Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
EMBO J ; 39(20): e104862, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32853409

ABSTRACT

Genetic variation in LRRK2 associates with the susceptibility to Parkinson's disease, Crohn's disease, and mycobacteria infection. High expression of LRRK2 and its substrate Rab10 occurs in phagocytic cells in the immune system. In mouse and human primary macrophages, dendritic cells, and microglia-like cells, we find that Rab10 specifically regulates a specialized form of endocytosis known as macropinocytosis, without affecting phagocytosis or clathrin-mediated endocytosis. LRRK2 phosphorylates cytoplasmic PI(3,4,5)P3-positive GTP-Rab10, before EEA1 and Rab5 recruitment to early macropinosomes occurs. Macropinosome cargo in macrophages includes CCR5, CD11b, and MHCII, and LRRK2-phosphorylation of Rab10 potently blocks EHBP1L1-mediated recycling tubules and cargo turnover. EHBP1L1 overexpression competitively inhibits LRRK2-phosphorylation of Rab10, mimicking the effects of LRRK2 kinase inhibition in promoting cargo recycling. Both Rab10 knockdown and LRRK2 kinase inhibition potently suppress the maturation of macropinosome-derived CCR5-loaded signaling endosomes that are critical for CCL5-induced immunological responses that include Akt activation and chemotaxis. These data support a novel signaling axis in the endolysosomal system whereby LRRK2-mediated Rab10 phosphorylation stalls vesicle fast recycling to promote PI3K-Akt immunological responses.


Subject(s)
Carrier Proteins/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Macrophages/metabolism , Phagocytes/immunology , Pinocytosis/genetics , rab GTP-Binding Proteins/metabolism , Animals , Cell Membrane/metabolism , Chemokine CCL5/pharmacology , Chemotaxis/genetics , Dendritic Cells/metabolism , Endosomes/drug effects , Endosomes/metabolism , Female , Gene Knockdown Techniques , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Macrophages/drug effects , Male , Mass Spectrometry , Mice , Mice, Transgenic , Microglia/metabolism , Monocytes/drug effects , Monocytes/metabolism , Mutation , Phagocytes/drug effects , Phagocytes/metabolism , Phosphorylation , Pinocytosis/drug effects , Protein Binding , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/genetics , rab GTP-Binding Proteins/genetics
2.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Article in English | MEDLINE | ID: mdl-33402432

ABSTRACT

During pregnancy, the appropriate allocation of nutrients between the mother and the fetus is dominated by maternal-fetal interactions, which is primarily governed by the placenta. The syncytiotrophoblast (STB) lining at the outer surface of the placental villi is directly bathed in maternal blood and controls feto-maternal exchange. The STB is the largest multinucleated cell type in the human body, and is formed through syncytialization of the mononucleated cytotrophoblast. However, the physiological advantage of forming such an extensively multinucleated cellular structure remains poorly understood. Here, we discover that the STB uniquely adapts to nutrient stress by inducing the macropinocytosis machinery through repression of mammalian target of rapamycin (mTOR) signaling. In primary human trophoblasts and in trophoblast cell lines, differentiation toward a syncytium triggers macropinocytosis, which is greatly enhanced during amino acid shortage, induced by inhibiting mTOR signaling. Moreover, inhibiting mTOR in pregnant mice markedly stimulates macropinocytosis in the syncytium. Blocking macropinocytosis worsens the phenotypes of fetal growth restriction caused by mTOR-inhibition. Consistently, placentas derived from fetal growth restriction patients display: 1) Repressed mTOR signaling, 2) increased syncytialization, and 3) enhanced macropinocytosis. Together, our findings suggest that the unique ability of STB to undergo macropinocytosis serves as an essential adaptation to the cellular nutrient status, and support fetal survival and growth under nutrient deprivation.


Subject(s)
Adaptation, Physiological , Fetal Growth Retardation/metabolism , Maternal-Fetal Exchange/physiology , Pinocytosis/genetics , Pregnancy Proteins/genetics , TOR Serine-Threonine Kinases/genetics , Trophoblasts/metabolism , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Amino Acids/deficiency , Animals , Cell Line , Cell Nucleus/genetics , Cell Nucleus/metabolism , Chorionic Villi/metabolism , Female , Fetal Growth Retardation/genetics , Fetal Growth Retardation/pathology , Gene Expression Regulation , Humans , Mice , Pregnancy , Pregnancy Proteins/metabolism , Primary Cell Culture , Ribosomal Protein S6 Kinases, 70-kDa/genetics , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Signal Transduction , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Trophoblasts/cytology
3.
Biochem J ; 475(3): 643-648, 2018 02 14.
Article in English | MEDLINE | ID: mdl-29444849

ABSTRACT

In a role distinct from and perhaps more ancient than that in signal transduction, PIP3 and Ras help to spatially organize the actin cytoskeleton into macropinocytic cups. These large endocytic structures are extended by actin polymerization from the cell surface and have at their core an intense patch of active Ras and PIP3, around which actin polymerizes, creating cup-shaped projections. We hypothesize that active Ras and PIP3 self-amplify within macropinocytic cups, in a way that depends on the structural integrity of the cup. Signalling that triggers macropinocytosis may therefore be amplified downstream in a way that depends on macropinocytosis. This argument provides a context for recent findings that signalling to Akt (an effector of PIP3) is sensitive to cytoskeletal and macropinocytic inhibitors.


Subject(s)
Actin Cytoskeleton/genetics , Pinocytosis/genetics , Proto-Oncogene Proteins c-akt/genetics , Actin Cytoskeleton/chemistry , Cell Membrane/genetics , Dictyostelium/genetics , Humans , Proto-Oncogene Proteins c-akt/chemistry , Signal Transduction/genetics
4.
Proc Natl Acad Sci U S A ; 113(43): E6610-E6619, 2016 10 25.
Article in English | MEDLINE | ID: mdl-27791032

ABSTRACT

Capping Protein (CP) plays a central role in the creation of the Arp2/3-generated branched actin networks comprising lamellipodia and pseudopodia by virtue of its ability to cap the actin filament barbed end, which promotes Arp2/3-dependent filament nucleation and optimal branching. The highly conserved protein V-1/Myotrophin binds CP tightly in vitro to render it incapable of binding the barbed end. Here we addressed the physiological significance of this CP antagonist in Dictyostelium, which expresses a V-1 homolog that we show is very similar biochemically to mouse V-1. Consistent with previous studies of CP knockdown, overexpression of V-1 in Dictyostelium reduced the size of pseudopodia and the cortical content of Arp2/3 and induced the formation of filopodia. Importantly, these effects scaled positively with the degree of V-1 overexpression and were not seen with a V-1 mutant that cannot bind CP. V-1 is present in molar excess over CP, suggesting that it suppresses CP activity in the cytoplasm at steady state. Consistently, cells devoid of V-1, like cells overexpressing CP described previously, exhibited a significant decrease in cellular F-actin content. Moreover, V-1-null cells exhibited pronounced defects in macropinocytosis and chemotactic aggregation that were rescued by V-1, but not by the V-1 mutant. Together, these observations demonstrate that V-1 exerts significant influence in vivo on major actin-based processes via its ability to sequester CP. Finally, we present evidence that V-1's ability to sequester CP is regulated by phosphorylation, suggesting that cells may manipulate the level of active CP to tune their "actin phenotype."


Subject(s)
Actin Capping Proteins/genetics , Actin-Related Protein 2-3 Complex/genetics , Dictyostelium/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Protozoan Proteins/genetics , Pseudopodia/metabolism , Actin Capping Proteins/metabolism , Actin-Related Protein 2/genetics , Actin-Related Protein 2/metabolism , Actin-Related Protein 2-3 Complex/metabolism , Actin-Related Protein 3/genetics , Actin-Related Protein 3/metabolism , Actins/genetics , Actins/metabolism , Amino Acid Sequence , Animals , Chemotaxis/genetics , Conserved Sequence , Dictyostelium/genetics , Dictyostelium/ultrastructure , Gene Expression Regulation , Intercellular Signaling Peptides and Proteins/metabolism , Kinetics , Mice , Mutation , Phosphorylation , Pinocytosis/genetics , Protein Binding , Protein Subunits/genetics , Protein Subunits/metabolism , Protozoan Proteins/metabolism , Pseudopodia/genetics , Pseudopodia/ultrastructure , Sequence Alignment , Signal Transduction
5.
Biochem Biophys Res Commun ; 497(1): 298-304, 2018 02 26.
Article in English | MEDLINE | ID: mdl-29432733

ABSTRACT

Rac1 is a member of the Rho family of small GTPases that regulates cytoskeletal reorganization, membrane polarization, cell migration and proliferation. Recently, a self-activating mutation of Rac1, Rac1P29S, has been identified as a recurrent somatic mutation frequently found in sun-exposed melanomas, which possesses increased inherent GDP/GTP exchange activity and cell transforming ability. However, the role of cellular Rac1-interacting proteins in the transforming potential of Rac1P29S remains unclear. We found that the catalytic domain of DOCK1, a Rac-specific guanine nucleotide exchange factor (GEF) implicated in malignancy of a variety of cancers, can greatly accelerate the GDP/GTP exchange of Rac1P29S. Enforced expression of Rac1P29S induced matrix invasion and macropinocytosis in wild-type (WT) mouse embryonic fibroblasts (MEFs), but not in DOCK1-deficient MEFs. Consistently, a selective inhibitor of DOCK1 that blocks its GEF function suppressed the invasion and macropinocytosis in WT MEFs expressing Rac1P29S. Human melanoma IGR-1 and breast cancer MDA-MB-157 cells harbor Rac1P29S mutation and express DOCK1 endogenously. Genetic inactivation and pharmacological inhibition of DOCK1 suppressed their invasion and macropinocytosis. Taken together, these results indicate that DOCK1 is a critical regulator of the malignant phenotypes induced by Rac1P29S, and suggest that targeting DOCK1 might be an effective approach to treat cancers associated with Rac1P29S mutation.


Subject(s)
Gene Expression Regulation, Neoplastic/genetics , Neoplasms, Experimental/genetics , Neoplasms, Experimental/pathology , Pinocytosis/genetics , rac GTP-Binding Proteins/antagonists & inhibitors , rac1 GTP-Binding Protein/genetics , Cell Line, Tumor , Humans , Mutation/genetics , Neoplasm Invasiveness
6.
J Immunol ; 197(11): 4247-4256, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27793999

ABSTRACT

Ag sampling is a key process in dendritic cell (DC) biology. DCs use constitutive macropinocytosis, receptor-mediated endocytosis, and phagocytosis to capture exogenous Ags for presentation to T cells. We investigated the mechanisms that regulate Ag uptake by DCs in the steady-state and after a short-term LPS exposure in vitro and in vivo. We show that the glucocorticoid-induced leucine zipper protein (GILZ), already known to regulate effector versus regulatory T cell activation by DCs, selectively limits macropinocytosis, but not receptor-mediated phagocytosis, in immature and recently activated DCs. In vivo, the GILZ-mediated inhibition of Ag uptake is restricted to the CD8α+ DC subset, which expresses the highest GILZ level among splenic DC subsets. In recently activated DCs, we further establish that GILZ limits p38 MAPK phosphorylation, providing a possible mechanism for GILZ-mediated macropinocytosis control. Finally, our results demonstrate that the modulation of Ag uptake by GILZ does not result in altered Ag presentation to CD4 T cells but impacts the efficiency of cross-presentation to CD8 T cells. Altogether, our results identify GILZ as an endogenous inhibitor of macropinocytosis in DCs, the action of which contributes to the fine-tuning of Ag cross-presentation.


Subject(s)
Antigens/immunology , Dendritic Cells/immunology , Pinocytosis/immunology , Transcription Factors/immunology , Animals , Antigen Presentation , Antigens/genetics , CD8-Positive T-Lymphocytes/immunology , Mice , Mice, Transgenic , Pinocytosis/genetics , T-Lymphocytes, Regulatory/immunology , Transcription Factors/genetics
7.
Biochim Biophys Acta ; 1851(6): 805-23, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25238964

ABSTRACT

Professional phagocytes provide immunoprotection and aid in the maintenance of tissue homeostasis. They perform these tasks by recognizing, engulfing and eliminating pathogens and endogenous cell debris. Here, we examine the paramount role played by phosphoinositides in phagocytosis and macropinocytosis, two major endocytic routes that mediate the uptake of particulate and fluid matter, respectively. We analyze accumulating literature describing the molecular mechanisms whereby phosphoinositides translate environmental cues into the complex, sophisticated responses that underlie the phagocytic and macropinocytic responses. In addition, we exemplify virulence strategies involving modulation of host cell phosphoinositide signaling that are employed by bacteria to undermine immunity. This article is part of a Special Issue entitled Phosphoinositides.


Subject(s)
Bacteria/metabolism , Macrophages/metabolism , Phagocytosis/genetics , Phagosomes/metabolism , Phosphatidylinositols/metabolism , Pinocytosis/genetics , Bacteria/immunology , Gene Expression Regulation , Humans , Immune Evasion , Immunity, Cellular , Macrophages/immunology , Macrophages/microbiology , Opsonin Proteins/immunology , Phagosomes/immunology , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/immunology , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositols/immunology , Pinocytosis/immunology , Receptors, IgG/genetics , Receptors, IgG/immunology , Receptors, IgG/metabolism , Signal Transduction
8.
PLoS Pathog ; 10(1): e1003879, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24497827

ABSTRACT

Following an infectious challenge, macrophages have to be activated in order to allow efficient clearance of infectious pathogens, but how macrophage activation is coupled to increased clearance remains largely unknown. We here describe that inflammatory stimuli induced the reprogramming of the macrophage endocytic machinery from receptor-mediated phagocytosis to macropinocytosis, allowing the rapid transfer of internalized cargo to lysosomes in a receptor-independent manner. Reprogramming occurred through protein kinase C-mediated phosphorylation of the macrophage protein coronin 1, thereby activating phosphoinositol (PI)-3-kinase activity necessary for macropinocytic uptake. Expression of a phosphomimetic form of coronin 1 was sufficient to induce PI3-kinase activation and macropinocytosis even in the absence of inflammatory stimuli. Together these results suggest a hitherto unknown mechanism to regulate the internalization and degradation of infectious material during inflammation.


Subject(s)
Macrophages/immunology , Microfilament Proteins/immunology , Phagocytosis/immunology , Phosphatidylinositol 3-Kinases/immunology , Pinocytosis/immunology , Animals , Enzyme Activation/genetics , Enzyme Activation/immunology , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Macrophages/pathology , Mice , Mice, Mutant Strains , Microfilament Proteins/genetics , Phagocytosis/genetics , Phosphatidylinositol 3-Kinases/genetics , Pinocytosis/genetics
9.
Int J Mol Sci ; 17(11)2016 Nov 05.
Article in English | MEDLINE | ID: mdl-27827955

ABSTRACT

Dickkopf-related protein 3 (Dkk-3) is a potential tumor suppressor reported in various cancer entities. However, we found that Dkk-3 was exceptionally upregulated in bladder cancer T24 cells. To validate the biological role of Dkk-3 other than a tumor suppressor, we examined the function of Dkk-3 in T24 cells. Gene silencing of Dkk-3 inhibited cell growth through inducing G0/G1 cell-cycle arrest. Furthermore, Dkk-3 knock-down caused macropinocytosis accompanied by autophagy, which were canceled in part by their inhibitors 5-(N-ethyl-N-isopropyl) amiloride (EIPA) and 3-methyladenine (3-MA). The macropinocytosis was induced by the Dkk-3 knock-down when there were sufficient extracellular nutrients. On the other hand, when the nutritional condition was poor, the autophagy was mainly induced by the Dkk-3 knock-down. These data indicated that Dkk-3 has a role in modulating macropinocytotic and autophagic pathways, a distinct function other than a Wnt antagonist.


Subject(s)
Epithelial Cells/metabolism , G1 Phase Cell Cycle Checkpoints/genetics , Gene Expression Regulation, Neoplastic , Intercellular Signaling Peptides and Proteins/genetics , Pinocytosis/genetics , Adaptor Proteins, Signal Transducing , Adenine/analogs & derivatives , Adenine/pharmacology , Amiloride/analogs & derivatives , Amiloride/pharmacology , Autophagy/drug effects , Autophagy/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Chemokines , Epithelial Cells/drug effects , Epithelial Cells/pathology , G1 Phase Cell Cycle Checkpoints/drug effects , Gene Silencing/drug effects , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Lysosomal Membrane Proteins/genetics , Lysosomal Membrane Proteins/metabolism , MAP Kinase Kinase 4/genetics , MAP Kinase Kinase 4/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Pinocytosis/drug effects , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Urinary Bladder/metabolism , Urinary Bladder/pathology , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , rab5 GTP-Binding Proteins/genetics , rab5 GTP-Binding Proteins/metabolism , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism
10.
J Cell Sci ; 126(Pt 18): 4296-307, 2013 Sep 15.
Article in English | MEDLINE | ID: mdl-23843627

ABSTRACT

Class-1 PI3-kinases are major regulators of the actin cytoskeleton, whose precise contributions to chemotaxis, phagocytosis and macropinocytosis remain unresolved. We used systematic genetic ablation to examine this question in growing Dictyostelium cells. Mass spectroscopy shows that a quintuple mutant lacking the entire genomic complement of class-1 PI3-kinases retains only 10% of wild-type PtdIns(3,4,5)P3 levels. Chemotaxis to folate and phagocytosis of bacteria proceed normally in the quintuple mutant but macropinocytosis is abolished. In this context PI3-kinases show specialized functions, only one of which is directly linked to gross PtdIns(3,4,5)P3 levels: macropinosomes originate in patches of PtdIns(3,4,5)P3, with associated F-actin-rich ruffles, both of which depend on PI3-kinase 1/2 (PI3K1/2) but not PI3K4, whereas conversion of ruffles into vesicles requires PI3K4. A biosensor derived from the Ras-binding domain of PI3K1 suggests that Ras is activated throughout vesicle formation. Binding assays show that RasG and RasS interact most strongly with PI3K1/2 and PI3K4, and single mutants of either Ras have severe macropinocytosis defects. Thus, the fundamental function of PI3-kinases in growing Dictyostelium cells is in macropinocytosis where they have two distinct functions, supported by at least two separate Ras proteins.


Subject(s)
Actins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Pinocytosis/genetics , Actins/genetics , Chemotaxis , Humans , Phagocytosis , Phosphatidylinositol 3-Kinases/genetics , Signal Transduction
11.
Mol Ther ; 21(6): 1118-30, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23587924

ABSTRACT

The ideal nonviral vector delivers its nucleic acid cargo to a specific intracellular target. Vectors enter cells mainly through endocytosis and are distributed to various intracellular organelles. Recent advances in microscopy, lipidomics, and proteomics confirm that the cell membrane is composed of clusters of lipids, organized in the form of lipid raft domains, together with non-raft domains that comprise a generally disordered lipid milieu. The binding of a nonviral vector to either region can determine the pathway for its endocytic uptake and subsequent intracellular itinerary. Given this model of the cell membrane structure, endocytic pathways should be reclassified in relation to lipid rafts. In this review, we attempt to assess the currently recognized endocytic pathways in mammalian cells. The endocytic pathways are classified in relation to the membrane regions that make up the primary endocytic vesicles. This review covers the well-recognized clathrin-mediated endocytosis (CME), phagocytosis, and macropinocytosis in addition to the less addressed pathways that take place in lipid rafts. These include caveolae-mediated, flotillin-dependent, GTPase regulator associated with focal adhesion kinase-1 (GRAF1)-dependent, adenosine diphosphate-ribosylation factor 6 (Arf6)-dependent, and RhoA-dependent endocytic pathways. We summarize the regulators associated with each uptake pathway and methods for interfering with these regulators are discussed. The fate of endocytic vesicles resulting from each endocytic uptake pathway is highlighted.


Subject(s)
Clathrin-Coated Vesicles/metabolism , Gene Transfer Techniques , Genetic Therapy/methods , Membrane Microdomains/metabolism , Phagocytosis/genetics , Pinocytosis/genetics , ADP-Ribosylation Factors/metabolism , Animals , Caveolae/metabolism , Clathrin , Focal Adhesion Kinase 1/metabolism , Humans , Membrane Proteins/metabolism , rhoA GTP-Binding Protein/metabolism
12.
J Biol Chem ; 286(12): 10581-92, 2011 Mar 25.
Article in English | MEDLINE | ID: mdl-21199870

ABSTRACT

The mechanism by which HIV-1-Tat protein transduction domain (TatP) enters the cell remains unclear because of an insufficient understanding of the initial kinetics of peptide entry. Here, we report the successful visualization and tracking of TatP molecular kinetics on the cell surface with 7-nm spatial precision using quantum dots. Strong cell binding was only observed with a TatP valence of ≥8, whereas monovalent TatP binding was negligible. The requirement of the cell-surface heparan sulfate (HS) chains of HS proteoglycans (HSPGs) for TatP binding and intracellular transport was demonstrated by the enzymatic removal of HS and simultaneous observation of two individual particles. Multivalent TatP induces HSPG cross-linking, recruiting activated Rac1 to adjacent lipid rafts and thereby enhancing the recruitment of TatP/HSPG to actin-associated microdomains and its internalization by macropinocytosis. These findings clarify the initial binding mechanism of TatP to the cell surface and demonstrate the importance of TatP valence for strong surface binding and signal transduction. Our data also shed light on the ability of TatP to exploit the machinery of living cells, using HSPG signaling to activate Rac1 and alter TatP mobility and internalization. This work should guide the future design of TatP-based peptides as therapeutic nanocarriers with efficient transduction.


Subject(s)
HIV-1/metabolism , Heparan Sulfate Proteoglycans/metabolism , Membrane Microdomains/metabolism , Signal Transduction , rac1 GTP-Binding Protein/metabolism , tat Gene Products, Human Immunodeficiency Virus/metabolism , HIV-1/genetics , HeLa Cells , Heparan Sulfate Proteoglycans/genetics , Humans , Kinetics , Membrane Microdomains/genetics , Pinocytosis/genetics , Protein Structure, Tertiary , Protein Transport/genetics , rac1 GTP-Binding Protein/genetics , tat Gene Products, Human Immunodeficiency Virus/genetics
13.
Nat Commun ; 13(1): 954, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35177645

ABSTRACT

Hepatocellular carcinoma (HCC) invariably exhibits inadequate O2 (hypoxia) and nutrient supply. Hypoxia-inducible factor (HIF) mediates cascades of molecular events that enable cancer cells to adapt and propagate. Macropinocytosis is an endocytic process initiated by membrane ruffling, causing the engulfment of extracellular fluids (proteins), protein digestion and subsequent incorporation into the biomass. We show that macropinocytosis occurs universally in HCC under hypoxia. HIF-1 activates the transcription of a membrane ruffling protein, EH domain-containing protein 2 (EHD2), to initiate macropinocytosis. Knockout of HIF-1 or EHD2 represses hypoxia-induced macropinocytosis and prevents hypoxic HCC cells from scavenging protein that support cell growth. Germline or somatic deletion of Ehd2 suppresses macropinocytosis and HCC development in mice. Intriguingly, EHD2 is overexpressed in HCC. Consistently, HIF-1 or macropinocytosis inhibitor suppresses macropinocytosis and HCC development. Thus, we show that hypoxia induces macropinocytosis through the HIF/EHD2 pathway in HCC cells, harnessing extracellular protein as a nutrient to survive.


Subject(s)
Carcinoma, Hepatocellular/immunology , Carrier Proteins/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Liver Neoplasms/immunology , Pinocytosis/immunology , Tumor Hypoxia/genetics , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carrier Proteins/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/immunology , Gene Knockdown Techniques , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Mice , Mice, Knockout , Pinocytosis/drug effects , Pinocytosis/genetics , Proof of Concept Study , Tumor Hypoxia/immunology , Xenograft Model Antitumor Assays
14.
J Cell Biol ; 220(7)2021 07 05.
Article in English | MEDLINE | ID: mdl-33978708

ABSTRACT

Polarity is essential for diverse functions in many cell types. Establishing polarity requires targeting a network of specific signaling and cytoskeleton molecules to different subregions of the cell, yet the full complement of polarity regulators and how their activities are integrated over space and time to form morphologically and functionally distinct domains remain to be uncovered. Here, by using the model system Dictyostelium and exploiting the characteristic chemoattractant-stimulated translocation of polarly distributed molecules, we developed a proteomic screening approach, through which we identified a leucine-rich repeat domain-containing protein we named Leep1 as a novel polarity regulator. We combined imaging, biochemical, and phenotypic analyses to demonstrate that Leep1 localizes selectively at the leading edge of cells by binding to PIP3, where it modulates pseudopod and macropinocytic cup dynamics by negatively regulating the Scar/WAVE complex. The spatiotemporal coordination of PIP3 signaling, Leep1, and the Scar/WAVE complex provides a cellular mechanism for organizing protrusive structures at the leading edge.


Subject(s)
Actins/economics , Cell Polarity/genetics , Pinocytosis/genetics , Protozoan Proteins/genetics , Actins/genetics , Cell Movement/genetics , Chemotaxis/genetics , Cytoplasm/genetics , Dictyostelium/genetics , Pseudopodia/genetics , Signal Transduction/genetics
15.
Cancer Lett ; 522: 129-141, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34543685

ABSTRACT

Mutations of KRAS gene are found in various types of cancer, including colorectal cancer (CRC). Despite intense efforts, no pharmacological approaches are expected to be effective against KRAS-mutant cancers. Macropinocytosis is an evolutionarily conserved actin-dependent endocytic process that internalizes extracellular fluids into large vesicles called macropinosomes. Recent studies have revealed macropinocytosis's important role in metabolic adaptation to nutrient stress in cancer cells harboring KRAS mutations. Here we showed that KRAS-mutant CRC cells enhanced macropinocytosis for tumor growth under nutrient-depleted conditions. We also demonstrated that activation of Rac1 and phosphoinositide 3-kinase were involved in macropinocytosis of KRAS-mutant CRC cells. Furthermore, we found that macropinocytosis was closely correlated with asparagine metabolism. In KRAS-mutant CRC cells engineered with knockdown of asparagine synthetase, macropinocytosis was accelerated under glutamine-depleted condition, and albumin addition could restore the glutamine depletion-induced growth suppression by recovering the intracellular asparagine level. Finally, we discovered that the combination of macropinocytosis inhibition and asparagine depletion dramatically suppressed the tumor growth of KRAS-mutant CRC cells in vivo. These results indicate that dual blockade of macropinocytosis and asparagine bioavailability could be a novel therapeutic strategy for KRAS-mutant cancers.


Subject(s)
Aspartate-Ammonia Ligase/genetics , Colorectal Neoplasms/therapy , Pinocytosis/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Asparagine/genetics , Asparagine/metabolism , Aspartate-Ammonia Ligase/antagonists & inhibitors , Cell Line, Tumor , Cell Proliferation/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Gene Knockdown Techniques , Humans , Mutation/genetics , Phosphatidylinositol 3-Kinases/genetics , rac1 GTP-Binding Protein/genetics
16.
J Cell Biol ; 220(9)2021 09 06.
Article in English | MEDLINE | ID: mdl-34165494

ABSTRACT

The Scar/WAVE complex drives actin nucleation during cell migration. Interestingly, the same complex is important in forming membrane ruffles during macropinocytosis, a process mediating nutrient uptake and membrane receptor trafficking. Mammalian CYRI-B is a recently described negative regulator of the Scar/WAVE complex by RAC1 sequestration, but its other paralogue, CYRI-A, has not been characterized. Here, we implicate CYRI-A as a key regulator of macropinosome formation and integrin internalization. We find that CYRI-A is transiently recruited to nascent macropinosomes, dependent on PI3K and RAC1 activity. CYRI-A recruitment precedes RAB5A recruitment but follows sharply after RAC1 and actin signaling, consistent with it being a local inhibitor of actin polymerization. Depletion of both CYRI-A and -B results in enhanced surface expression of the α5ß1 integrin via reduced internalization. CYRI depletion enhanced migration, invasion, and anchorage-independent growth in 3D. Thus, CYRI-A is a dynamic regulator of macropinocytosis, functioning together with CYRI-B to regulate integrin trafficking.


Subject(s)
Endosomes/metabolism , Integrin alpha5beta1/genetics , Intracellular Signaling Peptides and Proteins/genetics , Mitochondrial Proteins/genetics , Pinocytosis/genetics , Wiskott-Aldrich Syndrome Protein Family/genetics , Actins/genetics , Actins/metabolism , Animals , COS Cells , Cell Line, Tumor , Cell Movement , Cell Proliferation , Chlorocebus aethiops , Endosomes/pathology , Endosomes/ultrastructure , Gene Expression Regulation , HEK293 Cells , Humans , Integrin alpha5beta1/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Mitochondrial Proteins/metabolism , Osteoblasts/metabolism , Osteoblasts/pathology , Phosphatidylinositol 3-Kinase/genetics , Phosphatidylinositol 3-Kinase/metabolism , Polymerization , Protein Transport , Signal Transduction , Wiskott-Aldrich Syndrome Protein Family/metabolism , rab5 GTP-Binding Proteins/genetics , rab5 GTP-Binding Proteins/metabolism , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism
17.
J Neurosci ; 29(13): 4252-62, 2009 Apr 01.
Article in English | MEDLINE | ID: mdl-19339619

ABSTRACT

Alzheimer's disease is characterized by the progressive deposition of beta-amyloid (Abeta) within the brain parenchyma and its subsequent accumulation into senile plaques. Pathogenesis of the disease is associated with perturbations in Abeta homeostasis and the inefficient clearance of these soluble and insoluble peptides from the brain. Microglia have been reported to mediate the clearance of fibrillar Abeta (fAbeta) through receptor-mediated phagocytosis; however, their participation in clearance of soluble Abeta peptides (sAbeta) is largely unknown. We report that microglia internalize sAbeta from the extracellular milieu through a nonsaturable, fluid phase macropinocytic mechanism that is distinct from phagocytosis and receptor-mediated endocytosis both in vitro and in vivo. The uptake of sAbeta is dependent on both actin and tubulin dynamics and does not involve clathrin assembly, coated vesicles or membrane cholesterol. Upon internalization, fluorescently labeled sAbeta colocalizes to pinocytic vesicles. Microglia rapidly traffic these soluble peptides into late endolysosomal compartments where they are subject to degradation. Additionally, we demonstrate that the uptake of sAbeta and fAbeta occurs largely through distinct mechanisms and upon internalization are segregated into separate subcellular vesicular compartments. Significantly, we found that upon proteolytic degradation of fluorescently labeled sAbeta, the fluorescent chromophore is retained by the microglial cell. These studies identify an important mechanism through which microglial cells participate in the maintenance of Abeta homeostasis, through their capacity to constitutively clear sAbeta peptides from the brain.


Subject(s)
Amyloid beta-Peptides/metabolism , Microglia/physiology , Peptide Fragments/metabolism , Pinocytosis/physiology , Amyloid beta-Peptides/administration & dosage , Animals , Animals, Newborn , Brain/cytology , Cells, Cultured , Coculture Techniques , Cytochalasin D/pharmacology , Embryo, Mammalian , Enzyme Inhibitors/pharmacology , Flow Cytometry/methods , Green Fluorescent Proteins/genetics , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microglia/drug effects , Neurons/drug effects , Neurons/physiology , Nocodazole/pharmacology , Peptide Fragments/administration & dosage , Phagocytosis/drug effects , Phagocytosis/physiology , Pinocytosis/genetics , Protein Transport/drug effects , Spectrum Analysis , Tubulin Modulators/pharmacology
18.
Biochem J ; 423(1): 99-108, 2009 Sep 14.
Article in English | MEDLINE | ID: mdl-19604150

ABSTRACT

PI3K (phosphoinositide 3-kinase) alpha has been implicated in phagocytosis and fluid-phase pinocytosis in macrophages. The subtype-specific role of PI3K in these processes is poorly understood. To elucidate this issue, we made Raw 264.7 cells (a mouse leukaemic monocyte-macrophage cell line) deficient in each of the class-I PI3K catalytic subunits: p110alpha, p110beta, p110delta and p110gamma. Among these cells, only the p110alpha-deficient cells exhibited lower phagocytosis of opsonized and non-opsonized zymosan. The p110alpha-deficient cells also showed the impaired phagocytosis of IgG-opsonized erythrocytes and the impaired fluid-phase pinocytosis of dextran (molecular mass of 40 kDa). Receptor-mediated pinocytosis of DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate)-labelled acetylated low-density lipoprotein and fluid-phase pinocytosis of Lucifer Yellow (molecular mass of 500 Da) were resistant to p110alpha depletion. None of these processes were impaired in cells lacking p110beta, p110delta or p110gamma, but were susceptible to a pan-PI3K inhibitor wortmannin. In cells deficient in the enzymes catalysing PtdIns(3,4,5)P3 breakdown [PTEN (phosphatase and tensin homologue deleted on chromosome 10) or SHIP-1 (Src-homology-2-domain-containing inositol phosphatase-1)], uptake of IgG-opsonized particles was enhanced. These results indicated that phagocytosis and fluid-phase pinocytosis of larger molecules are dependent on the lipid kinase activity of p110alpha, whereas pinocytosis via clathrin-coated and small non-coated vesicles may depend on subtypes of PI3Ks other than class I.


Subject(s)
Macrophages/metabolism , Phagocytosis/genetics , Phosphatidylinositol 3-Kinases/physiology , Pinocytosis/genetics , Animals , Cells, Cultured , Class I Phosphatidylinositol 3-Kinases , Female , Isoenzymes/genetics , Isoenzymes/metabolism , Isoenzymes/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Zymosan/chemistry , Zymosan/metabolism
19.
Biochim Biophys Acta Mol Cell Res ; 1867(11): 118807, 2020 11.
Article in English | MEDLINE | ID: mdl-32745724

ABSTRACT

Methuosis has been described as a distinctive form of cell death characterized by the displacement of large fluid-filled vacuoles derived from uncontrolled macropinocytosis. Its induction has been proposed as a new strategy against cancer cells. Small molecules, such as indole-based calchones, have been identified as methuosis inducers and, recently, the CK2 inhibitor CX-4945 has been shown to have a similar effect on different cell types. However, the contribution of protein kinase CK2 to methuosis signalling is still controversial. Here we show that methuosis is not related to CK2 activity since it is not affected by structurally unrelated CK2 inhibitors and genetic reduction/ablation of CK2 subunits. Interestingly, CX-5011, a CK2 inhibitor related to CX-4945, behaves as a CK2-independent methuosis inducer, four times more powerful than its parental compound and capable to promote the formation on enlarged cytosolic vacuoles at low micromolar concentrations. We show that pharmacological inhibition of the small GTPase Rac-1, its downregulation by siRNA treatment, or the over-expression of the dominant-negative mutated form of Rac-1 (Rac-1 T17N), impairs CX-5011 ability to induce methuosis. Furthermore, cell treatment with CX-5011 induces a durable activation of Rac-1 that persists for at least 24 h. Worthy of note, CX-5011 is able to promote macropinocytosis not only in mammalian cells, but also in an in-vivo zebrafish model. Based on these evidences, CX-5011 is, therefore, proposed as a potential promising compound for cancer therapies for its dual efficacy as an inhibitor of the pro-survival kinase CK2 and inducer of methuosis.


Subject(s)
Casein Kinase II/genetics , Cell Death/genetics , Neoplasms/drug therapy , rac1 GTP-Binding Protein/genetics , CRISPR-Cas Systems/genetics , Casein Kinase II/antagonists & inhibitors , Cell Death/drug effects , Gene Editing , Hep G2 Cells , Humans , Indoles/pharmacology , Pinocytosis/drug effects , Pinocytosis/genetics , Pyrimidines/pharmacology , Quinolines/pharmacology , Vacuoles/drug effects , Vacuoles/genetics , rac1 GTP-Binding Protein/antagonists & inhibitors
20.
Nat Commun ; 11(1): 1121, 2020 02 28.
Article in English | MEDLINE | ID: mdl-32111826

ABSTRACT

Macropinocytic cancer cells scavenge amino acids from extracellular proteins. Here, we show that consuming necrotic cell debris via macropinocytosis (necrocytosis) offers additional anabolic benefits. A click chemistry-based flux assay reveals that necrocytosis provides not only amino acids, but sugars, fatty acids and nucleotides for biosynthesis, conferring resistance to therapies targeting anabolic pathways. Indeed, necrotic cell debris allow macropinocytic breast and prostate cancer cells to proliferate, despite fatty acid synthase inhibition. Standard therapies such as gemcitabine, 5-fluorouracil (5-FU), doxorubicin and gamma-irradiation directly or indirectly target nucleotide biosynthesis, creating stress that is relieved by scavenged nucleotides. Strikingly, necrotic debris also render macropinocytic, but not non-macropinocytic, pancreas and breast cancer cells resistant to these treatments. Selective, genetic inhibition of macropinocytosis confirms that necrocytosis both supports tumor growth and limits the effectiveness of 5-FU in vivo. Therefore, this study establishes necrocytosis as a mechanism for drug resistance.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Drug Resistance, Neoplasm , Pinocytosis , Animals , Antimetabolites, Antineoplastic/pharmacology , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Fatty Acid Synthases/antagonists & inhibitors , Female , Fluorouracil/pharmacology , Humans , Metabolic Flux Analysis , Mice , Microfilament Proteins/genetics , Mutation , Nutrients/metabolism , Pinocytosis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL