Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.468
Filter
Add more filters

Publication year range
1.
Cell ; 168(1-2): 101-110.e10, 2017 Jan 12.
Article in English | MEDLINE | ID: mdl-28086082

ABSTRACT

ATP-sensitive potassium channels (KATP) couple intracellular ATP levels with membrane excitability. These channels play crucial roles in many essential physiological processes and have been implicated extensively in a spectrum of metabolic diseases and disorders. To gain insight into the mechanism of KATP, we elucidated the structure of a hetero-octameric pancreatic KATP channel in complex with a non-competitive inhibitor glibenclamide by single-particle cryoelectron microscopy to 5.6-Å resolution. The structure shows that four SUR1 regulatory subunits locate peripherally and dock onto the central Kir6.2 channel tetramer through the SUR1 TMD0-L0 fragment. Glibenclamide-bound SUR1 uses TMD0-L0 fragment to stabilize Kir6.2 channel in a closed conformation. In another structural population, a putative co-purified phosphatidylinositol 4,5-bisphosphate (PIP2) molecule uncouples Kir6.2 from glibenclamide-bound SUR1. These structural observations suggest a molecular mechanism for KATP regulation by anti-diabetic sulfonylurea drugs, intracellular adenosine nucleotide concentrations, and PIP2 lipid.


Subject(s)
KATP Channels/chemistry , KATP Channels/metabolism , ATP Binding Cassette Transporter, Subfamily B/chemistry , ATP Binding Cassette Transporter, Subfamily B/metabolism , Animals , Cryoelectron Microscopy , Humans , Hydrolases/chemistry , Hydrolases/metabolism , Mammals/metabolism , Mesocricetus , Mice , Models, Molecular , Phosphoinositide Phospholipase C/chemistry , Phosphoinositide Phospholipase C/metabolism , Potassium Channels, Inwardly Rectifying/chemistry , Potassium Channels, Inwardly Rectifying/metabolism , Sulfonylurea Receptors/chemistry , Sulfonylurea Receptors/metabolism
2.
Cell ; 153(1): 216-27, 2013 Mar 28.
Article in English | MEDLINE | ID: mdl-23540699

ABSTRACT

Phospholipase Cε (PLCε) is a multifunctional enzyme implicated in cardiovascular, pancreatic, and inflammatory functions. Here we show that conditional deletion of PLCε in mouse cardiac myocytes protects from stress-induced pathological hypertrophy. PLCε small interfering RNA (siRNA) in ventricular myocytes decreases endothelin-1 (ET-1)-dependent elevation of nuclear calcium and activation of nuclear protein kinase D (PKD). PLCε scaffolded to muscle-specific A kinase-anchoring protein (mAKAP), along with PKCε and PKD, localizes these components at or near the nuclear envelope, and this complex is required for nuclear PKD activation. Phosphatidylinositol 4-phosphate (PI4P) is identified as a perinuclear substrate in the Golgi apparatus for mAKAP-scaffolded PLCε. We conclude that perinuclear PLCε, scaffolded to mAKAP in cardiac myocytes, responds to hypertrophic stimuli to generate diacylglycerol (DAG) from PI4P in the Golgi apparatus, in close proximity to the nuclear envelope, to regulate activation of nuclear PKD and hypertrophic signaling pathways.


Subject(s)
Cardiomegaly/metabolism , Cardiomegaly/pathology , Phosphatidylinositol Phosphates/metabolism , Phosphoinositide Phospholipase C/metabolism , Animals , Aorta/pathology , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Golgi Apparatus/metabolism , Heart , Heart Ventricles/cytology , Male , Mice , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Nuclear Envelope/metabolism , Phosphoinositide Phospholipase C/genetics , Rats , Signal Transduction
3.
Circ Res ; 135(2): e24-e38, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38813686

ABSTRACT

BACKGROUND: Chronically elevated neurohumoral drive, and particularly elevated adrenergic tone leading to ß-adrenergic receptor (ß-AR) overstimulation in cardiac myocytes, is a key mechanism involved in the progression of heart failure. ß1-AR (ß1-adrenergic receptor) and ß2-ARs (ß2-adrenergic receptor) are the 2 major subtypes of ß-ARs present in the human heart; however, they elicit different or even opposite effects on cardiac function and hypertrophy. For example, chronic activation of ß1-ARs drives detrimental cardiac remodeling while ß2-AR signaling is protective. The underlying molecular mechanisms for cardiac protection through ß2-ARs remain unclear. METHODS: ß2-AR signaling mechanisms were studied in isolated neonatal rat ventricular myocytes and adult mouse ventricular myocytes using live cell imaging and Western blotting methods. Isolated myocytes and mice were used to examine the roles of ß2-AR signaling mechanisms in the regulation of cardiac hypertrophy. RESULTS: Here, we show that ß2-AR activation protects against hypertrophy through inhibition of phospholipaseCε signaling at the Golgi apparatus. The mechanism for ß2-AR-mediated phospholipase C inhibition requires internalization of ß2-AR, activation of Gi and Gßγ subunit signaling at endosome and ERK (extracellular regulated kinase) activation. This pathway inhibits both angiotensin II and Golgi-ß1-AR-mediated stimulation of phosphoinositide hydrolysis at the Golgi apparatus ultimately resulting in decreased PKD (protein kinase D) and histone deacetylase 5 phosphorylation and protection against cardiac hypertrophy. CONCLUSIONS: This reveals a mechanism for ß2-AR antagonism of the phospholipase Cε pathway that may contribute to the known protective effects of ß2-AR signaling on the development of heart failure.


Subject(s)
Myocytes, Cardiac , Receptors, Adrenergic, beta-2 , Signal Transduction , Animals , Male , Mice , Rats , Animals, Newborn , Cardiomegaly/metabolism , Cardiomegaly/pathology , Cells, Cultured , Endocytosis , Golgi Apparatus/metabolism , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac/metabolism , Phosphoinositide Phospholipase C/metabolism , Protein Kinase C/metabolism , Rats, Sprague-Dawley , Receptors, Adrenergic, beta-2/metabolism
4.
Infect Immun ; 92(4): e0049523, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38451080

ABSTRACT

Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) infects up to a quarter of the world's population. Although immune responses can control Mtb infection, 5%-10% of infected individuals can progress to active TB disease (progressors). A myriad of host factors regulate disease progression in TB and a better understanding of immune correlates of protection and disease is pivotal for the development of new therapeutics. Comparison of human whole blood transcriptomic metadata with that of macaque TB progressors and Mtb-infected diversity outbred mice (DO) led to the identification of differentially regulated gene (DEG) signatures, associated with TB progression or control. The current study assessed the function of Phospholipase C epsilon (PLCƐ1), the top downregulated gene across species in TB progressors, using a gene-specific knockout mouse model of Mtb infection and in vitro Mtb-infected bone marrow-derived macrophages. PLCƐ1 gene expression was downregulated in TB progressors across species. PLCε1 deficiency in the mouse model resulted in increased susceptibility to Mtb infection, coincident accumulation of lung myeloid cells, and reduced ability to mount antibacterial responses. However, PLCε1 was not required for the activation and accumulation of T cells in mice. Our results suggest an important early role for PLCƐ1 in shaping innate immune response to TB and may represent a putative target for host-directed therapy.


Subject(s)
Mycobacterium tuberculosis , Phosphoinositide Phospholipase C , Tuberculosis , Humans , Mice , Animals , Macrophage Activation , Immunity, Innate
5.
Am J Hum Genet ; 108(3): 469-481, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33626338

ABSTRACT

Total fertilization failure (TFF) can occur during in vitro fertilization (IVF) treatments, even following intracytoplasmic sperm injection (ICSI). Various male or female factors could contribute to TFF. Increasing evidence suggested that genetic variations in PLCZ1, which encodes 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase zeta-1 (PLCζ), is involved in oocyte activation and is a key male factor in TFF. In the present study, we explored the genetic variants in male individuals that led to TFF. A total of 54 couples with TFF or poor fertilization (fertilization rate < 20%) were screened, and 21 couples were determined to have a male infertility factor by the mouse oocyte activation test. Whole-exome sequencing of these 21 male individuals identified three homozygous pathogenic variants in ACTL9 (actin like 9) in three individuals. ACTL9 variations led to abnormal ultrastructure of the perinuclear theca (PT), and PLCζ was absent in the head and present in the neck of the mutant sperm, which contributed to failed normal calcium oscillations in oocytes and subsequent TFF. The key roles of ACTL9 in the PT structure and TFF after ICSI were further confirmed in an Actl9-mutated mouse model. Furthermore, assisted oocyte activation by calcium ionophore exposure successfully overcame TFF and achieved live births in a couple with an ACTL9 variant. These findings identified the role of ACTL9 in the PT structure and the correct localization of PLCζ. The results also provide a genetic marker and a therapeutic option for individuals who have undergone ICSI without successful fertilization.


Subject(s)
Actins/genetics , Infertility, Male/genetics , Phosphoinositide Phospholipase C/genetics , Spermatozoa/metabolism , Adult , Animals , Female , Fertilization in Vitro/adverse effects , Homozygote , Humans , Infertility, Male/pathology , Male , Mice , Oocytes/growth & development , Sperm Injections, Intracytoplasmic , Spermatozoa/pathology , Treatment Failure
6.
Hum Reprod ; 39(6): 1256-1274, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38670547

ABSTRACT

STUDY QUESTION: Are sperm phospholipase C zeta (PLCζ) profiles linked to the quality of embryogenesis and pregnancy? SUMMARY ANSWER: Sperm PLCζ levels in both mouse and humans correlate with measures of ideal embryogenesis whereby minimal levels seem to be required to result in successful pregnancy. WHAT IS KNOWN ALREADY: While causative factors underlying male infertility are multivariable, cases are increasingly associated with the efficacy of oocyte activation, which in mammals occurs in response to specific profiles of calcium (Ca2+) oscillations driven by sperm-specific PLCζ. Although sperm PLCζ abrogation is extensively linked with human male infertility where oocyte activation is deficient, less is clear as to whether sperm PLCζ levels or localization underlies cases of defective embryogenesis and failed pregnancy following fertility treatment. STUDY DESIGN, SIZE, DURATION: A cohort of 54 couples undergoing fertility treatment were recruited at the assisted reproductive technology laboratory at the King Faisal Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia. The recruitment criteria for males was a minimum sperm concentration of 5×106 sperm/ml, while all female patients had to have at least five oocytes. Sperm PLCζ analysis was performed in research laboratories, while semen assessments were performed, and time-lapse morphokinetic data were obtained, in the fertility clinic as part of routine treatment. The CRISPR/Cas9 system was concurrently used to induce indels and single-nucleotide mutations within the Plcζ gene to generate strains of Plcζ mutant mice. Sperm PLCζ was evaluated using immunofluorescence and immunoblotting with an antibody of confirmed consistent specificity against PLCζ. PARTICIPANTS/MATERIALS, SETTING, METHODS: We evaluated PLCζ profiles in sperm samples from 54 human couples undergoing fertility treatment in the context of time-lapse morphokinetic analysis of resultant embryos, correlating such profiles to pregnancy status. Concurrently, we generated two strains of mutant Plcζ mice using CRISPR/Cas9, and performed IVF with wild type (WT) oocytes and using WT or mutant Plcζ sperm to generate embryos. We also assessed PLCζ status in WT and mutant mice sperm in the context of time-lapse morphokinetic analysis and breeding outcomes. MAIN RESULTS AND THE ROLE OF CHANCE: A significant (P ≤ 0.05) positive relationship was observed between both PLCζ relative fluorescence and relative density with the times taken for both the second cell division (CC2) (r = 0.26 and r = 0.43, respectively) and the third cell division (S2) (r = 0.26). Examination of localization patterns also indicated significant correlations between the presence or absence of sperm PLCζ and CC2 (r = 0.27 and r = -0.27, respectively; P ≤ 0.025). Human sperm PLCζ levels were at their highest in the ideal times of CC2 (8-12 h) compared to time ranges outside the ideal timeframe (<8 and >12 h) where levels of human sperm PLCζ were lower. Following assignment of PLCζ level thresholds, quantification revealed a significantly higher (P ≤ 0.05) rate of successful pregnancy in values larger than the assigned cut-off for both relative fluorescence (19% vs 40%, respectively) and relative density (8% vs 54%, respectively). Immunoblotting indicated a single band for PLCζ at 74 kDa in sperm from WT mice, while a single band was also observed in sperm from heterozygous of Plcζ mutant mouse sperm, but at a diminished intensity. Immunofluorescent analysis indicated the previously reported (Kashir et al., 2021) fluorescence patterns in WT sperm, while sperm from Plcζ mutant mice exhibited a significantly diminished and dispersed pattern at the acrosomal region of the sperm head. Breeding experiments indicated a significantly reduced litter size of mutant Plcζ male mice compared to WT mice, while IVF-generated embryos using sperm from mutant Plcζ mice exhibited high rates of polyspermy, and resulted in significantly reduced numbers of these embryos reaching developmental milestones. LIMITATIONS, REASONS FOR CAUTION: The human population examined was relatively small, and should be expanded to examine a larger multi-centre cohort. Infertility conditions are often multivariable, and it was not possible to evaluate all these in human patients. However, our mutant Plcζ mouse experiments do suggest that PLCζ plays a significant role in early embryo development. WIDER IMPLICATIONS OF THE FINDINGS: We found that minimal levels of PLCζ within a specific range were required for optimal early embryogenesis, correlating with increased pregnancy. Levels of sperm PLCζ below specific thresholds were associated with ineffective embryogenesis and lower pregnancy rates, despite eliciting successful fertilization in both mice and humans. To our knowledge, this represents the first time that PLCζ levels in sperm have been correlated to prognostic measures of embryogenic efficacy and pregnancy rates in humans. Our data suggest for the first time that the clinical utilization of PLCζ may stand to benefit not just a specific population of male infertility where oocyte activation is completely deficient (wherein PLCζ is completely defective/abrogated), but also perhaps the larger population of couples seeking fertility treatment. STUDY FUNDING/COMPETING INTEREST(S): J.K. is supported by a faculty start up grant awarded by Khalifa University (FSU-2023-015). This study was also supported by a Healthcare Research Fellowship Award (HF-14-16) from Health and Care Research Wales (HCRW) to J.K., alongside a National Science, Technology, and Innovation plan (NSTIP) project grant (15-MED4186-20) awarded by the King Abdulaziz City for Science and Technology (KACST) for J.K. and A.M.A. The authors declare no conflicts of interest. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Embryonic Development , Phosphoinositide Phospholipase C , Spermatozoa , Female , Animals , Male , Phosphoinositide Phospholipase C/genetics , Phosphoinositide Phospholipase C/metabolism , Mice , Humans , Pregnancy , Embryonic Development/physiology , Infertility, Male/genetics , Oocytes , Adult
7.
Hum Reprod ; 39(5): 902-911, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38461455

ABSTRACT

STUDY QUESTION: Is a microfluidic sperm sorter (MSS) able to select higher quality sperm compared to conventional methods? SUMMARY ANSWER: The MSS selects sperm with improved parameters, lower DNA fragmentation, and higher fertilizing potential. WHAT IS KNOWN ALREADY: To date, the few studies that have compared microfluidics sperm selection with conventional methods have used heterogeneous study population and have lacked molecular investigations. STUDY DESIGN, SIZE, DURATION: The efficiency of a newly designed MSS in isolating high-quality sperm was compared to the density-gradient centrifugation (DGC) and swim-up (SU) methods, using 100 semen samples in two groups, during 2023-2024. PARTICIPANTS/MATERIALS, SETTING, METHODS: Semen specimens from 50 normozoospermic and 50 non-normozoospermic men were sorted using MSS, DGC, and SU methods to compare parameters related to the quality and fertilizing potential of sperm. The fertilizing potential of sperm was determined by measurement of phospholipase C zeta (PLCζ) and post-acrosomal sheath WW domain-binding protein (PAWP) expression using flow cytometry, and the chromatin dispersion test was used to assess sperm DNA damage. MAIN RESULTS AND THE ROLE OF CHANCE: In both normozoospermic and non-normozoospermic groups, the MSS-selected sperm with the highest progressive motility, PLCζ positive expression and PLCζ and PAWP fluorescence intensity the lowest non-progressive motility, and minimal DNA fragmentation, compared to sperm selected by DGC and SU methods (P < 0.05). LIMITATION, REASONS FOR CAUTION: The major limitations of our study were the low yield of sperm in the MSS chips and intentional exclusion of severe male factor infertility to yield a sufficient sperm count for molecular experiments; thus testing with severe oligozoospermic semen and samples with low count and motility is still required. In addition, due to ethical considerations, at present, it was impossible to use the sperm achieved from MSS in the clinic to assess the fertilization rate and further outcomes. WIDER IMPLICATIONS OF THE FINDINGS: Our research presents new evidence that microfluidic sperm sorting may result in the selection of high-quality sperm from raw semen. This novel technology might be a key to improving clinical outcomes of assisted reproduction in infertile patients. STUDY FUNDING/COMPETING INTEREST(S): The study is funded by the Iran University of Medical Sciences and no competing interest exists. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Flow Cytometry , Semen Analysis , Seminal Plasma Proteins , Spermatozoa , Male , Humans , Spermatozoa/physiology , Flow Cytometry/methods , Semen Analysis/methods , DNA Fragmentation , Sperm Motility , Phosphoinositide Phospholipase C/metabolism , Adult , Microfluidics/methods , Fertilization/physiology , Microfluidic Analytical Techniques/methods , Cell Separation/methods , Carrier Proteins/metabolism
8.
Pharmacol Res ; 203: 107173, 2024 May.
Article in English | MEDLINE | ID: mdl-38580186

ABSTRACT

Our recent multi-omics studies have revealed rich sources of novel bioactive proteins and polypeptides from marine organisms including cnidarians. In the present study, we initially conducted a transcriptomic analysis to review the composition profile of polypeptides from Zoanthus sociatus. Then, a newly discovered NPY-like polypeptide-ZoaNPY was selected for further in silico structural, binding and virtually pharmacological studies. To evaluate the pro-angiogenic effects of ZoaNPY, we employed an in vitro HUVECs model and an in vivo zebrafish model. Our results indicate that ZoaNPY, at 1-100 pmol, enhances cell survival, migration and tube formation in the endothelial cells. Besides, treatment with ZoaNPY could restore a chemically-induced vascular insufficiency in zebrafish embryos. Western blot results demonstrated the application of ZoaNPY could increase the phosphorylation of proteins related to angiogenesis signaling including PKC, PLC, FAK, Src, Akt, mTOR, MEK, and ERK1/2. Furthermore, through molecular docking and surface plasmon resonance (SPR) verification, ZoaNPY was shown to directly and physically interact with NPY Y2 receptor. In view of this, all evidence showed that the pro-angiogenic effects of ZoaNPY involve the activation of NPY Y2 receptor, thereby activating the Akt/mTOR, PLC/PKC, ERK/MEK and Src- FAK-dependent signaling pathways. Furthermore, in an excision wound model, the treatment with ZoaNPY was shown to accelerate the wound healing process in mice. Our findings provide new insights into the discovery and development of novel pro-angiogenic drugs derived from NPY-like polypeptides in the future.


Subject(s)
Cnidaria , Peptides , Receptors, Neuropeptide Y , Animals , Humans , Mice , Cell Movement/drug effects , Focal Adhesion Kinase 1/drug effects , Focal Adhesion Kinase 1/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Ligands , Molecular Docking Simulation , Neovascularization, Physiologic/drug effects , Neuropeptide Y/metabolism , Neuropeptide Y/pharmacology , Peptides/pharmacology , Protein Kinase C/drug effects , Protein Kinase C/metabolism , Receptors, Neuropeptide Y/drug effects , Receptors, Neuropeptide Y/metabolism , Signal Transduction/drug effects , src-Family Kinases/drug effects , src-Family Kinases/metabolism , Zebrafish , Cnidaria/chemistry , Phosphoinositide Phospholipase C/drug effects , Phosphoinositide Phospholipase C/metabolism
9.
Brain ; 146(4): 1267-1280, 2023 04 19.
Article in English | MEDLINE | ID: mdl-36448305

ABSTRACT

Phospholipase C (PLC) is an essential isozyme involved in the phosphoinositide signalling pathway, which maintains cellular homeostasis. Gain- and loss-of-function mutations in PLC affect enzymatic activity and are therefore associated with several disorders. Alternative splicing variants of PLC can interfere with complex signalling networks associated with oncogenic transformation and other diseases, including brain disorders. Cells and tissues with various mutations in PLC contribute different phosphoinositide signalling pathways and disease progression, however, identifying cryptic mutations in PLC remains challenging. Herein, we review both the mechanisms underlying PLC regulation of the phosphoinositide signalling pathway and the genetic variation of PLC in several brain disorders. In addition, we discuss the present challenges associated with the potential of deep-learning-based analysis for the identification of PLC mutations in brain disorders.


Subject(s)
Brain Diseases , Deep Learning , Humans , Type C Phospholipases/genetics , Type C Phospholipases/metabolism , Phosphoinositide Phospholipase C/genetics , Phosphoinositide Phospholipase C/metabolism , Phosphatidylinositols/metabolism , Mutation/genetics
10.
J Reprod Dev ; 70(4): 229-237, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38853022

ABSTRACT

For the intracytoplasmic sperm injection (ICSI) procedure in pigs, an electrical pulse (EP) has been used as an effective method for oocyte stimulation, but unlike sperm, EP is unable to induce Ca2+ oscillations. In this study, we investigated the effects of generating artificial Ca2+ oscillations with phospholipase Cζ (PLCζ) mRNA, a candidate sperm factor, on fertilization, embryonic development, and gene expression after ICSI. Firstly, the concentration of PLCζ mRNA of a fixed volume (1.0 pl) that would induce a pattern of Ca2+ rise similar to that of in vitro fertilized (IVF) sperm was examined and determined to be 300 ng/µl. Secondly, the effects of oocyte stimulation methods on fertilization and embryonic development were investigated. ICSI-oocytes were activated by EP (EP group) or by PLCζ mRNA (PLCζ group). Furthermore, IVF-oocytes (IVF group) and ICSI-oocytes with and without an injection of buffer (buffer and untreated groups, respectively) were used as controls. It was found that the rates of normal fertilization in the PLCζ and EP groups were significantly higher than those in the buffer and untreated groups. The blastocyst formation rates did not differ among the groups. The embryo quality in the EP group was inferior to those in the PLCζ and IVF groups. Additionally, the expression level of a proapoptosis-related gene (Caspase-3) in the EP group was significantly higher than those in the PLCζ and IVF groups. Our data suggest that oocyte activation by PLCζ mRNA has the effect of improving embryo quality.


Subject(s)
Embryonic Development , Oocytes , RNA, Messenger , Sperm Injections, Intracytoplasmic , Animals , Oocytes/metabolism , Female , Swine , RNA, Messenger/metabolism , Male , Calcium/metabolism , Phosphoinositide Phospholipase C/metabolism , Phosphoinositide Phospholipase C/genetics , Fertilization in Vitro/veterinary , Spermatozoa/metabolism , Calcium Signaling , Blastocyst/metabolism , Fertilization
11.
PLoS Genet ; 17(5): e1009506, 2021 05.
Article in English | MEDLINE | ID: mdl-33956822

ABSTRACT

Identifying the molecular underpinnings of the neural specializations that underlie human cognitive and behavioral traits has long been of considerable interest. Much research on human-specific changes in gene expression and epigenetic marks has focused on the prefrontal cortex, a brain structure distinguished by its role in executive functions. The cerebellum shows expansion in great apes and is gaining increasing attention for its role in motor skills and cognitive processing, including language. However, relatively few molecular studies of the cerebellum in a comparative evolutionary context have been conducted. Here, we identify human-specific methylation in the lateral cerebellum relative to the dorsolateral prefrontal cortex, in a comparative study with chimpanzees (Pan troglodytes) and rhesus macaques (Macaca mulatta). Specifically, we profiled genome-wide methylation levels in the three species for each of the two brain structures and identified human-specific differentially methylated genomic regions unique to each structure. We further identified which differentially methylated regions (DMRs) overlap likely regulatory elements and determined whether associated genes show corresponding species differences in gene expression. We found greater human-specific methylation in the cerebellum than the dorsolateral prefrontal cortex, with differentially methylated regions overlapping genes involved in several conditions or processes relevant to human neurobiology, including synaptic plasticity, lipid metabolism, neuroinflammation and neurodegeneration, and neurodevelopment, including developmental disorders. Moreover, our results show some overlap with those of previous studies focused on the neocortex, indicating that such results may be common to multiple brain structures. These findings further our understanding of the cerebellum in human brain evolution.


Subject(s)
Cerebellum/metabolism , DNA Methylation , Epigenesis, Genetic , ADAM Proteins , Animals , Autoantigens , Carrier Proteins , Chad , CpG Islands , Female , Gene Expression Regulation , Humans , Intracellular Signaling Peptides and Proteins , Macaca mulatta/genetics , Male , Microfilament Proteins , Nerve Tissue Proteins , Pan troglodytes/genetics , Phosphoinositide Phospholipase C , Protein Serine-Threonine Kinases , Proteins , SAP90-PSD95 Associated Proteins , Species Specificity , Transcription Initiation Site
12.
Int J Mol Sci ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38279344

ABSTRACT

During fertilization, the fusion of the spermatozoa with the oocytes causes the release of calcium from the oocyte endoplasmatic reticulum. This, in turn, triggers a series of calcium ion (Ca2+) oscillations, a process known as oocyte activation. The sperm-specific factor responsible for oocyte activation is phospholipase C zeta (PLCζ). Men undergoing intracytoplasmic sperm injection (ICSI) with their spermatozoa lacking PLCζ are incapable of generating Ca2+ oscillation, leading to fertilization failure. The immunofluorescence assay is the most used technique to assess the expression and localization of PLCζ and to diagnose patients with reduced/absent ability to activate the oocytes. In these patients, the use of assisted oocyte activation (AOA) technique can help to yield successful ICSI results and shorten the time of pregnancy. However, the production of a stable PLCζ recombinant protein represents a new powerful therapeutic approach to treating individuals with this condition. We aim to conduct a systematic review focusing on the expression, level, and localization of PLCζ, discussing the novel genetic mutation associated with its impairment. In addition, we highlight the benefits of AOA, looking at new and less invasive methods to diagnose and treat cases with PLCζ dysfunction.


Subject(s)
Spermatozoa , Type C Phospholipases , Female , Humans , Male , Pregnancy , Calcium/metabolism , Oocytes/metabolism , Phosphoinositide Phospholipase C/genetics , Phosphoinositide Phospholipase C/metabolism , Semen/metabolism , Spermatozoa/metabolism , Type C Phospholipases/metabolism
13.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(8): 931-935, 2024 Aug 10.
Article in Zh | MEDLINE | ID: mdl-39097274

ABSTRACT

OBJECTIVE: To explore the genetic basis and clinical phenotype of a Chinese pedigree affected with Focal segmental glomerulosclerosis (FSGS). METHODS: A male patient who was admitted to the First Affiliated Hospital of Zhengzhou University on July 26, 2018 was selected as the study subject. Clinical data of the patient was collected. Next generation sequencing and Sanger sequencing were carried out to detect the variant sites. Bioinformatic software was used to simulate the effect of candidate variant on the protein functions. RESULTS: Ultrasound exam of the patient showed enhanced echo for the renal parenchyma. Kidney biopsy had confirmed the pathological diagnosis of FSGS (non-specific). Electronic microscopy displayed segmental sclerosis of the glomeruli, mild hyperplasia of mesangial cells and matrix. The proband was found to harbor two novel variants of the PLCE1 gene, namely c.3199delA (p.N1067Mfs*15) and c.4441_4443delATC (p.1481_1481del), which were respectively inherited from his mother and father. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), both variants were rated as pathogenic (PVS1+PM2_Supporting+PP3; PM2_Supporting+PM3+PP3). Bioinformatic simulation suggested that both variants could significantly affect the tertiary structure of the PLCE1 protein. CONCLUSION: The c.4441_4443delATC and c.3199delA variants of the PLCE1 gene probably underlay the pathogenesis of the FSGS in this pedigree.


Subject(s)
Glomerulosclerosis, Focal Segmental , Phosphoinositide Phospholipase C , Child , Humans , Male , Genetic Testing , Glomerulosclerosis, Focal Segmental/genetics , High-Throughput Nucleotide Sequencing , Mutation , Pedigree , Phosphoinositide Phospholipase C/genetics
14.
Physiol Rev ; 96(1): 127-49, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26631595

ABSTRACT

The most fundamental unresolved issue of fertilization is to define how the sperm activates the egg to begin embryo development. Egg activation at fertilization in all species thus far examined is caused by some form of transient increase in the cytoplasmic free Ca(2+) concentration. What has not been clear, however, is precisely how the sperm triggers the large changes in Ca(2+) observed within the egg cytoplasm. Here, we review the studies indicating that the fertilizing sperm stimulates a cytosolic Ca(2+) increase in the egg specifically by delivering a soluble factor that diffuses into the cytosolic space of the egg upon gamete membrane fusion. Evidence is primarily considered in species of eggs where the sperm has been shown to elicit a cytosolic Ca(2+) increase by initiating Ca(2+) release from intracellular Ca(2+) stores. We suggest that our best understanding of these signaling events is in mammals, where the sperm triggers a prolonged series of intracellular Ca(2+) oscillations. The strongest empirical studies to date suggest that mammalian sperm-triggered Ca(2+) oscillations are caused by the introduction of a sperm-specific protein, called phospholipase C-zeta (PLCζ) that generates inositol trisphosphate within the egg. We will discuss the role and mechanism of action of PLCζ in detail at a molecular and cellular level. We will also consider some of the evidence that a soluble sperm protein might be involved in egg activation in nonmammalian species.


Subject(s)
Calcium Signaling , Cell Communication , Fertility , Oocytes/enzymology , Phosphoinositide Phospholipase C/metabolism , Sperm-Ovum Interactions , Spermatozoa/enzymology , Animals , Female , Humans , Male , Phosphoinositide Phospholipase C/chemistry , Protein Conformation , Structure-Activity Relationship
15.
Clin Genet ; 103(5): 603-608, 2023 05.
Article in English | MEDLINE | ID: mdl-36593593

ABSTRACT

Total fertilization failure (TFF), which refers to fertilization failure in all mature oocytes, accounting for 5%-10% of in vitro fertilization (IVF) cycles and 1%-3% of intracytoplasmic sperm injection (ICSI) cycles in human. In this study, we recruited three unrelated primary infertile men with repeated cycles of TFF and performed whole-exome sequencing to identify the potential pathogenic variants. We identified homozygous or compound-heterozygous variants of paternal-effect genes ACTL7A and PLCZ1 that followed a Mendelian recessive inheritance pattern. Novel homozygous nonsense variant in ACTL7A [c.C146G: p.S49*] was identified in case 1, who came from a consanguineous family. Ultrastructural observation of ACTL7A-mutated spermatozoa by transmission electron microscopy (TEM) indicated that apparent increased thickness of perinuclear matrix and the acrosome was detached from the nuclear envelop. Besides, two novel compound-heterozygous variants in PLCZ1 were identified in case 2 [c.1174+3A>C:p.?; c.A1274G:p.N425S] and case 3 [c.136-1G>C:p.?; c.G1358A:p.G453D]. Mutated spermatozoa from case 2 with reduced expression of PLCZ1 showed apparent acrosome detachment by TEM analysis. And ICSI with assisted oocyte activation (ICSI-AOA) treatment can partly rescue the TFF. Taken together, our findings revealed that novel biallelic variants in the paternal-effect genes ACTL7A and PLCZ1 were associated with human TFF, which expanding the spectrum of genetic causes and facilitating the genetic diagnosis of male infertility with TFF.


Subject(s)
Actins , Infertility, Male , Phosphoinositide Phospholipase C , Semen , Female , Humans , Male , Pregnancy , Fertilization/genetics , Fertilization in Vitro , Infertility, Male/genetics , Oocytes , Phosphoinositide Phospholipase C/genetics , Pregnancy Rate , Spermatozoa/metabolism , Actins/genetics
16.
Can J Microbiol ; 69(12): 501-511, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37672795

ABSTRACT

Bacillus cereus endophthalmitis is a devastating eye infection that causes rapid blindness through the release of extracellular tissue-destructive exotoxins. The phagocytic and antibacterial functions of ocular cells are the keys to limiting ocular bacterial infections. In a previous study, we identified a new virulence gene, plcA-2 (different from the original plcA-1 gene), that was strongly associated with the plcA gene of Listeria monocytogenes. This plcA gene had been confirmed to play an important role in phagocytosis. However, how the Bc-phosphatidylinositol-specific phospholipase C (PI-PLC) proteins encoded by the plcA-1/2 genes affect phagocytes remains unclear in B. cereus endophthalmitis. Here, we found that the enzymatic activity of Bc-PI-PLC-A2 was approximately twofold higher than that of Bc-PI-PLC-A1, and both proteins inhibited the viability of Müller cells. In addition, PI-PLC proteins reduced phagocytosis of Müller cells by decreasing the phosphorylation levels of key proteins in the PI3K/AKT signaling pathway. In conclusion, we showed that PI-PLC proteins contribute to inhibit the viability of and suppress the phagocytosis of Müller cells, providing new insights into the pathogenic mechanism of B. cereus endophthalmitis.


Subject(s)
Endophthalmitis , Listeria monocytogenes , Humans , Phosphoinositide Phospholipase C/genetics , Phosphoinositide Phospholipase C/metabolism , Phosphatidylinositol Diacylglycerol-Lyase/genetics , Phosphatidylinositol Diacylglycerol-Lyase/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Cell Survival , Ependymoglial Cells/metabolism , Phagocytes/metabolism , Signal Transduction , Type C Phospholipases/genetics , Type C Phospholipases/metabolism
17.
J Assist Reprod Genet ; 40(1): 53-64, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36529831

ABSTRACT

PURPOSE: To investigate the genetic causes of polyspermy and total fertilization failure (TFF) in two independent male patients suffering from male infertility. METHODS: Immunofluorescence (IF) staining was used to detect the localization of the PLCζ protein in sperm and the maternal pronucleus in the zygote. Genomic DNA samples were extracted from the peripheral blood of patients and their families. The ExAC database was used to identify the frequency of corresponding mutations. The PLCZ1 mutations were validated by Sanger sequencing. The pathogenicity of the identified mutations and their possible effects on the protein were assessed using in silico tools and molecular modeling. RESULTS: We identified a reported homozygous mutation c.588C > A (p.Cys196Ter) and a compound heterozygous mutation c.2 T > C(p.Met1Thr)/c.590G > A (p.Arg197His) with one novel mutation in PLCZ1. The IF results showed that these multipronuclear zygotes formed as a result of polyspermy. In silico analysis predicted that the mutations result in disease-causing proteins. IF staining revealed that PLCζ is abnormally localized in the sperm samples from the two affected patients. Assisted oocyte activation (AOA) successfully rescued polyspermy and TFF and achieved pregnancy in two patients with the PLCZ1 mutation. CONCLUSION: We identified a homozygous mutation in PLCZ1 (c.588C > A [p.Cys196Ter]) in a male patient with polyspermy after in vitro fertilization (IVF) as well as a compound heterozygous mutation c.2 T > C(p.Met1Thr)/c.590G > A (p.Arg197His) with one novel mutation in a male patient with fertilization failure after intracytoplasmic sperm injection (ICSI), and we provide evidence that the homozygous mutation can cause polyspermy and the compound heterozygous mutation can cause fertilization failure.


Subject(s)
Infertility, Male , Semen , Humans , Pregnancy , Female , Male , Infertility, Male/genetics , Infertility, Male/metabolism , Mutation/genetics , Fertilization in Vitro , Spermatozoa/metabolism , Oocytes/metabolism , Fertilization/genetics , Phosphoinositide Phospholipase C/genetics
18.
Phytother Res ; 37(12): 5974-5990, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37778741

ABSTRACT

Acute kidney injury (AKI) is a common clinical condition associated with increased incidence and mortality rates. Hederasaponin C (HSC) is one of the main active components of Pulsatilla chinensis (Bunge) Regel. HSC possesses various pharmacological activities, including anti-inflammatory activity. However, the protective effect of HSC against lipopolysaccharide (LPS)-induced AKI in mice remains unclear. Therefore, we investigated the protective effect of HSC against LPS-induced renal inflammation and the underlying molecular mechanisms. Herein, using MTT and LDH assays to assess both cell viability and LDH activity; using dual staining techniques to identify different cell death patterns; conducting immunoblotting, QRT-PCR, and immunofluorescence analyses to evaluate levels of protein and mRNA expression; employing immunoblotting, molecular docking, SPR experiments, and CETSA to investigate the interaction between HSC and TLR4; and studying the anti-inflammatory effects of HSC in the LPS-induced AKI. The results indicate that HSC inhibits the expression of TLR4 and the activation of NF-κB and PIP2 signaling pathways, while simultaneously suppressing the activation of the NLRP3 inflammasome. In animal models, HSC ameliorated LPS-induced AKI and diminished inflammatory response and the level of renal injury markers. These findings suggest that HSC has potential as a therapeutic agent to mitigate sepsis-related AKI.


Subject(s)
Acute Kidney Injury , NF-kappa B , Saponins , Animals , Mice , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Lipopolysaccharides/pharmacology , Molecular Docking Simulation , NF-kappa B/drug effects , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Signal Transduction , Toll-Like Receptor 4/drug effects , Toll-Like Receptor 4/metabolism , Saponins/pharmacology , Saponins/therapeutic use , Phosphoinositide Phospholipase C
19.
Trends Biochem Sci ; 43(10): 818-828, 2018 10.
Article in English | MEDLINE | ID: mdl-30170889

ABSTRACT

Currently, infertility affects ∼16% of couples worldwide. The causes are reported to involve both male and female factors, including fertilization failure between mature spermatozoa and eggs. However, the molecular mechanisms involved in each step of mammalian fertilization are yet to be fully elucidated. Although some of these steps can be rescued with assisted reproductive technologies, it is important to clarify the molecular mechanisms involved for the treatment and diagnosis of infertile couples. This review illustrates recent findings in mammalian fertilization, discovered by combining gene modification techniques with other new approaches, and aims to show how these findings will guide future research in mammalian fertilization.


Subject(s)
Fertilization , Mammals/physiology , Animals , Carrier Proteins/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats , Egg Proteins , Female , Humans , Immunoglobulins/metabolism , Male , Membrane Proteins/metabolism , Phosphoinositide Phospholipase C/genetics , Receptors, Cell Surface , Species Specificity , Sperm-Ovum Interactions
20.
J Biol Chem ; 296: 100290, 2021.
Article in English | MEDLINE | ID: mdl-33453281

ABSTRACT

Rho/Ras family small GTPases are known to regulate numerous cellular processes, including cytoskeletal reorganization, cell proliferation, and cell differentiation. These processes are also controlled by Ca2+, and consequently, cross talk between these signals is considered likely. However, systematic quantitative evaluation has not yet been reported. To fill this gap, we constructed optogenetic tools to control the activity of small GTPases (RhoA, Rac1, Cdc42, Ras, Rap, and Ral) using an improved light-inducible dimer system (iLID). We characterized these optogenetic tools with genetically encoded red fluorescence intensity-based small GTPase biosensors and confirmed these optogenetic tools' specificities. Using these optogenetic tools, we investigated calcium mobilization immediately after small GTPase activation. Unexpectedly, we found that a transient intracellular calcium elevation was specifically induced by RhoA activation in RPE1 and HeLa cells. RhoA activation also induced transient intracellular calcium elevation in MDCK and HEK293T cells, suggesting that generally RhoA induces calcium signaling. Interestingly, the molecular mechanisms linking RhoA activation to calcium increases were shown to be different among the different cell types: In RPE1 and HeLa cells, RhoA activated phospholipase C epsilon (PLCε) at the plasma membrane, which in turn induced Ca2+ release from the endoplasmic reticulum (ER). The RhoA-PLCε axis induced calcium-dependent nuclear factor of activated T cells nuclear translocation, suggesting that it does activate intracellular calcium signaling. Conversely, in MDCK and HEK293T cells, RhoA-ROCK-myosin II axis induced the calcium transients. These data suggest universal coordination of RhoA and calcium signaling in cellular processes, such as cellular contraction and gene expression.


Subject(s)
Calcium Signaling/genetics , Calcium/metabolism , Light Signal Transduction/genetics , Optogenetics/methods , rhoA GTP-Binding Protein/genetics , Animals , Biosensing Techniques/methods , Cell Differentiation , Cell Proliferation , Dogs , Gene Expression Regulation , HEK293 Cells , HeLa Cells , Humans , Light , Madin Darby Canine Kidney Cells , Organ Specificity , Phosphoinositide Phospholipase C/genetics , Phosphoinositide Phospholipase C/metabolism , cdc42 GTP-Binding Protein/genetics , cdc42 GTP-Binding Protein/metabolism , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism , ral GTP-Binding Proteins/genetics , ral GTP-Binding Proteins/metabolism , rap GTP-Binding Proteins/genetics , rap GTP-Binding Proteins/metabolism , ras Proteins/genetics , ras Proteins/metabolism , rhoA GTP-Binding Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL