Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 175
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 177(2): 370-383.e15, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30905475

ABSTRACT

Contractile injection systems (CISs) are cell-puncturing nanodevices that share ancestry with contractile tail bacteriophages. Photorhabdus virulence cassette (PVC) represents one group of extracellular CISs that are present in both bacteria and archaea. Here, we report the cryo-EM structure of an intact PVC from P. asymbiotica. This over 10-MDa device resembles a simplified T4 phage tail, containing a hexagonal baseplate complex with six fibers and a capped 117-nanometer sheath-tube trunk. One distinct feature of the PVC is the presence of three variants for both tube and sheath proteins, indicating a functional specialization of them during evolution. The terminal hexameric cap docks onto the topmost layer of the inner tube and locks the outer sheath in pre-contraction state with six stretching arms. Our results on the PVC provide a framework for understanding the general mechanism of widespread CISs and pave the way for using them as delivery tools in biological or therapeutic applications.


Subject(s)
Photorhabdus/chemistry , Photorhabdus/ultrastructure , Bacteriophage T4/chemistry , Cell Membrane/chemistry , Cryoelectron Microscopy/methods , Models, Molecular , Photorhabdus/metabolism , Protein Conformation , Type VI Secretion Systems/metabolism
2.
Nature ; 616(7956): 357-364, 2023 04.
Article in English | MEDLINE | ID: mdl-36991127

ABSTRACT

Endosymbiotic bacteria have evolved intricate delivery systems that enable these organisms to interface with host biology. One example, the extracellular contractile injection systems (eCISs), are syringe-like macromolecular complexes that inject protein payloads into eukaryotic cells by driving a spike through the cellular membrane. Recently, eCISs have been found to target mouse cells1-3, raising the possibility that these systems could be harnessed for therapeutic protein delivery. However, whether eCISs can function in human cells remains unknown, and the mechanism by which these systems recognize target cells is poorly understood. Here we show that target selection by the Photorhabdus virulence cassette (PVC)-an eCIS from the entomopathogenic bacterium Photorhabdus asymbiotica-is mediated by specific recognition of a target receptor by a distal binding element of the PVC tail fibre. Furthermore, using in silico structure-guided engineering of the tail fibre, we show that PVCs can be reprogrammed to target organisms not natively targeted by these systems-including human cells and mice-with efficiencies approaching 100%. Finally, we show that PVCs can load diverse protein payloads, including Cas9, base editors and toxins, and can functionally deliver them into human cells. Our results demonstrate that PVCs are programmable protein delivery devices with possible applications in gene therapy, cancer therapy and biocontrol.


Subject(s)
Cell Membrane , Drug Delivery Systems , Eukaryotic Cells , Photorhabdus , Proteins , Animals , Humans , Mice , Cell Membrane/metabolism , Eukaryotic Cells/cytology , Eukaryotic Cells/metabolism , Photorhabdus/chemistry , Photorhabdus/metabolism , CRISPR-Associated Protein 9/metabolism , Toxins, Biological/metabolism , Proteins/metabolism , Drug Delivery Systems/methods , Protein Transport
3.
Nature ; 610(7931): 349-355, 2022 10.
Article in English | MEDLINE | ID: mdl-36171290

ABSTRACT

Entomopathogenic nematodes are widely used as biopesticides1,2. Their insecticidal activity depends on symbiotic bacteria such as Photorhabdus luminescens, which produces toxin complex (Tc) toxins as major virulence factors3-6. No protein receptors are known for any Tc toxins, which limits our understanding of their specificity and pathogenesis. Here we use genome-wide CRISPR-Cas9-mediated knockout screening in Drosophila melanogaster S2R+ cells and identify Visgun (Vsg) as a receptor for an archetypal P. luminescens Tc toxin (pTc). The toxin recognizes the extracellular O-glycosylated mucin-like domain of Vsg that contains high-density repeats of proline, threonine and serine (HD-PTS). Vsg orthologues in mosquitoes and beetles contain HD-PTS and can function as pTc receptors, whereas orthologues without HD-PTS, such as moth and human versions, are not pTc receptors. Vsg is expressed in immune cells, including haemocytes and fat body cells. Haemocytes from Vsg knockout Drosophila are resistant to pTc and maintain phagocytosis in the presence of pTc, and their sensitivity to pTc is restored through the transgenic expression of mosquito Vsg. Last, Vsg knockout Drosophila show reduced bacterial loads and lethality from P. luminescens infection. Our findings identify a proteinaceous Tc toxin receptor, reveal how Tc toxins contribute to P. luminescens pathogenesis, and establish a genome-wide CRISPR screening approach for investigating insecticidal toxins and pathogens.


Subject(s)
Bacterial Toxins , CRISPR-Cas Systems , Drosophila Proteins , Drosophila melanogaster , Gene Editing , Virulence Factors , Animals , Bacterial Toxins/metabolism , Biological Control Agents , Culicidae , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila melanogaster/microbiology , Fat Body/cytology , Gene Knockdown Techniques , Hemocytes , Humans , Moths , Mucins , Pest Control, Biological , Phagocytosis , Photorhabdus/metabolism , Repetitive Sequences, Amino Acid , Transgenes , Virulence Factors/metabolism
4.
PLoS Pathog ; 19(5): e1011330, 2023 05.
Article in English | MEDLINE | ID: mdl-37141203

ABSTRACT

Photorhabdus insect-related toxins A and B (PirA and PirB) were first recognized as insecticidal toxins from Photorhabdus luminescens. However, subsequent studies showed that their homologs from Vibrio parahaemolyticus also play critical roles in the pathogenesis of acute hepatopancreatic necrosis disease (AHPND) in shrimps. Based on the structural features of the PirA/PirB toxins, it was suggested that they might function in the same way as a Bacillus thuringiensis Cry pore-forming toxin. However, unlike Cry toxins, studies on the PirA/PirB toxins are still scarce, and their cytotoxic mechanism remains to be clarified. In this review, based on our studies of V. parahaemolyticus PirAvp/PirBvp, we summarize the current understanding of the gene locations, expression control, activation, and cytotoxic mechanism of this type of toxin. Given the important role these toxins play in aquatic disease and their potential use in pest control applications, we also suggest further topics for research. We hope the information presented here will be helpful for future PirA/PirB studies.


Subject(s)
Bacterial Toxins , Penaeidae , Photorhabdus , Vibrio parahaemolyticus , Animals , Photorhabdus/metabolism , Penaeidae/microbiology , Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Insecta/metabolism , Vibrio parahaemolyticus/metabolism
5.
J Appl Microbiol ; 135(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38906846

ABSTRACT

AIM: This study aimed to overproduce industrially relevant and safe bio-compound trans-cinnamic acid (tCA) from Photorhabdus luminescens with deletion strategies and homologous expression strategies that had not been applied before for tCA production. METHODS AND RESULTS: The overproduction of the industrially relevant compound tCA was successfully performed in P. luminescens by deleting stlB (TTO1ΔstlB) encoding a cinnamic acid CoA ligase in the isopropylstilbene pathway and the hcaE insertion (knockout) mutation (hcaE::cat) in the phenylpropionate catabolic pathway, responsible for tCA degradation. A double mutant of both stlB deletion and hcaE insertion mutation (TTO1DM ΔstlB-hcaE::cat) was also generated. These deletion strategies and the phenylalanine ammonium lyase-producing (PI-PAL from Photorhabdus luminescens) plasmid, pBAD30C, carrying stlA (homologous expression mutants) are utilized together in the same strain using different media, a variety of cultivation conditions, and efficient anion exchange resin (Amberlite IRA402) for enhanced tCA synthesis. At the end of the 120-h shake flask cultivation, the maximum tCA production was recorded as 1281 mg l-1 in the TTO1pBAD30C mutant cultivated in TB medium, with the IRA402 resin keeping 793 mg l-1 and the remaining 488 mg l-1 found in the supernatant. CONCLUSION: TCA production was successfully achieved with homologous expression, coupled with deletion and insertion strategies. 1281 mg l-1is the highest tCA concentration that achieved by bacterial tCA production in flask cultivation, according to our knowledge.


Subject(s)
Cinnamates , Photorhabdus , Photorhabdus/genetics , Photorhabdus/metabolism , Cinnamates/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Deletion , Plasmids/genetics
6.
Int J Mol Sci ; 25(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39062822

ABSTRACT

Currently, it is widely accepted that the type III secretion system (T3SS) serves as the transport platform for bacterial virulence factors, while flagella act as propulsion motors. However, there remains a noticeable dearth of comparative studies elucidating the functional disparities between these two mechanisms. Entomopathogenic nematode symbiotic bacteria (ENS), including Xenorhabdus and Photorhabdus, are Gram-negative bacteria transported into insect hosts by Steinernema or Heterorhabdus. Flagella are conserved in ENS, but the T3SS is only encoded in Photorhabdus. There are few reports on the function of flagella and the T3SS in ENS, and it is not known what role they play in the infection of ENS. Here, we clarified the function of the T3SS and flagella in ENS infection based on flagellar inactivation in X. stockiae (flhDC deletion), T3SS inactivation in P. luminescens (sctV deletion), and the heterologous synthesis of the T3SS of P. luminescens in X. stockiae. Consistent with the previous results, the swarming movement of the ENS and the formation of biofilms are dominated by the flagella. Both the T3SS and flagella facilitate ENS invasion and colonization within host cells, with minimal impact on secondary metabolite formation and secretion. Unexpectedly, a proteomic analysis reveals a negative feedback loop between the flagella/T3SS assembly and the type VI secretion system (T6SS). RT-PCR testing demonstrates the T3SS's inhibition of flagellar assembly, while flagellin expression promotes T3SS assembly. Furthermore, T3SS expression stimulates ribosome-associated protein expression.


Subject(s)
Flagella , Symbiosis , Type III Secretion Systems , Flagella/metabolism , Type III Secretion Systems/metabolism , Type III Secretion Systems/genetics , Animals , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Xenorhabdus/metabolism , Xenorhabdus/genetics , Xenorhabdus/physiology , Gene Expression Regulation, Bacterial , Photorhabdus/metabolism , Photorhabdus/pathogenicity , Photorhabdus/genetics , Photorhabdus/physiology , Nematoda/microbiology , Nematoda/metabolism , Biofilms/growth & development
7.
Molecules ; 29(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38930979

ABSTRACT

Secondary metabolites, bioactive compounds produced by living organisms, can unveil symbiotic relationships in nature. In this study, soilborne entomopathogenic nematodes associated with symbiotic bacteria (Xenorhabdus stockiae and Photorhabdus luminescens) were extracted from solvent supernatant containing secondary metabolites, demonstrating significant inhibitory effects against E. coli, S. aureus, B. subtilus, P. mirabilis, E. faecalis, and P. stutzeri. The characterization of these secondary metabolites by Fourier transforms infrared spectroscopy revealed amine groups of proteins, hydroxyl and carboxyl groups of polyphenols, hydroxyl groups of polysaccharides, and carboxyl groups of organic acids. Furthermore, the obtained crude extracts were analyzed by high-performance liquid chromatography for the basic identification of potential bioactive peptides. Gas chromatography-mass spectrometry analysis of ethyl acetate extracts from Xenorhabdus stockiae identified major compounds including nonanoic acid derivatives, proline, paromycin, octodecanal derivatives, trioxa-5-aza-1-silabicyclo, 4-octadecenal, methyl ester, oleic acid, and 1,2-benzenedicarboxylicacid. Additional extraction from Photorhabdus luminescens yielded functional compounds such as indole-3-acetic acid, phthalic acid, 1-tetradecanol, nemorosonol, 1-eicosanol, and unsaturated fatty acids. These findings support the potential development of novel natural antimicrobial agents for future pathogen suppression.


Subject(s)
Anti-Bacterial Agents , Gas Chromatography-Mass Spectrometry , Symbiosis , Chromatography, High Pressure Liquid/methods , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Gas Chromatography-Mass Spectrometry/methods , Secondary Metabolism , Photorhabdus/chemistry , Photorhabdus/metabolism , Xenorhabdus/chemistry , Xenorhabdus/metabolism , Microbial Sensitivity Tests , Animals
8.
PLoS Pathog ; 17(2): e1009244, 2021 02.
Article in English | MEDLINE | ID: mdl-33539469

ABSTRACT

Tc toxin is an exotoxin composed of three subunits named TcA, TcB and TcC. Structural analysis revealed that TcA can form homopentamer that mediates the cellular recognition and delivery processes, thus contributing to the host tropism of Tc toxin. N-glycans and heparan sulfates have been shown to act as receptors for several Tc toxins. Here, we performed two independent genome-wide CRISPR-Cas9 screens, and have validated glycans and sulfated glycosaminoglycans (sGAGs) as Tc toxin receptors also for previously uncharacterized Tc toxins. We found that TcdA1 form Photorhabdus luminescens W14 (TcdA1W14) can recognize N-glycans via the RBD-D domain, corroborating previous findings. Knockout of N-glycan processing enzymes specifically blocks the intoxication of TcdA1W14-assembled Tc toxin. On the other hand, our results showed that sGAG biosynthesis pathway is involved in the cell surface binding of TcdA2TT01 (TcdA2 from P. luminescens TT01). Competition assays and biolayer interferometry demonstrated that the sulfation group in sGAGs is required for the binding of TcdA2TT01. Finally, based on the conserved domains of representative TcA proteins, we have identified 1,189 putative TcAs from 1,039 bacterial genomes. These TcAs are categorized into five subfamilies. Each subfamily shows a good correlation with both genetic organization of the TcA protein(s) and taxonomic origin of the genomes, suggesting these subfamilies may utilize different mechanisms for cellular recognition. Taken together, our results support the previously described two different binding modalities of Tc toxins, leading to unique host targeting properties. We also present the bioinformatics data and receptor screening strategies for TcA proteins, provide new insights into understanding host specificity and biomedical applications of Tc toxins.


Subject(s)
Bacterial Proteins/metabolism , Bacterial Toxins/chemistry , Bacterial Toxins/pharmacology , Glycosaminoglycans/chemistry , Photorhabdus/metabolism , Polysaccharides/chemistry , Sulfhydryl Compounds/chemistry , Bacterial Proteins/genetics , HeLa Cells , Humans , Photorhabdus/drug effects
9.
Biochemistry (Mosc) ; 88(9): 1356-1367, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37770402

ABSTRACT

Entomopathogenic bacteria of the genus Photorhabdus secrete protease S (PrtS), which is considered a virulence factor. We found that in the Photorhabdus genomes, immediately after the prtS genes, there are genes that encode small hypothetical proteins homologous to emfourin, a recently discovered protein inhibitor of metalloproteases. The gene of emfourin-like inhibitor from Photorhabdus laumondii subsp. laumondii TT01 was cloned and expressed in Escherichia coli cells. The recombinant protein, named photorin (Phin), was purified by metal-chelate affinity and gel permeation chromatography and characterized. It has been established that Phin is a monomer and inhibits activity of protealysin and thermolysin, which, similar to PrtS, belong to the M4 peptidase family. Inhibition constants were 1.0 ± 0.3 and 10 ± 2 µM, respectively. It was also demonstrated that Phin is able to suppress proteolytic activity of P. laumondii culture fluid (half-maximal inhibition concentration 3.9 ± 0.3 nM). Polyclonal antibodies to Phin were obtained, and it was shown by immunoblotting that P. laumondii cells produce Phin. Thus, the prtS genes in entomopathogenic bacteria of the genus Photorhabdus are colocalized with the genes of emfourin-like inhibitors, which probably regulate activity of the enzyme during infection. Strict regulation of the activity of proteolytic enzymes is essential for functioning of all living systems. At the same time, the principles of regulation of protease activity by protein inhibitors remain poorly understood. Bacterial protease-inhibitor pairs, such as the PrtS and Phin pair, are promising models for in vivo studies of these principles. Bacteria of the genus Photorhabdus have a complex life cycle with multiple hosts, being both nematode symbionts and powerful insect pathogens. This provides a unique opportunity to use the PrtS and Phin pair as a model for studying the principles of protease activity regulation by proteinaceous inhibitors in the context of bacterial interactions with different types of hosts.


Subject(s)
Anti-Infective Agents , Photorhabdus , Animals , Photorhabdus/genetics , Photorhabdus/metabolism , Protease Inhibitors/pharmacology , Protease Inhibitors/metabolism , Insecta , Antiviral Agents/metabolism
10.
J Invertebr Pathol ; 193: 107799, 2022 09.
Article in English | MEDLINE | ID: mdl-35850258

ABSTRACT

Phurealipids (Photorhabdus urea lipids) are synthesized from Photorhabdus bacteria that are symbiotic to entomopathogenic nematodes. Their chemical structures are similar to that of juvenile hormone (JH) and have been suspected to mimic JH signaling in immunity and the development of insects. This study investigated the physiological roles of phurealipids with respect to their contribution to bacterial pathogenicity using four natural (HB13, HB69, HB416, and HB421) and one derivative (HB27) compound. First, phurealipids like JH suppressed insect immune responses. Overall, phurealipids showed JH like immunosuppressive behavior in a lepidopteran insect Spodoptera exigua larvae. More specifically, phurealipids significantly suppressed the hemocyte spreading behavior which is a key immune response upon immune challenge. Interestingly, the methyl urea derivatives (HB13, HB27, and HB69) were more potent than the unmethylated forms (HB416 and HB421). The inhibitory activity of phurealipids prevented the cellular immune response measured by hemocytic nodule formation in response to the bacterial challenge. Phurealipids also suppressed the expression of cecropin and gallerimycin, which are two highly inducible antimicrobial peptides, in S. exigua upon immune challenge. The immunosuppressive activity of the phurealipids significantly enhanced the bacterial pathogenicity of Bacillus thuringiensis against S. exigua. Second, phurealipids like JH prevented insect metamorphosis. Especially, the methylated urea derivatives of the phurealipids showed the JH-like function by inducing the expression of S. exigua Kr-h1, a transcriptional factor. At the pupal stage, exhibiting the lowest expression of Kr-h1, phurealipid treatments elevated the expression level of Kr-h1 and delayed the pupa-to-adult metamorphosis. These results suggest that phurealipids play crucial roles in Photorhabdus pathogenicity by suppressing host immune defenses and delaying host metamorphosis.


Subject(s)
Juvenile Hormones , Lipids , Photorhabdus , Animals , Insect Proteins/metabolism , Insecta , Larva/microbiology , Lipid Metabolism , Lipids/physiology , Photorhabdus/metabolism , Pupa , Urea/metabolism
11.
J Invertebr Pathol ; 194: 107829, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36167186

ABSTRACT

Photorhabdus insect related proteins A & B (PirA, PirB) from Photorhabdus and Xenorhabdus bacteria exhibit both oral and injectable toxicity against lepidopteran and dipteran insect pest. The pirA, pirAt (encoding 6 N-terminal truncated PirA), pirB genes, pirA-pirB (with ERIC sequences), pirA-pirB-mERIC (modified pirA-pirB with mutated ERIC sequences) and polycistronic-pirAB were cloned and expressed in Escherichia coli. However, PirA protein was expressed in insoluble form and therefore the pirA gene was modified to produce PirAt. Moreover, pirA-pirB-mERIC, polycistronic-pirAB and co-transformed pirA/pirB genes were not expressed in the studied prokaryotic expression systems. None of the single purified proteins or mixtures of the individually expressed and purified proteins were toxic to mosquito larvae of Aedes aegypti and Culex quinquefasciatus. However, PirA-PirB protein mixtures purified from pirA-pirB operon plasmid were toxic to A. aegypti and C. quinquefasciatus larvae with LC50 values of 991 and 614 ng/ml, respectively. The presence of ERIC sequences between the two orfs of the pirA-pirB operon could help to obtain the proteins in biologically active form. Further, results confirm that PirA-PirB proteins of P. akhurstii subsp. akhurstii K-1 are binary insecticidal toxins and ERIC sequences could play an important role in expression of Pir proteins. Reports of biophysical characterization of individually purified PirAt, PirB and expressed PirA-PirB toxin mixture could provide the structural insight into these proteins.


Subject(s)
Bacterial Toxins , Photorhabdus , Xenorhabdus , Animals , Bacterial Proteins/chemistry , Bacterial Toxins/chemistry , Bacterial Toxins/genetics , Bacterial Toxins/toxicity , Escherichia coli , Insect Proteins/metabolism , Larva/metabolism , Photorhabdus/metabolism , Xenorhabdus/genetics , Xenorhabdus/metabolism
12.
Proc Natl Acad Sci U S A ; 116(46): 23083-23090, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31666324

ABSTRACT

Tc toxins are modular toxin systems of insect and human pathogenic bacteria. They are composed of a 1.4-MDa pentameric membrane translocator (TcA) and a 250-kDa cocoon (TcB and TcC) encapsulating the 30-kDa toxic enzyme (C terminus of TcC). Binding of Tc toxins to target cells and a pH shift trigger the conformational transition from the soluble prepore state to the membrane-embedded pore. Subsequently, the toxic enzyme is translocated and released into the cytoplasm. A high-resolution structure of a holotoxin embedded in membranes is missing, leaving open the question of whether TcB-TcC has an influence on the conformational transition of TcA. Here we show in atomic detail a fully assembled 1.7-MDa Tc holotoxin complex from Photorhabdus luminescens in the membrane. We find that the 5 TcA protomers conformationally adapt to fit around the cocoon during the prepore-to-pore transition. The architecture of the Tc toxin complex allows TcB-TcC to bind to an already membrane-embedded TcA pore to form a holotoxin. Importantly, assembly of the holotoxin at the membrane results in spontaneous translocation of the toxic enzyme, indicating that this process is not driven by a proton gradient or other energy source. Mammalian lipids with zwitterionic head groups are preferred over other lipids for the integration of Tc toxins. In a nontoxic Tc toxin variant, we can visualize part of the translocating toxic enzyme, which transiently interacts with alternating negative charges and hydrophobic stretches of the translocation channel, providing insights into the mechanism of action of Tc toxins.


Subject(s)
Bacterial Toxins/chemistry , Photorhabdus/chemistry , ADP Ribose Transferases/metabolism , Bacterial Toxins/metabolism , Cryoelectron Microscopy , Photorhabdus/metabolism , Protein Structure, Quaternary
13.
Chembiochem ; 22(9): 1582-1588, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33452852

ABSTRACT

The glidobactin-like natural products (GLNPs) glidobactin A and cepafungin I have been reported to be potent proteasome inhibitors and are regarded as promising candidates for anticancer drug development. Their biosynthetic gene cluster (BGC) plu1881-1877 is present in entomopathogenic Photorhabdus laumondii but silent under standard laboratory conditions. Here we show the largest subset of GLNPs, which are produced and identified after activation of the silent BGC in the native host and following heterologous expression of the BGC in Escherichia coli. Their chemical diversity results from a relaxed substrate specificity and flexible product release in the assembly line of GLNPs. Crystal structure analysis of the yeast proteasome in complex with new GLNPs suggests that the degree of unsaturation and the length of the aliphatic tail are critical for their bioactivity. The results in this study provide the basis to engineer the BGC for the generation of new GLNPs and to optimize these natural products resulting in potential drugs for cancer therapy.


Subject(s)
Photorhabdus/genetics , Proteasome Inhibitors/metabolism , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Drug Design , Escherichia coli/metabolism , Multigene Family/genetics , Peptides, Cyclic/biosynthesis , Peptides, Cyclic/chemistry , Photorhabdus/metabolism , Proteasome Inhibitors/chemistry , Structure-Activity Relationship
14.
Microb Ecol ; 81(1): 223-239, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32827089

ABSTRACT

Photorhabdus spp. (Enterobacteriales: Morganellaceae) occur exclusively as symbionts of Heterorhabditis nematodes for which they provide numerous services, including killing insects and providing nutrition and defence within the cadavers. Unusually, two species (Photorhabdus cinerea and Photorhabdus temperata) associate with a single population of Heterorhabditis downesi at a dune grassland site. Building on previous work, we investigated competition between these two Photorhabdus species both at the regional (between insects) and local (within insect) level by trait comparison and co-culture experiments. There was no difference between the species with respect to supporting nematode reproduction and protection of cadavers against invertebrate scavengers, but P. cinerea was superior to P. temperata in several traits: faster growth rate, greater antibacterial and antifungal activity and colonisation of a higher proportion of nematodes in co-culture. Moreover, where both bacterial symbionts colonised single nematode infective juveniles, P. cinerea tended to dominate in numbers. Differences between Photorhabdus species were detected in the suite of secondary metabolites produced: P. temperata produced several compounds not produced by P. cinerea including anthraquinone pigments. Bioluminescence emitted by P. temperata also tended to be brighter than that from P. cinerea. Bioluminescence and pigmentation may protect cadavers against scavengers that rely on sight. We conclude that while P. cinerea may show greater local level (within-cadaver) competitive success, co-existence of the two Photorhabdus species in the spatially heterogeneous environment of the dunes is favoured by differing specialisations in defence of the cadaver against differing locally important threats.


Subject(s)
Photorhabdus/metabolism , Strongyloidea/microbiology , Symbiosis/physiology , Animals , Anthraquinones/metabolism , Grassland , Luminescent Measurements , Photorhabdus/growth & development , Secondary Metabolism/physiology
15.
J Biol Chem ; 294(3): 1035-1044, 2019 01 18.
Article in English | MEDLINE | ID: mdl-30478175

ABSTRACT

The nematode mutualistic bacterium Photorhabdus asymbiotica produces a large virulence-associated multifunctional protein toxin named PaTox. A glycosyltransferase domain and a deamidase domain of this large toxin function as effectors that specifically target host Rho GTPases and heterotrimeric G proteins, respectively. Modification of these intracellular regulators results in toxicity toward insects and mammalian cells. In this study, we identified a cysteine protease-like domain spanning PaTox residues 1844-2114 (PaToxP), upstream of these two effector domains and characterized by three conserved amino acid residues (Cys-1865, His-1955, and Asp-1975). We determined the crystal structure of the PaToxP C1865A variant by native single-wavelength anomalous diffraction of sulfur atoms (sulfur-SAD). At 2.0 Å resolution, this structure revealed a catalytic site typical for papain-like cysteine proteases, comprising a catalytic triad, oxyanion hole, and typical secondary structural elements. The PaToxP structure had highest similarity to that of the AvrPphB protease from Pseudomonas syringae classified as a C58-protease. Furthermore, we observed that PaToxP shares structural homology also with non-C58-cysteine proteases, deubiquitinases, and deamidases. Upon delivery into insect larvae, PaToxP alone without full-length PaTox had no toxic effects. Yet, PaToxP expression in mammalian cells was toxic and enhanced the apoptotic phenotype induced by PaTox in HeLa cells. We propose that PaToxP is a C58-like cysteine protease module that is essential for full PaTox activity.


Subject(s)
Bacterial Toxins/chemistry , Cysteine Proteases/chemistry , Photorhabdus/chemistry , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Crystallography, X-Ray , Cysteine Proteases/genetics , Cysteine Proteases/metabolism , Photorhabdus/genetics , Photorhabdus/metabolism , Protein Domains
16.
Chembiochem ; 21(9): 1288-1292, 2020 05 04.
Article in English | MEDLINE | ID: mdl-31814269

ABSTRACT

A new cyclic lipopeptide, phototemtide A (1), was isolated from Escherichia coli expressing the biosynthetic gene cluster pttABC from Photorhabdus temperata Meg1. The structure of 1 was elucidated by HR-ESI-MS and NMR experiments. The absolute configurations of amino acids and 3-hydroxyoctanoic acid in 1 were determined by using the advanced Marfey's method and comparison after total synthesis of 1, respectively. Additionally, three new minor derivatives, phototemtides B-D (2-4), were identified by detailed HPLC-MS analysis. Phototemtide A (1) showed weak antiprotozoal activity against Plasmodium falciparum, with an IC50 value of 9.8 µm. The biosynthesis of phototemtides A-D (1-4) was also proposed.


Subject(s)
Antiprotozoal Agents/pharmacology , Escherichia coli/metabolism , Lipopeptides/pharmacology , Peptides, Cyclic/pharmacology , Photorhabdus/metabolism , Plasmodium falciparum/drug effects , Trypanosoma/drug effects , Escherichia coli/genetics , Multigene Family , Photorhabdus/genetics , Trypanosoma/classification
17.
BMC Microbiol ; 20(1): 359, 2020 11 23.
Article in English | MEDLINE | ID: mdl-33228536

ABSTRACT

BACKGROUND: Xenorhabdus and Photorhabdus are entomopathogenic bacteria that cause septicemia and toxemia in insects. They produce secondary metabolites to induce host immunosuppression. Their metabolite compositions vary among bacterial species. Little is known about the relationship between metabolite compositions and the bacterial pathogenicity. The objective of this study was to compare pathogenicity and production of secondary metabolites of 14 bacterial isolates (species or strains) of Xenorhabdus and Photorhabdus. RESULTS: All bacterial isolates exhibited insecticidal activities after hemocoelic injection to Spodoptera exigua (a lepidopteran insect) larvae, with median lethal doses ranging from 168.8 to 641.3 CFU per larva. Bacterial infection also led to immunosuppression by inhibiting eicosanoid biosynthesis. Bacterial culture broth was fractionated into four different organic extracts. All four organic extracts of each bacterial species exhibited insecticidal activities and resulted in immunosuppression. These organic extracts were subjected to GC-MS analysis which predicted 182 compounds, showing differential compositions for 14 bacteria isolates. There were positive correlations between total number of secondary metabolites produced by each bacterial culture broth and its bacterial pathogenicity based on immunosuppression and insecticidal activity. From these correlation results, 70 virulent compounds were selected from secondary metabolites of high virulent bacterial isolates by deducting those of low virulent bacterial isolates. These selected virulent compounds exhibited significant immunosuppressive activities by inhibiting eicosanoid biosynthesis. They also exhibited relatively high insecticidal activities. CONCLUSION: Virulence variation between Xenorhabdus and Photorhabdus is determined by their different compositions of secondary metabolites, of which PLA2 inhibitors play a crucial role.


Subject(s)
Insecta/immunology , Phospholipase A2 Inhibitors/metabolism , Photorhabdus/metabolism , Photorhabdus/pathogenicity , Xenorhabdus/metabolism , Xenorhabdus/pathogenicity , Animals , Eicosanoids/biosynthesis , Immune Tolerance/drug effects , Insect Proteins/metabolism , Insecta/drug effects , Insecta/metabolism , Insecta/microbiology , Insecticides/metabolism , Insecticides/pharmacology , Larva/drug effects , Larva/immunology , Larva/metabolism , Larva/microbiology , Phospholipase A2 Inhibitors/pharmacology , Phospholipases A2/metabolism , Photorhabdus/isolation & purification , Secondary Metabolism , Spodoptera/drug effects , Spodoptera/immunology , Spodoptera/metabolism , Spodoptera/microbiology , Virulence , Xenorhabdus/isolation & purification
18.
Angew Chem Int Ed Engl ; 59(20): 7871-7880, 2020 05 11.
Article in English | MEDLINE | ID: mdl-32097515

ABSTRACT

Tapinarof is a stilbene drug that is used to treat psoriasis and atopic dermatitis, and is thought to function through regulation of the AhR and Nrf2 signaling pathways, which have also been linked to inflammatory bowel diseases. It is produced by the gammaproteobacterial Photorhabdus genus, which thus represents a model to probe tapinarof structural and functional transformations. We show that Photorhabdus transforms tapinarof into novel drug metabolism products that kill inflammatory bacteria, and that a cupin enzyme contributes to the conversion of tapinarof and related dietary stilbenes into novel dimers. One dimer has activity against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecalis (VRE), and another undergoes spontaneous cyclizations to a cyclopropane-bridge-containing hexacyclic framework that exhibits activity against Mycobacterium. These dimers lack efficacy in a colitis mouse model, whereas the monomer reduces disease symptoms.


Subject(s)
Anti-Bacterial Agents/metabolism , Autoimmunity/drug effects , Immunologic Factors/metabolism , Photorhabdus/metabolism , Resorcinols/metabolism , Stilbenes/metabolism , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Biotransformation , Immunologic Factors/chemistry , Immunologic Factors/pharmacology , Mice , Resorcinols/chemistry , Resorcinols/pharmacology , Stilbenes/chemistry , Stilbenes/pharmacology
19.
Biochemistry ; 58(8): 1131-1140, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30694662

ABSTRACT

Advances in genome sequencing and analysis have afforded a trove of "orphan" bacterial biosynthetic pathways, many of which contain hypothetical proteins. Given the potential for these hypothetical proteins to carry out novel chemistry, orphan pathways serve as a rich reservoir for the discovery of new enzymes responsible for the production of metabolites with both fascinating chemistries and biological functions. We previously identified a rare hybrid nonribosomal peptide synthetase (NRPS)-carbohydrate genomic island in the entomopathogen Photorhabdus luminescens. Heterologous expression of the pathway led to the characterization of oligosaccharides harboring a 1,6-anhydro-ß-d- N-acetyl-glucosamine moiety, but these new metabolites lacked modification by the NRPS machinery. Here, through the application of top-down protein mass spectrometry, pathway-targeted molecular networking, stable isotope labeling, and in vitro protein biochemistry, we complete the characterization of this biosynthetic pathway and identify the hybrid product of the pathway, a new "glycoamino acid" metabolite termed photolose. Intriguingly, a hypothetical protein served as a bridge to condense a glycyl unit derived from the NRPS machinery onto the free 1,6-anhydro-ß-d- N-acetyl-glucosamine core. We further demonstrate that the gene cluster confers a growth advantage to antimicrobial peptide challenge.


Subject(s)
Amino Acids/chemistry , Biosynthetic Pathways , Carbohydrates/chemistry , Glycopeptides/metabolism , Peptide Fragments/metabolism , Peptide Synthases/metabolism , Photorhabdus/metabolism , Glycopeptides/chemistry , Multigene Family , Peptide Fragments/chemistry , Peptide Synthases/genetics , Photorhabdus/genetics , Photorhabdus/growth & development
20.
Environ Microbiol ; 21(8): 2921-2932, 2019 08.
Article in English | MEDLINE | ID: mdl-31102315

ABSTRACT

Bacteria of the genera Photorhabdus and Xenorhabdus produce a plethora of natural products to support their similar symbiotic life cycles. For many of these compounds, the specific bioactivities are unknown. One common challenge in natural product research when trying to prioritize research efforts is the rediscovery of identical (or highly similar) compounds from different strains. Linking genome sequence to metabolite production can help in overcoming this problem. However, sequences are typically not available for entire collections of organisms. Here, we perform a comprehensive metabolic screening using HPLC-MS data associated with a 114-strain collection (58 Photorhabdus and 56 Xenorhabdus) across Thailand and explore the metabolic variation among the strains, matched with several abiotic factors. We utilize machine learning in order to rank the importance of individual metabolites in determining all given metadata. With this approach, we were able to prioritize metabolites in the context of natural product investigations, leading to the identification of previously unknown compounds. The top three highest ranking features were associated with Xenorhabdus and attributed to the same chemical entity, cyclo(tetrahydroxybutyrate). This work also addresses the need for prioritization in high-throughput metabolomic studies and demonstrates the viability of such an approach in future research.


Subject(s)
Hydroxybutyrates/metabolism , Photorhabdus/classification , Xenorhabdus/classification , Animals , Biological Products/metabolism , Photorhabdus/genetics , Photorhabdus/metabolism , Phylogeny , Symbiosis , Thailand , Xenorhabdus/genetics , Xenorhabdus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL