains of BamA were found to anchor BAM to other cellular structures and render it immobile. However, deletion of individual distal POTRA domains resulted in increased mobility, suggesting that these domains are required for the full set of cellular interactions. SecE diffusion was much slower than that of the inner membrane protein PgpB and was more like OMPs and BamA. Strikingly, SecE diffused faster upon POTRA domain deletion. These results are consistent with the existence of a BAM-SecYEG trans-periplasmic assembly in live E. coli cells.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/metabolism , SEC Translocation Channels/metabolism , Escherichia coli Proteins/metabolism , Cell Membrane/metabolism , Bacterial Outer Membrane Proteins/chemistry , Protein Folding , Phosphatidate Phosphatase/metabolism
18.
J Biol Chem ; 298(2): 101578, 2022 02.
Article in English | MEDLINE | ID: mdl-35026226

ABSTRACT

The Saccharomyces cerevisiae PAH1-encoded phosphatidate (PA) phosphatase, which catalyzes the dephosphorylation of PA to produce diacylglycerol, controls the bifurcation of PA into triacylglycerol synthesis and phospholipid synthesis. Pah1 is inactive in the cytosol as a phosphorylated form and becomes active on the membrane as a dephosphorylated form by the Nem1-Spo7 protein phosphatase. We show that the conserved Trp-637 residue of Pah1, located in the intrinsically disordered region, is required for normal synthesis of membrane phospholipids, sterols, triacylglycerol, and the formation of lipid droplets. Analysis of mutant Pah1-W637A showed that the tryptophan residue is involved in the phosphorylation-mediated/dephosphorylation-mediated membrane association of the enzyme and its catalytic activity. The endogenous phosphorylation of Pah1-W637A was increased at the sites of the N-terminal region but was decreased at the sites of the C-terminal region. The altered phosphorylation correlated with an increase in its membrane association. In addition, membrane-associated PA phosphatase activity in vitro was elevated in cells expressing Pah1-W637A as a result of the increased membrane association of the mutant enzyme. However, the inherent catalytic function of Pah1 was not affected by the W637A mutation. Prediction of Pah1 structure by AlphaFold shows that Trp-637 and the catalytic residues Asp-398 and Asp-400 in the haloacid dehalogenase-like domain almost lie in the same plane, suggesting that these residues are important to properly position the enzyme for substrate recognition at the membrane surface. These findings underscore the importance of Trp-637 in Pah1 regulation by phosphorylation, membrane association of the enzyme, and its function in lipid synthesis.


Subject(s)
Phosphatidate Phosphatase , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Membrane Proteins/metabolism , Nuclear Proteins/metabolism , Phosphatidate Phosphatase/metabolism , Phosphorylation , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Triglycerides/metabolism
19.
J Biol Chem ; 298(8): 102221, 2022 08.
Article in English | MEDLINE | ID: mdl-35780834

ABSTRACT

Pah1 phosphatidate (PA) phosphatase plays a major role in triacylglycerol synthesis in Saccharomyces cerevisiae by producing its precursor diacylglycerol and concurrently regulates de novo phospholipid synthesis by consuming its precursor PA. The function of Pah1 requires its membrane localization, which is controlled by its phosphorylation state. Pah1 is dephosphorylated by the Nem1-Spo7 protein phosphatase, whereas its phosphorylation occurs by multiple known and unknown protein kinases. In this work, we show that Rim11, a yeast homolog of mammalian glycogen synthase kinase-3ß, is a protein kinase that phosphorylates Pah1 on serine (Ser12, Ser602, and Ser818) and threonine (Thr163, Thr164, Thr522) residues. Enzymological characterization of Rim11 showed that its Km for Pah1 (0.4 µM) is similar to those of other Pah1-phosphorylating protein kinases, but its Km for ATP (30 µM) is significantly higher than those of these same kinases. Furthermore, we demonstrate Rim11 phosphorylation of Pah1 does not require substrate prephosphorylation but was increased ∼2-fold upon its prephosphorylation by the Pho85-Pho80 protein kinase. In addition, we show Rim11-phosphorylated Pah1 was a substrate for dephosphorylation by Nem1-Spo7. Finally, we demonstrate the Rim11 phosphorylation of Pah1 exerted an inhibitory effect on its PA phosphatase activity by reduction of its catalytic efficiency. Mutational analysis of the major phosphorylation sites (Thr163, Thr164, and Ser602) indicated that Rim11-mediated phosphorylation at these sites was required to ensure Nem1-Spo7-dependent localization of the enzyme to the membrane. Overall, these findings advance our understanding of the phosphorylation-mediated regulation of Pah1 function in lipid synthesis.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Phosphatidate Phosphatase/metabolism , Protein Serine-Threonine Kinases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae , Animals , Glycogen Synthase Kinases/metabolism , Mammals/metabolism , Membrane Proteins/metabolism , Nuclear Proteins/metabolism , Phosphorylation , Saccharomyces cerevisiae/metabolism
20.
Curr Genet ; 69(2-3): 127-139, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36854981

ABSTRACT

Transcriptional corepressors Sin3, Cyc8 and Tup1 are important for downregulation of gene expression by recruiting various histone deacetylases once they gain access to defined genomic locations by interaction with pathway-specific repressor proteins. In this work we systematically investigated whether 17 yeast repressor proteins (Cti6, Dal80, Fkh1, Gal80, Mig1, Mot3, Nrg1, Opi1, Rdr1, Rox1, Sko1, Ume6, Ure2, Xbp1, Yhp1, Yox1 and Whi5) representing several unrelated regulatory pathways are able to bind to Sin3, Cyc8 and Tup1. Our results show that paired amphipathic helices 1 and 2 (PAH1 and PAH2) of Sin3 are functionally redundant for some regulatory pathways. WD40 domains of Tup1 proved to be sufficient for interaction with repressor proteins. Using length variants of selected repressors, we mapped corepressor interaction domains (CIDs) in vitro and assayed gene repression in vivo. Systematic comparison of CID minimal sequences allowed us to define several related positional patterns of hydrophobic amino acids some of which could be confirmed as functionally supported by site-directed mutagenesis. Although structural predictions indicated that certain CIDs may be α-helical, most repression domains appear to be randomly structured and must be considered as intrinsically disordered regions (IDR) adopting a defined conformation only by interaction with a corepressor.


Subject(s)
Prions , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Co-Repressor Proteins/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Repressor Proteins/metabolism , Transcription, Genetic , Gene Expression Regulation, Fungal , Nuclear Proteins/genetics , Glutathione Peroxidase/genetics , Prions/genetics , Phosphatidate Phosphatase/genetics , Phosphatidate Phosphatase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL