Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 669
Filter
Add more filters

Publication year range
1.
Microb Pathog ; 193: 106744, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38876321

ABSTRACT

Antibiotic resistance and re-emergence of highly resistant pathogens is a grave concern everywhere and this has consequences for all kinds of human activities. Herein, we showed that N-palmitoylethanolamine-derived cationic lipid (cN16E) had a lower minimum inhibitory concentration (MIC) against both Gram-positive and Gram-negative bacteria when it was loaded with Butea monosperma seed lectin (BMSL). The analysis using lectin-FITC conjugate labelling indicated that the improved antibacterial activity of BMSL conjugation was due to bacterial cell surface glycan recognition. Live and dead staining experiments revealed that the BMSL-cN16E conjugate (BcN16E) exerts antibacterial activity by damaging the bacterial membrane. BcN16E antimicrobial activity was demonstrated using an infected zebrafish animal model because humans have 70 % genetic similarity to zebrafish. BcN16E therapeutic potential was established successfully by rescuing fish infected with uropathogenic Escherichia coli (UPEC). Remarkably, the rescued infected fish treated with BcN16E prevented reinfection without further therapy, indicating BcN16E immunomodulatory potential. Thus, the study examined the expression of immune-related genes, including tnfα, ifnγ, il-1ß, il-4, il-10, tlr-2, etc. There was a significant elevation in the expression of all these genes compared to control and fish treated with BMSL or cN16E alone. Interestingly, when the rescued zebrafish were reinfected with the same pathogen, the levels of expression of these genes were many folds higher than seen earlier. Radial immune diffusion analyses (RIA) using zebrafish serum revealed antibody production during the initial infection and treatment. Interestingly, reinfected fish had significant immunoprecipitation in RIA, a feature absent in the groups treated with cN16E, BMSL, and control. These results clearly show that the BcN16E complex not only rescued infected zebrafish but also conferred long-lasting protection in terms of immunomodulation that protects against multiple reinfections. The findings support that BcN16E has immense potential as a novel immunostimulant for various biomedical applications.


Subject(s)
Immunomodulation , Microbial Sensitivity Tests , Zebrafish , Animals , Immunomodulation/drug effects , Disease Models, Animal , Reinfection/prevention & control , Anti-Bacterial Agents/pharmacology , Lipids/blood , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Lectins/pharmacology , Cytokines/metabolism , Plant Lectins/pharmacology , Escherichia coli Infections/immunology , Escherichia coli Infections/prevention & control , Fish Diseases/prevention & control , Fish Diseases/immunology , Fish Diseases/microbiology
2.
Glycoconj J ; 41(1): 1-33, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38244136

ABSTRACT

Lectins are non-immunological carbohydrate-binding proteins classified on the basis of their structure, origin, and sugar specificity. The binding specificity of such proteins with the surface glycan moiety determines their activity and clinical applications. Thus, lectins hold great potential as diagnostic and drug discovery agents and as novel biopharmaceutical products. In recent years, significant advancements have been made in understanding plant and microbial lectins as therapeutic agents against various viral diseases. Among them, mannose-specific lectins have being proven as promising antiviral agents against a variety of viruses, such as HIV, Influenza, Herpes, Ebola, Hepatitis, Severe Acute Respiratory Syndrome Coronavirus-1 (SARS-CoV-1), Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV) and most recent Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). The binding of mannose-binding lectins (MBLs) from plants and microbes to high-mannose containing N-glycans (which may be simple or complex) of glycoproteins found on the surface of viruses has been found to be highly specific and mainly responsible for their antiviral activity. MBLs target various steps in the viral life cycle, including viral attachment, entry and replication. The present review discusses the brief classification and structure of lectins along with antiviral activity of various mannose-specific lectins from plants and microbial sources and their diagnostic and therapeutic applications against viral diseases.


Subject(s)
Lectins , Virus Diseases , Humans , Lectins/metabolism , Mannose , Glycoproteins , SARS-CoV-2 , Polysaccharides , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/chemistry , Virus Diseases/drug therapy , Plant Lectins/pharmacology , Mannose-Binding Lectins/chemistry
3.
Protein Expr Purif ; 219: 106484, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38614377

ABSTRACT

Cancer and antibiotic resistance represent significant global challenges, affecting public health and healthcare systems worldwide. Lectin, a carbohydrate-binding protein, displays various biological properties, including antimicrobial and anticancer activities. This study focused on anticancer and antibacterial properties of Alocasia macrorrhiza lectin (AML). AML, with a molecular weight of 11.0 ± 1.0 kDa was purified using Ion-exchange chromatography, and the homotetrameric form was detected by gel-filtration chromatography. It agglutinates mouse erythrocytes, that was inhibited by 4-Nitrophenyl-α-d-mannopyranoside. Maximum hemagglutination activity was observed below 60 °C and within a pH range from 8 to 11. Additionally, it exhibited moderate toxicity against brine shrimp nauplii with LD50 values of 321 µg/ml and showed antibacterial activity against Escherichia coli and Shigella dysenteriae. In vitro experiments demonstrated that AML suppressed the proliferation of mice Ehrlich ascites carcinoma (EAC) cells by 35 % and human lung cancer (A549) cells by 40 % at 512 µg/ml concentration. In vivo experiments involved intraperitoneal injection of AML in EAC-bearing mice for five consecutive days at doses of 2.5 and 5.0 mg/kg/day, and the results indicated that AML inhibited EAC cell growth by 37 % and 54 %, respectively. Finally, it can be concluded that AML can be used for further anticancer and antibacterial studies.


Subject(s)
Anti-Bacterial Agents , Carcinoma, Ehrlich Tumor , Animals , Mice , Humans , Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/pathology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Plant Lectins/pharmacology , Plant Lectins/chemistry , Plant Lectins/isolation & purification , Rhizome/chemistry , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , A549 Cells , Cell Line, Tumor , Cell Proliferation/drug effects , Escherichia coli/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
4.
Molecules ; 29(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38893406

ABSTRACT

A Cucurbita phloem exudate lectin (CPL) from summer squash (Cucurbita pepo) fruits was isolated and its sugar-binding properties and biological activities were studied. The lectin was purified by affinity chromatography and the hemagglutination assay method was used to determine its pH, heat stability, metal-dependency and sugar specificity. Antimicrobial and anticancer activities were also studied by disc diffusion assays and in vivo and in vitro methods. The molecular weight of CPL was 30 ± 1 KDa and it was stable at different pH (5.0 to 9.0) and temperatures (30 to 60 °C). CPL recovered its hemagglutination activity in the presence of Ca2+. 4-nitrophenyl-α-D-glucopyranoside, lactose, rhamnose and N-acetyl-D-glucosamine strongly inhibited the activity. With an LC50 value of 265 µg/mL, CPL was moderately toxic and exhibited bacteriostatic, bactericidal and antibiofilm activities against different pathogenic bacteria. It also exhibited marked antifungal activity against Aspergillus niger and agglutinated A. flavus spores. In vivo antiproliferative activity against Ehrlich ascites carcinoma (EAC) cells in Swiss albino mice was observed when CPL exerted 36.44% and 66.66% growth inhibition at doses of 3.0 mg/kg/day and 6.0 mg/kg/day, respectively. A 12-day treatment by CPL could reverse their RBC and WBC counts as well as restore the hemoglobin percentage to normal levels. The MTT assay of CPL performed against human breast (MCF-7) and lung (A-549) cancer cell lines showed 29.53% and 18.30% of inhibitory activity at concentrations of 128 and 256 µg/mL, respectively.


Subject(s)
Anti-Infective Agents , Cucurbita , Plant Lectins , Cucurbita/chemistry , Animals , Plant Lectins/pharmacology , Plant Lectins/chemistry , Plant Lectins/isolation & purification , Mice , Humans , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/pathology
5.
Histochem Cell Biol ; 160(5): 435-452, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37535087

ABSTRACT

Urinary bladder cancer can be treated by intravesical application of therapeutic agents, but the specific targeting of cancer urothelial cells and the endocytotic pathways of the agents are not known. During carcinogenesis, the superficial urothelial cells exhibit changes in sugar residues on the apical plasma membranes. This can be exploited for selective targeting from the luminal side of the bladder. Here we show that the plant lectins Jacalin (from Artocarpus integrifolia), ACA (from Amaranthus caudatus) and DSA (from Datura stramonium) selectively bind to the apical plasma membrane of low- (RT4) and high-grade (T24) cancer urothelial cells in vitro and urothelial tumours ex vivo. The amount of lectin binding was significantly different between RT4 and T24 cells. Endocytosis of lectins was observed only in cancer urothelial cells and not in normal urothelial cells. Transmission electron microscopy analysis showed macropinosomes, endosome-like vesicles and multivesicular bodies filled with lectins in RT4 and T24 cells and also in cells of urothelial tumours ex vivo. Endocytosis of Jacalin and ACA in cancer cells was decreased in vitro after addition of inhibitor of macropinocytosis 5-(N-ethyl-N-isopropyl) amiloride (EIPA) and increased after stimulation of macropinocytosis with epidermal growth factor (EGF). Clathrin, caveolin and flotillin did not colocalise with lectins. These results confirm that the predominant mechanism of lectin endocytosis in cancer urothelial cells is macropinocytosis. Therefore, we propose that lectins in combination with conjugated therapeutic agents are promising tools for improved intravesical therapy by targeting cancer cells.


Subject(s)
Lectins , Urinary Bladder Neoplasms , Humans , Lectins/metabolism , Urinary Bladder Neoplasms/pathology , Endocytosis/physiology , Urinary Bladder/metabolism , Endosomes/metabolism , Plant Lectins/pharmacology , Plant Lectins/metabolism , Plant Lectins/therapeutic use
6.
Glycoconj J ; 40(2): 179-189, 2023 04.
Article in English | MEDLINE | ID: mdl-36800135

ABSTRACT

Sugar-stabilised nanomaterials have received a lot of attention in cancer therapy in recent years due to their pronounced application as specific targeting agents and maximizing their therapeutic potential while bypassing off-target effects. Lectins, the carbohydrate-binding proteins, are capable of binding to receptors present on the target cell/tissue and interact with transformed glycans better than normal cells. Besides some of the lectins exhibit anticancer activity. Conjugating sugar-stabilised NPs with lectins there for is expected to multiply the potential for the early diagnosis of cancer cells and the specific release of drugs into the tumor site. Because of the prospective applications of lectin-sugar-stabilised nanoparticle conjugates, it is important to understand their molecular interaction and physicochemical properties. Momordica charantia Seed Lectin (MCL) is a type II RIP and has been known as an anti-tumor agent. Investigation of the interaction between sugar-stabilised silver nanoparticles and MCL has been performed by fluorescence spectroscopy to explore the possibility of creating an effective biocompatible drug delivery system against cancer cells. In this regard interaction between lectin and NPs should be well-preserved, while recognizing the specific cell surface sugar. Therefore experiments were carried out in the presence and absence of specific sugar galactose. Protein intrinsic fluorescence emission is quenched at ~ 20% at saturation during the interaction without any significant shift in fluorescence emission maximum. Binding experiments reveal a good affinity. Tetrameric MCL binds to a single nanoparticle. Stern-Volmer analysis of the quenching data suggests that the interaction is via static quenching leading to complex formation. Hemagglutination experiments together with interaction studies in the presence of specific sugar show that the sugar-binding site of the lectin is distinct from the nanoparticle-binding site and cell recognition is very much intact even after binding to AgNPs. Our results propose the possibility of developing MCL-silver nanoparticle conjugate with high stability and multiple properties in the diagnosis and treatment of cancer.


Subject(s)
Metal Nanoparticles , Momordica charantia , Lectins/metabolism , Sugars/metabolism , Momordica charantia/chemistry , Momordica charantia/metabolism , Silver/analysis , Silver/metabolism , Carbohydrates/analysis , Seeds/chemistry , Ribosome Inactivating Proteins/pharmacology , Ribosome Inactivating Proteins/analysis , Ribosome Inactivating Proteins/metabolism , Plant Lectins/pharmacology , Plant Lectins/chemistry
7.
Biotechnol Appl Biochem ; 70(3): 1015-1023, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36441921

ABSTRACT

Lectins are carbohydrate-binding proteins belonging to the Leguminosae family. In this family stand out proteins extracted from species belonging to Diocleinae subtribe, which includes, for example, the seed lectin from Dioclea violacea (DVL) and the jack bean lectin Concanavalin A (ConA). Here, we report the photosynthesis of silver/silver chloride nanoparticles (NPs) assisted by ConA and DVL. The syntheses were simple processes using a green-chemistry approach. Under electron microscopy, NPs heterogeneous in size, nearly spherical and covered by a thin lectin corona, were observed. Both NPs assisted by lectins were capable to cause strong rabbit erythrocytes agglutination with the same titers of hemagglutinating activities. These results indicate that both lectins maintained their biological activities even after association with the NPs and therefore are able to interact with biological membrane carbohydrates. However, for rabbit erythrocytes treated with proteolytic enzymes were observed different titers of hemagglutinating activities, suggesting differences in the spatial arrangement of the lectins on the surface of the NPs. This study provides evidences that these hybrid lectin-coated silver/silver chloride NPs can be used for selective recognition and interaction with membrane carbohydrates and others biotechnological applications.


Subject(s)
Lectins , Plant Lectins , Animals , Rabbits , Lectins/chemistry , Plant Lectins/pharmacology , Plant Lectins/chemistry , Plant Lectins/metabolism , Silver/pharmacology , Carbohydrates/chemistry , Photosynthesis
8.
Biochemistry (Mosc) ; 88(11): 1956-1969, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38105212

ABSTRACT

Euphorbiaceae, also known as the spurge family, is a large group of flowering plants. Despite being tropical natives, they are now widespread. Due to its medicinal and commercial importance, this family of plants attracted a lot of attention in the scientific community. The distinctive characteristic of the family is production of milky latex, which is a rich source of several lectins, the proteins that bind carbohydrates. Although their function is unclear, they are believed to defend plants against damaging phytopathogenic microorganisms, insects, and predatory animals. Additionally, they serve as crucial metabolic regulators under a variety of stressors. Detection, separation, purification, and characterization of lectins from the Euphorbiaceae family - mostly from the latex of plants - began over 40 years ago. This effort produced over 35 original research papers that were published. However, no systematic review that compiles these published data has been presented yet. This review summarizes and describes several procedures and protocols employed for extraction and purification of lectins belonging to this family. Physicochemical properties and biological activities of the lectins, along with their medicinal and pharmacological properties, have also been analyzed. Additionally, using examples of ricin and ricin agglutinin, we have structurally analyzed characteristics of the lectin known as Ribosome Inactivating Protein Type II (RIP-Type II) that belongs to this family. We anticipate that this review article will offer a useful compendium of information on this important family of lectins, show the scientists involved in lectin research the gaps in our knowledge, and offer insights for future research.


Subject(s)
Euphorbiaceae , Ricin , Animals , Ricin/chemistry , Plant Lectins/pharmacology , Latex/chemistry , Plants
9.
Mol Biol Rep ; 49(8): 7665-7676, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35717475

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is the main types of primary liver cancer, which shows some abnormal glycosylation, such as the increase of fucose. Lens culinaris agglutinin (LCA), a natural plant lectin that can bind to mannose and fucose, has been reported to be antiproliferative to may tumors. However, the effect of LCA on the vitality and migration ability of human hepatoma cells is not demonstrated. Therefore, the aim of this study is to investigate the effects of LCA on vitality and migration in human hepatoma cells and its potential mechanisms. METHODS AND RESULTS: LCA had no significant effect on viability of human hepatoma cells (HCCLM3, MHCC97L and HepG2) and hepatocytes (L02) by CCK-8 kit, but it could inhibit human hepatoma cells migration significantly without affecting hepatocytes by Transwell method. Sugar inhibition assay was used to verify the possible binding site between LCA and human hepatoma cells. The result showed that Mannose- and fucose- related sites were associated with LCA inhibiting human hepatoma cells migration. Moreover, LCA could affect HCCLM3 migration by activating ERK1/2 and JNK1/2/3 signalling pathways. LCA did not affect MMP-2 and MMP-9 of HCCLM3 through gelatinase zymography. However, the results of immunofluorescence standing showed that LCA could reduce the F-actin formation in HCCLM3 via ERK1/2 and JNK1/2/3 signalling pathways. CONCLUSIONS: LCA might inhibit human hepatoma cell migration by reducing the F-actin formation via the mannose and fucose-mediated ERK1/2 and JNK1/2/3 signalling pathway. This result will deepen people's understanding on plant lectin as a drug in tumor glycobiology.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Actins/metabolism , Carcinoma, Hepatocellular/metabolism , Cell Movement , Extracellular Signal-Regulated MAP Kinases , Fucose/metabolism , Fucose/pharmacology , Humans , JNK Mitogen-Activated Protein Kinases , Liver Neoplasms/metabolism , MAP Kinase Signaling System , Mannose , Plant Lectins/metabolism , Plant Lectins/pharmacology
10.
Molecules ; 27(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36500537

ABSTRACT

As they manifest specifically and reversibly, lectins are proteins or glycoproteins with the characteristic of agglutinating erythrocytes. Given that grain legume lectins can represent 10% of protein content and can have various biological functions, they are extensively studied. The objective of this work was to purify and partially characterize the lectins of Phaseolus vulgaris black, var surco and vara (LBBS and LBBV). Both lectin types were purified by affinity chromatography on stroma matrix, which agglutinated human erythrocytes type A, B, and O, as well as rabbit, hamster, pig, and chicken erythrocytes. Native-PAGE was employed for molecular mass determination, yielding 109.36 and 112.68 kDa for BBS and BBV, respectively. Further analyses revealed that these lectins are tetrameric glycoproteins that require Ca+2, Mn+2 and Mg+2 ions for exhibiting their hemagglutinating function, which can be inhibited by fetuin. Moreover, optimal pH was established for both lectins (10.5 for LBBS and 7-9 for LBBV), while their activity was temperature-dependent and ceased above 70 °C. Finally, the observed differences in the biochemical characteristics and bioactive functions were ascribed to the different physiological characteristics of each seed, as well as the protein itself.


Subject(s)
Phaseolus , Humans , Rabbits , Swine , Animals , Phaseolus/chemistry , Lectins/chemistry , Seeds/chemistry , Chromatography, Affinity , Erythrocytes/metabolism , Glycoproteins/analysis , Plant Lectins/pharmacology
11.
J Mol Recognit ; 34(10): e2922, 2021 10.
Article in English | MEDLINE | ID: mdl-34132435

ABSTRACT

Using a rat model of peritonitis, we herein report the inflammatory effect induced by the lectin isolated from Vatairea guianensis (VGL) seeds in the context of interactions between VGL and both toll-like receptor 4 (TLR4) and tumor necrosis factor receptor 1 (TNFR1). Peritoneal macrophages were stimulated with VGL for dose-dependent gene expression and release of TNF-α. In vivo results showed that VGL (1 mg/kg; intraperitoneal) induced peritonitis in female Wistar rats. Leukocyte migration, macrophage activation, and protein leakage were measured 3 and 6 hours after induction. In vitro, peritoneal macrophages were stimulated with VGL for gene expression and TNF-α dosage (mean ± SEM (n = 6), analysis of variance, and Bonferroni's test (P < .05)). In silico, VGL structure was applied in molecular docking with representative glycans. It was found that (a) VGL increases vascular permeability and stimulates leukocyte migration, both rolling and adhesion; (b) lectin-induced neutrophil migration occurs via macrophage stimulation, both in vitro and in vivo; (c) lectin interacts with TLR4 and TNFR1; and (d) stimulates TNF-α gene expression (RT-PCR) and release from peritoneal macrophages. Thus, upon lectin-glycan binding on the cell surface, our results suggest that VGL induces an acute inflammatory response, in turn activating the release of peritoneal macrophages via TNF-α and TLR and/or TNFR receptor pathways.


Subject(s)
Fabaceae/chemistry , Glycoconjugates/metabolism , Macrophages, Peritoneal/drug effects , Plant Lectins/pharmacology , Animals , Cell Movement/drug effects , Cells, Cultured , Disease Models, Animal , Female , Gene Expression Regulation/drug effects , Glycoconjugates/chemistry , Leukocytes/drug effects , Macrophages, Peritoneal/metabolism , Peritonitis/chemically induced , Peritonitis/metabolism , Peritonitis/pathology , Plant Lectins/chemistry , Plant Lectins/metabolism , Rats, Wistar , Receptors, Tumor Necrosis Factor, Type I/chemistry , Receptors, Tumor Necrosis Factor, Type I/metabolism , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
12.
IUBMB Life ; 73(8): 1060-1072, 2021 08.
Article in English | MEDLINE | ID: mdl-34003554

ABSTRACT

Maclurin [(3,4-dihydroxyphenyl)-(2,4,6-trihydroxyphenyl) methanone] is a natural compound that can be extracted from white mulberry(Morus alba) and purple mangosteen(Garcinia mangostana). Maclurin is known for its dual-sided effect on reactive oxygen species (ROS). Osteosarcoma is a primary malignant tumor of the bone and is one of the most aggressive cancers. It is common especially in children and young adults and can progress into highly metastatic cancer. In this study, we investigated the anti-cancer effects of maclurin on U2OS human osteosarcoma cells. The results indicated that maclurin exerts prooxidative effects and induces apoptosis via capase-3-independent PARP regulation in U2OS human osteosarcoma cells. Maclurin also inhibits the migration of U2OS human osteosarcoma cells. Maclurin modulates two of the three major mitogen-activated protein kinases that are closely linked with cancer metastasis; that is, it activates p38 and inactivates Extracellular signal-regulated kinase. The apoptosis-inducing effects of maclurin on U2OS osteosarcoma cells were diminished by additional treatment with antioxidant N-acetyl cysteine (NAC), but the migration-inhibiting effect was not affected by NAC treatment. This further suggested the only apoptosis-inducing effect of maclurin may be strongly related to its prooxidative activity. Taken together, these results suggested that maclurin may be a strong candidate molecule as an anti-osteosarcoma agent.


Subject(s)
Bone Neoplasms/drug therapy , Bone Neoplasms/metabolism , Osteosarcoma/drug therapy , Osteosarcoma/metabolism , Plant Lectins/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Antioxidants/pharmacology , Apoptosis/drug effects , Bone Neoplasms/pathology , Cell Line, Tumor , Cell Movement/drug effects , Humans , MAP Kinase Signaling System/drug effects , Osteosarcoma/pathology , Poly(ADP-ribose) Polymerases/metabolism , Reactive Oxygen Species/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
13.
FASEB J ; 34(2): 2326-2343, 2020 02.
Article in English | MEDLINE | ID: mdl-31907993

ABSTRACT

Polymorphonuclear neutrophils (PMNs) play a critical role in the innate immune response to invading pathogens. However, dysregulated mucosal trafficking of PMNs and associated epithelial tissue damage is a pathological hallmark of numerous inflammatory conditions including inflammatory bowel disease. The glycoprotein CD11b/CD18 plays a well-described role in regulating PMN transepithelial migration and PMN inflammatory functions. Previous studies have demonstrated that targeting of the N-linked glycan Lewis X on CD11b blocks PMN transepithelial migration (TEpM). Given evidence of glycosylation-dependent regulation of CD11b/CD18 function, we performed MALDI TOF Mass Spectrometry (MS) analyses on CD11b/CD18 purified from human PMNs. Unusual glycan epitopes identified on CD11b/CD18 included high Mannose oligosaccharides recognized by the Galanthus Nivalis lectin and biantennary galactosylated N-glycans recognized by the Phaseolus Vulgaris erythroagglutinin lectin. Importantly, we show that selective targeting of glycans on CD11b with such lectins results in altered intracellular signaling events that inhibit TEpM and differentially affect key PMN inflammatory functions including phagocytosis, superoxide release and apoptosis. Taken together, these data demonstrate that discrete glycan motifs expressed on CD11b/CD18 such as biantennary galactose could represent novel targets for selective manipulation of CD11b function and reduction of PMN-associated tissue damage in chronic inflammatory diseases.


Subject(s)
CD11b Antigen/immunology , CD18 Antigens/immunology , Epitopes/immunology , Neutrophils/immunology , CD11b Antigen/chemistry , CD18 Antigens/chemistry , Epitopes/chemistry , Humans , Mannose-Binding Lectins/chemistry , Mannose-Binding Lectins/pharmacology , Neutrophils/chemistry , Phagocytosis , Phytohemagglutinins/chemistry , Phytohemagglutinins/pharmacology , Plant Lectins/chemistry , Plant Lectins/pharmacology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Superoxides/chemistry , Superoxides/immunology , Transendothelial and Transepithelial Migration
14.
Glycoconj J ; 38(3): 361-368, 2021 06.
Article in English | MEDLINE | ID: mdl-33835346

ABSTRACT

The potential antitumor effects of jacalin, the plant lectin that specifically recognizes the tumor-associated Thomsen-Friedenreich antigen has been extensively studied. We had earlier reported jacalin to be mitogenic to K562, the Bcr-Abl expressing erythroleukemia cell line. The dearth of studies highlighting the proliferative effects of jacalin and other lectins motivated us to unveil the mechanism underlying the mitogenic effects of jacalin. Caveolin-1 (cav-1) is an integral membrane protein, known to play a crucial role in cell signaling, lipid transport, and membrane trafficking. The role of cav-1 in tumorigenesis is considered to be controversial as it can suppress as well as promote tumor growth, depending on the cellular context. In the present study, we propose that cav-1 plays the central role in the mitogenic effects of jacalin on the K562 cells. In accordance, the mRNA, as well as protein expression of cav-1 was found to be upregulated in the jacalin-treated K562 cells as compared to the untreated control. Further, jacalin stimulation also increased the phosphorylation of ERK and Akt. The rationale that leads to the initial conjecture about cav-1 was that the sequence of jacalin possesses a cav-1-binding site.


Subject(s)
Caveolin 1/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation/drug effects , Leukemia, Myeloid/drug therapy , Plant Lectins/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Caveolin 1/genetics , Extracellular Signal-Regulated MAP Kinases/genetics , Humans , K562 Cells , Phosphorylation , Plant Lectins/pharmacology
15.
J Appl Microbiol ; 130(3): 745-754, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32750211

ABSTRACT

AIMS: To evaluate the anti-staphylococcal effects of lectins isolated from bark (MuBL), heartwood (MuHL) and leaves (MuLL) of Myracrodruon urundeuva. METHODS AND RESULTS: The lectins were evaluated for: effects on growth, aggregation, haemolytic activity and biofilm-forming ability of Staphylococcus aureus clinical isolates nonresistant (8325-4) and multidrug resistant (LAC USA300); interference with the expression of virulence genes (hla, rnaIII and spa) of the Agr system of S. aureus; and synergistic effect with the antibiotics cefoxitin and cefotaxime. MuBL, MuHL and MuLL reduced growth (minimal inhibitory concentration (MIC): 12·5-50 µg ml-1 ) and viability (minimal bactericidal concentration (MBC): 100 µg ml-1 ) of 8325-4 and LAC USA300 cells. MuLL (at ½MIC and MIC) reduced LAC USA300 agglutination. The lectins did not interfere with haemolytic activity and expression of hla, rnaIII and spa genes. Only MuHL was able to reduce the biofilm production by 8325-4 (50-400 µg ml-1 ) and LAC USA300 (400 µg ml-1 ). CONCLUSION: The M. urundeuva lectins showed antibacterial activity against nonresistant and resistant clinical isolates of S. aureus and synergistic effects with antibiotics in reducing growth and biofilm formation. SIGNIFICANCE AND IMPACT OF THE STUDY: This work reports bioactive molecules capable of acting as anti-staphylococcal agents, since there are increasing reports of multiresistant isolates of this bacterium.


Subject(s)
Anacardiaceae/chemistry , Anti-Bacterial Agents/pharmacology , Plant Lectins/pharmacology , Staphylococcus aureus/drug effects , Agglutination Tests , Anti-Bacterial Agents/isolation & purification , Biofilms/drug effects , Drug Resistance, Multiple, Bacterial , Drug Synergism , Hemolysis/drug effects , Humans , Plant Lectins/isolation & purification , Staphylococcus aureus/isolation & purification , Staphylococcus aureus/pathogenicity , Virulence/drug effects
16.
Mar Drugs ; 19(2)2021 Feb 06.
Article in English | MEDLINE | ID: mdl-33562153

ABSTRACT

Historically, algae have stimulated significant economic interest particularly as a source of fertilizers, feeds, foods and pharmaceutical precursors. However, there is increasing interest in exploiting algal diversity for their antiviral potential. Here, we present an overview of 50-years of scientific and technological developments in the field of algae antivirals. After bibliometric analysis of 999 scientific references, a survey of 16 clinical trials and analysis of 84 patents, it was possible to identify the dominant algae, molecules and viruses that have been shaping and driving this promising field of research. A description of the most promising discoveries is presented according to molecule class. We observed a diverse range of algae and respective molecules displaying significant antiviral effects against an equally diverse range of viruses. Some natural algae molecules, like carrageenan, cyanovirin or griffithsin, are now considered prime reference molecules for their outstanding antiviral capacity. Crucially, while many algae antiviral applications have already reached successful commercialization, the large spectrum of algae antiviral capacities already identified suggests a strong potential for future expansion of this field.


Subject(s)
Antiviral Agents/pharmacology , Microalgae/metabolism , Seaweed/metabolism , Agriculture , Aquaculture , Bacterial Proteins/pharmacology , Clinical Trials as Topic , Diterpenes/pharmacology , Lectins/pharmacology , Membrane Proteins/pharmacology , Plant Lectins/pharmacology , Polysaccharides/pharmacology
17.
Mar Drugs ; 19(8)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34436255

ABSTRACT

Over 182 million confirmed cases of COVID-19 and more than 4 million deaths have been reported to date around the world. It is essential to identify broad-spectrum antiviral agents that may prevent or treat infections by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) but also by other coronaviruses that may jump the species barrier in the future. We evaluated the antiviral selectivity of griffithsin and sulfated and non-sulfated polysaccharides against SARS-CoV-1 and SARS-CoV-2 using a cytotoxicity assay and a cell-based pseudoviral model. The half-maximal cytotoxic concentration (CC50) and half-maximal effective concentration (EC50) were determined for each compound, using a dose-response-inhibition analysis on GraphPad Prism v9.0.2 software (San Diego, CA, USA). The therapeutic index (TI = CC50/EC50) was calculated for each compound. The potential synergistic, additive, or antagonistic effect of different compound combinations was determined by CalcuSyn v1 software (Biosoft, Cambridge, UK), which estimated the combination index (CI) values. Iota and lambda carrageenan showed the most potent antiviral activity (EC50 between 3.2 and 7.5 µg/mL). Carrageenan and griffithsin combinations exhibited synergistic activity (EC50 between 0.2 and 3.8 µg/mL; combination index <1), including against recent SARS-CoV-2 mutations. The griffithsin and carrageenan combination is a promising candidate to prevent or treat infections by SARS-CoV-1 and SARS-CoV-2.


Subject(s)
Antiviral Agents/pharmacology , Carrageenan/pharmacology , Plant Lectins/pharmacology , SARS-CoV-2/drug effects , Severe acute respiratory syndrome-related coronavirus/drug effects , COVID-19/virology , Drug Synergism , HeLa Cells , Humans , Models, Biological , Polysaccharides/pharmacology , COVID-19 Drug Treatment
18.
Molecules ; 26(19)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34641455

ABSTRACT

Chitin-binding hevein-like peptides (CB-HLPs) belong to a family of cysteine-rich peptides that play important roles in plant stress and defense mechanisms. CB-HLPs are ribosomally synthesized peptides that are known to be bioprocessed from the following two types of three-domain CB-HLP precursor architectures: cargo-carrying and non-cargo-carrying. Here, we report the identification and characterization of chenotides biosynthesized from the third type of precursors, which are cleavable hololectins of the quinoa (Chenopodium quinoa) family. Chenotides are 6-Cys-CB-HLPs of 29-31 amino acids, which have a third type of precursor architecture that encompasses a canonical chitin-binding domain that is involved in chitin binding and anti-fungal activities. Microbroth dilution assays and microscopic analyses showed that chenotides are effective against phyto-pathogenic fungi in the micromolar range. Structure determination revealed that chenotides are cystine knotted and highly compact, which could confer resistance against heat and proteolytic degradation. Importantly, chenotides are connected by a novel 18-residue Gly/Ala-rich linker that is a target for bioprocessing by cathepsin-like endopeptidases. Taken together, our findings reveal that chenotides are a new family of CB-HLPs from quinoa that are synthesized as a single multi-modular unit and bioprocessed to yield individual mature CB-HLPs. Importantly, such precursors constitute a new family of cleavable hololectins. This unusual feature could increase the biosynthetic efficiency of anti-fungal CB-HLPs, to provide an evolutionary advantage for plant survival and reproduction.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Chenopodium quinoa/chemistry , Peptide Fragments/pharmacology , Plant Lectins/metabolism , Plant Proteins/metabolism , Amino Acid Sequence , Plant Lectins/chemistry , Plant Lectins/pharmacology , Plant Proteins/chemistry , Protein Conformation , Sequence Homology
19.
J Infect Dis ; 221(Supplement_4): S480-S492, 2020 May 11.
Article in English | MEDLINE | ID: mdl-32037447

ABSTRACT

Nipah virus (NiV) is a highly pathogenic zoonotic paramyxovirus that causes fatal encephalitis and respiratory disease in humans. There is currently no approved therapeutic for human use against NiV infection. Griffithsin (GRFT) is high-mannose oligosaccharide binding lectin that has shown in vivo broad-spectrum activity against viruses, including severe acute respiratory syndrome coronavirus, human immunodeficiency virus 1, hepatitis C virus, and Japanese encephalitis virus. In this study, we evaluated the in vitro antiviral activities of GRFT and its synthetic trimeric tandemer (3mG) against NiV and other viruses from 4 virus families. The 3mG had comparatively greater potency than GRFT against NiV due to its enhanced ability to block NiV glycoprotein-induced syncytia formation. Our initial in vivo prophylactic evaluation of an oxidation-resistant GRFT (Q-GRFT) showed significant protection against lethal NiV challenge in Syrian golden hamsters. Our results warrant further development of Q-GRFT and 3mG as potential NiV therapeutics.


Subject(s)
Antiviral Agents/pharmacology , Henipavirus Infections/drug therapy , Nipah Virus/drug effects , Plant Lectins/pharmacology , Virus Internalization/drug effects , Animals , Antiviral Agents/therapeutic use , Chlorocebus aethiops , Disease Models, Animal , Drug Evaluation, Preclinical , Female , HEK293 Cells , HeLa Cells , Henipavirus Infections/virology , Humans , Mesocricetus , Nipah Virus/isolation & purification , Plant Lectins/therapeutic use , Vero Cells
20.
J Cell Physiol ; 235(3): 2776-2791, 2020 03.
Article in English | MEDLINE | ID: mdl-31544977

ABSTRACT

Therapy-induced senescence in cancer cells is an irreversible antiproliferative state, which inhibits tumor growth and is therefore a potent anti-neoplastic mechanism. In this study, low doses of Abrus agglutinin (AGG)-induced senescence through autophagy in prostate carcinoma cells (PC3) and inhibited proliferation. The inhibition of autophagy with 3-methyl adenine reversed AGG-induced senescence, thus confirming that AGG-triggered senescence required autophagy. AGG treatment also led to lipophagy-mediated accumulation of free fatty acids (FFAs), with a concomitant decrease in the number of lipid droplets. Lalistat, a lysosomal acid lipase inhibitor, abrogated AGG-induced lipophagy and senescence in PC3 cells, indicating that lipophagy is essential for AGG-induced senescence. The accumulation of FFAs increased reactive oxygen species generation, a known facilitator of senescence, which was also reduced in the presence of lalistat. Furthermore, AGG upregulated silent mating type information regulator 2 homolog 1 (SIRT1), while the presence of sirtinol reduced autophagy flux and the senescent phenotype in the AGG-treated cells. Mechanistically, AGG-induced cytoplasmic SIRT1 deacetylated a Lys residue on the cytoplasmic domain of lysosome-associated membrane protein 1 (LAMP1), an autolysosomal protein, resulting in lipophagy and senescence. Taken together, our findings demonstrate a novel SIRT1/LAMP1/lipophagy axis mediating AGG-induced senescence in prostate cancer cells.


Subject(s)
Autophagy/drug effects , Cellular Senescence/drug effects , Fatty Acids, Nonesterified/biosynthesis , Lysosomal Membrane Proteins/metabolism , Plant Lectins/pharmacology , Prostatic Neoplasms/drug therapy , Adenine/analogs & derivatives , Adenine/pharmacology , Apoptosis/drug effects , Apoptosis/physiology , Autophagy/physiology , Benzamides/pharmacology , Carbamates/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cellular Senescence/physiology , Humans , Male , Naphthols/pharmacology , PC-3 Cells , Prostatic Neoplasms/pathology , Reactive Oxygen Species/metabolism , Sirtuin 1/metabolism , Sterol Esterase/antagonists & inhibitors , Thiadiazoles/pharmacology , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL