Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 280
Filter
Add more filters

Publication year range
1.
Planta ; 260(3): 73, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39150569

ABSTRACT

MAIN CONCLUSION: The ultrastructural design and biochemical organization of the significantly thickened outer tissues of the gametophytic stem of Hypnodendron menziesii optimizes load bearing of the stem. Hypnodendron menziesii is a bryoid umbrella moss growing in high humid conditions on the forest floors of New Zealand. The erect gametophyte bears up to eight whorls of branches in succession, spreading across the stem that bears the heavy weight of branches with highly hydrated leaves. Our investigation using a combination of light microscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and TEM-immunolabeling techniques provided novel information on the structural design and biochemical organization of greatly thickened cell walls of epidermal, hypodermal, and outermost cortical tissues, comparing underlying thin-walled cortical tissues in the gametophytic stem. Probing into the ultrastructure of the cell wall architecture of these target tissues by TEM and SEM revealed the cell walls to display a multilamellar organization, in addition to demonstrating the presence of an electron-dense substance in the cell wall, presumably flavonoids. The pattern of distribution and concentration of rhamnogalacturonan, homogalacturonan, and heteromannan, as determined by immunogold labeling, suggests that it is the combination of structural and molecular design of the cell wall that may optimize the mechanical function of the epidermal, hypodermal, and outer cortical tissues. Statistical relationships between the overall thickness of epidermal, hypodermal, and outer cortical cell walls, the lumen area of cells and the percentage area of cell wall occupied in these tissues at different heights of the stem, and thickness of secondary cell wall layers (L1-L4/5) were explored. The results of these analyses unequivocally support the contribution of outer tissues to the mechanical strength of the resilient stem.


Subject(s)
Cell Wall , Plant Stems , Cell Wall/ultrastructure , Plant Stems/ultrastructure , Microscopy, Electron, Scanning , Germ Cells, Plant/ultrastructure , Bryopsida/ultrastructure , Microscopy, Electron, Transmission
2.
Nucleic Acids Res ; 49(1): 190-205, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33332564

ABSTRACT

Secondary wall thickening in the sclerenchyma cells is strictly controlled by a complex network of transcription factors in vascular plants. However, little is known about the epigenetic mechanism regulating secondary wall biosynthesis. In this study, we identified that ARABIDOPSIS HOMOLOG of TRITHORAX1 (ATX1), a H3K4-histone methyltransferase, mediates the regulation of fiber cell wall development in inflorescence stems of Arabidopsis thaliana. Genome-wide analysis revealed that the up-regulation of genes involved in secondary wall formation during stem development is largely coordinated by increasing level of H3K4 tri-methylation. Among all histone methyltransferases for H3K4me3 in Arabidopsis, ATX1 is markedly increased during the inflorescence stem development and loss-of-function mutant atx1 was impaired in secondary wall thickening in interfascicular fibers. Genetic analysis showed that ATX1 positively regulates secondary wall deposition through activating the expression of secondary wall NAC master switch genes, SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN1 (SND1) and NAC SECONDARY WALL THICKENING PROMOTING FACTOR1 (NST1). We further identified that ATX1 directly binds the loci of SND1 and NST1, and activates their expression by increasing H3K4me3 levels at these loci. Taken together, our results reveal that ATX1 plays a key role in the regulation of secondary wall biosynthesis in interfascicular fibers during inflorescence stem development of Arabidopsis.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/metabolism , Cell Wall/metabolism , Gene Expression Regulation, Plant/physiology , Histone Code , Histone-Lysine N-Methyltransferase/physiology , Histones/genetics , Inflorescence/metabolism , Plant Proteins/genetics , Plant Stems/metabolism , Transcription Factors/physiology , Transcriptome , Arabidopsis Proteins/biosynthesis , Arabidopsis Proteins/genetics , Chromatin Immunoprecipitation , Gene Expression Regulation, Plant/genetics , Gene Ontology , Genes, Plant , Histones/metabolism , Lignin/metabolism , Plant Proteins/metabolism , Plant Stems/ultrastructure , RNA, Plant/biosynthesis , RNA, Plant/genetics , Transcription Factors/biosynthesis , Transcription Factors/genetics , Xylans/metabolism
3.
Plant Cell ; 31(9): 2223-2240, 2019 09.
Article in English | MEDLINE | ID: mdl-31320482

ABSTRACT

Cuticular waxes, which cover the aboveground parts of land plants, are essential for plant survival in terrestrial environments. However, little is known about the regulatory mechanisms underlying cuticular wax biosynthesis in response to changes in ambient humidity. Here, we report that the Arabidopsis (Arabidopsis thaliana) Kelch repeat F-box protein SMALL AND GLOSSY LEAVES1 (SAGL1) mediates proteasome-dependent degradation of ECERIFERUM3 (CER3), a biosynthetic enzyme involved in the production of very long chain alkanes (the major components of wax), thereby negatively regulating cuticular wax biosynthesis. Disruption of SAGL1 led to severe growth retardation, enhanced drought tolerance, and increased wax accumulation in stems, leaves, and roots. Cytoplasmic SAGL1 physically interacts with CER3 and targets it for degradation. ß­glucuronidase (GUS) expression was observed in the roots of pSAGL1:GUS plants but was barely detected in aerial organs. High humidity-induced GUS activity and SAGL1 transcript levels were reduced in response to abscisic acid treatment and water deficit. SAGL1 levels increase under high humidity, and the stability of this protein is regulated by the 26S proteasome. These findings indicate that the SAGL1-CER3 module negatively regulates cuticular wax biosynthesis in Arabidopsis in response to changes to humidity, and they highlight the importance of permeable cuticle formation in terrestrial plants under high humidity conditions.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Carbon-Carbon Lyases/metabolism , F-Box Proteins/metabolism , Humidity , Waxes/metabolism , Abscisic Acid/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Carbon-Carbon Lyases/genetics , Cell Wall/ultrastructure , Cloning, Molecular , Droughts , F-Box Proteins/genetics , Gene Expression Regulation, Plant , Membrane Lipids/metabolism , Mutation , Plant Epidermis/metabolism , Plant Leaves/metabolism , Plant Stems/ultrastructure , Plants, Genetically Modified , Salts/metabolism , Seedlings , Nicotiana
4.
BMC Plant Biol ; 21(1): 590, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34903166

ABSTRACT

BACKGROUND: Arabinogalactan-proteins (AGPs) are structurally complex hydroxyproline-rich cell wall glycoproteins ubiquitous in the plant kingdom. AGPs biosynthesis involves a series of post-translational modifications including the addition of type II arabinogalactans to non-contiguous Hyp residues. To date, eight Hyp-galactosyltransferases (Hyp-GALTs; GALT2-GALT9) belonging to CAZy GT31, are known to catalyze the addition of the first galactose residues to AGP protein backbones and enable subsequent AGP glycosylation. The extent of genetic redundancy, however, remains to be elucidated for the Hyp-GALT gene family. RESULTS: To examine their gene redundancy and functions, we generated various multiple gene knock-outs, including a triple mutant (galt5 galt8 galt9), two quadruple mutants (galt2 galt5 galt7 galt8, galt2 galt5 galt7 galt9), and one quintuple mutant (galt2 galt5 galt7 galt8 galt9), and comprehensively examined their biochemical and physiological phenotypes. The key findings include: AGP precipitations with ß-Yariv reagent showed that GALT2, GALT5, GALT7, GALT8 and GALT9 act redundantly with respect to AGP glycosylation in cauline and rosette leaves, while the activity of GALT7, GALT8 and GALT9 dominate in the stem, silique and flowers. Monosaccharide composition analysis showed that galactose was decreased in the silique and root AGPs of the Hyp-GALT mutants. TEM analysis of 25789 quintuple mutant stems indicated cell wall defects coincident with the observed developmental and growth impairment in these Hyp-GALT mutants. Correlated with expression patterns, galt2, galt5, galt7, galt8, and galt9 display equal additive effects on insensitivity to ß-Yariv-induced growth inhibition, silique length, plant height, and pollen viability. Interestingly, galt7, galt8, and galt9 contributed more to primary root growth and root tip swelling under salt stress, whereas galt2 and galt5 played more important roles in seed morphology, germination defects and seed set. Pollen defects likely contributed to the reduced seed set in these mutants. CONCLUSION: Additive and pleiotropic effects of GALT2, GALT5, GALT7, GALT8 and GALT9 on vegetative and reproductive growth phenotypes were teased apart via generation of different combinations of Hyp-GALT knock-out mutants. Taken together, the generation of higher order Hyp-GALT mutants demonstrate the functional importance of AG polysaccharides decorating the AGPs with respect to various aspects of plant growth and development.


Subject(s)
Arabidopsis/genetics , Galactans/metabolism , Galactosyltransferases/metabolism , Mucoproteins/metabolism , Arabidopsis/enzymology , Arabidopsis/physiology , Arabidopsis/ultrastructure , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Wall/metabolism , Flowers/enzymology , Flowers/genetics , Flowers/physiology , Flowers/ultrastructure , Galactosyltransferases/genetics , Genetic Pleiotropy , Germination , Glucosides/chemistry , Glycosylation , Hydroxyproline/metabolism , Meristem/enzymology , Meristem/genetics , Meristem/physiology , Meristem/ultrastructure , Mucoproteins/genetics , Mutation , Organ Specificity , Phloroglucinol/analogs & derivatives , Phloroglucinol/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Stems/enzymology , Plant Stems/genetics , Plant Stems/physiology , Plant Stems/ultrastructure , Protein Biosynthesis , Salt Stress , Seeds/enzymology , Seeds/genetics , Seeds/physiology , Seeds/ultrastructure
5.
Int J Mol Sci ; 22(22)2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34830066

ABSTRACT

Bacterial canker caused by Pseudomonas syringae pv. actinidiae (Psa) has led to considerable losses in all major kiwifruit-growing areas. There are no commercial products in the market to effectively control this disease. Therefore, the defense resistance of host plants is a prospective option. In our previous study, sulfur could improve the resistance of kiwifruit to Psa infection. However, the mechanisms of inducing resistance remain largely unclear. In this study, disease severity and protection efficiency were tested after applying sulfur, with different concentrations in the field. The results indicated that sulfur could reduce the disease index by 30.26 and 31.6 and recorded high protection efficiency of 76.67% and 77.00% after one and two years, respectively, when the concentration of induction treatments was 2.0 kg/m3. Ultrastructural changes in kiwifruit stems after induction were demonstrated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and the activities of phenylalanine ammonia-lyase (PAL), peroxidase (POD) and polyphenol oxidase (PPO), and the accumulation of lignin were determined by biochemical analyses. Our results showed that the morphological characteristics of trichomes and lenticels of kiwifruit stem were in the best defensive state respectively when the sulfur concentration was 3.0 kg/m3 and 1.5 kg/m3. Meanwhile, in the range of 0.5 to 2.0 kg/m3, the sulfur could promote the chloroplast and mitochondria of kiwifruit stems infected with Psa to gradually return to health status, increasing the thickness of the cell wall. In addition, sulfur increased the activities of PAL, POD and PPO, and promoted the accumulation of lignin in kiwifruit stems. Moreover, the sulfur protection efficiency was positively correlated with PPO activity (p < 0.05) and lignin content (p < 0.01), which revealed that the synergistic effect of protective enzyme activity and the phenolic metabolism pathway was the physiological effect of sulfur-induced kiwifruit resistance to Psa. This evidence highlights the importance of lignin content in kiwifruit stems as a defense mechanism in sulfur-induced resistance. These results suggest that sulfur enhances kiwifruit canker resistance via an increase in phenolic components and morphology structure modification in the kiwifruit stems. Therefore, this study could provide insights into sulfur to control kiwifruit canker caused by Psa.


Subject(s)
Actinidia/drug effects , Actinidia/microbiology , Phenols/metabolism , Plant Diseases/microbiology , Plant Diseases/prevention & control , Pseudomonas syringae/drug effects , Sulfur/pharmacology , Actinidia/anatomy & histology , Catechol Oxidase/metabolism , Correlation of Data , Lignin/metabolism , Peroxidase/metabolism , Phenylalanine Ammonia-Lyase/metabolism , Plant Stems/anatomy & histology , Plant Stems/drug effects , Plant Stems/microbiology , Plant Stems/ultrastructure , Pseudomonas Infections/drug therapy , Sulfur/therapeutic use , Trichomes/anatomy & histology , Trichomes/drug effects , Trichomes/microbiology
6.
Environ Geochem Health ; 42(1): 45-58, 2020 Jan.
Article in English | MEDLINE | ID: mdl-30874936

ABSTRACT

Effects of Cu toxicity from contaminated soil were analysed in spring barley (Hordeum sativum distichum), a widely cultivated species in South Russia. In this study, H. sativum was planted outdoors in one of the most fertile soils-Haplic Chernozem spiked with high concentration of Cu and examined between the boot and head emergence phase of growth. Copper toxicity was observed to cause slow ontogenetic development of plants, changing their morphometric parameters (shape, size, colour). To the best of our knowledge, the ultrastructural changes in roots, stems and leaves of H. sativum induced by excess Cu were fully characterized for the first time using transmission electron microscopy. The plant roots were the most effected, showing degradation of the epidermis, reduced number of parenchyma cells, as well as a significant decrease in the diameter of the stele and a disruption and modification to its cell structure. The comparative analysis of the ultrastructure of control plants and plants exposed to the toxic effects of Cu has made it possible to reveal significant disruption of the integrity of the cell wall and cytoplasmic membranes in the root with deposition of electron-dense material. The changes in the ultrastructure of the main cytoplasmic organelles-endoplasmic reticulum, mitochondria, chloroplasts and peroxisomes-in the stem and leaves were found. The cellular Cu deposition, anatomical and ultrastructural modifications could mainly account for the primary impact points of metal toxicity. Therefore, this work extends the available knowledge of the mechanisms of the Cu effect tolerance of barley.


Subject(s)
Copper/toxicity , Hordeum/drug effects , Soil Pollutants/toxicity , Cell Wall/drug effects , Cell Wall/ultrastructure , Cytoplasm/drug effects , Cytoplasm/ultrastructure , Hordeum/anatomy & histology , Hordeum/cytology , Hordeum/ultrastructure , Microscopy, Electron, Transmission , Plant Cells/drug effects , Plant Leaves/cytology , Plant Leaves/drug effects , Plant Leaves/ultrastructure , Plant Roots/cytology , Plant Roots/drug effects , Plant Roots/ultrastructure , Plant Stems/cytology , Plant Stems/drug effects , Plant Stems/ultrastructure , Russia
7.
Plant J ; 96(5): 982-996, 2018 12.
Article in English | MEDLINE | ID: mdl-30194881

ABSTRACT

The phloem of the Cucurbitaceae has long been a subject of interest due to its complex nature and the economic importance of the family. As in a limited number of other families, cucurbit phloem is bicollateral, i.e. with sieve tubes on both sides of the xylem. To date little is known about the specialized functions of the internal phloem (IP) and external phloem (EP). Here, a combination of microscopy, fluorescent dye transport analysis, micro-computed tomography, laser capture microdissection and RNA-sequencing (RNA-Seq) were used to study the functions of IP and EP in the vascular bundles (VBs) of cucumber fruit. There is one type of VB in the peduncle, but four in the fruit: peripheral (PeVB), main (MVB), carpel (CVB) and placental (PlVB). The VBs are bicollateral, except for the CVB and PlVB. Phloem mobile tracers and 14 C applied to leaves are transported primarily in the EP, and to a lesser extent in the IP. RNA-Seq data indicate preferential gene transcription in the IP related to differentiation/development, hormone transport, RNA or protein modification/processing/transport, and nitrogen compound metabolism and transport. The EP preferentially expresses genes for stimulus/stress, defense, ion transport and secondary metabolite biosynthesis. The MVB phloem is preferentially involved in photoassimilate transport, unloading and long-distance signaling, while the PeVB plays a more substantial role in morphogenesis and/or development and defense response. CVB and PlVB transcripts are biased toward development of reproductive organs. These findings provide an integrated view of the differentiated structure and function of the vascular tissue in cucumber fruit.


Subject(s)
Cucumis sativus/metabolism , Fruit/metabolism , Phloem/metabolism , Cucumis sativus/growth & development , Cucumis sativus/ultrastructure , Fruit/growth & development , Fruit/ultrastructure , Gene Expression Profiling , Microscopy, Confocal , Phloem/growth & development , Phloem/ultrastructure , Plant Stems/growth & development , Plant Stems/metabolism , Plant Stems/ultrastructure , X-Ray Microtomography , Xylem/growth & development , Xylem/metabolism , Xylem/ultrastructure
8.
Anal Chem ; 91(3): 2472-2479, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30624904

ABSTRACT

The cuticle covers external surfaces of plants, protecting them from biotic and abiotic stress factors. Epicuticular wax on the outer surface of the cuticle modifies reflectance and water loss from plant surfaces and has direct and indirect effects on photosynthesis. Variation in epicuticular wax accumulation, composition, and nanoscale structural organization impacts its biological function. Atomic force microscope infrared spectroscopy (AFM-IR) was utilized to investigate the internal and external surfaces of the cuticle of Sorghum bicolor, an important drought-tolerant cereal, forage, and high-biomass crop. AFM-IR revealed striking heterogeneity in chemical composition within and between the surfaces of the cuticle. The wax aggregate crystallinity and distribution of chemical functional groups across the surfaces was also probed and compared. These results, along with the noninvasive nondestructive nature of the method, suggest that AFM-IR can be used to investigate mechanisms of wax deposition and transport of charged molecules through the plant cuticle.


Subject(s)
Plant Epidermis/chemistry , Plant Stems/chemistry , Waxes/analysis , Microscopy, Atomic Force/methods , Molecular Conformation , Plant Epidermis/ultrastructure , Plant Stems/ultrastructure , Sorghum/chemistry , Spectrophotometry, Infrared/methods , Waxes/chemistry
9.
J Theor Biol ; 478: 161-168, 2019 10 07.
Article in English | MEDLINE | ID: mdl-31254499

ABSTRACT

In frost hardy plants, the lethal intracellular formation of ice crystals has to be prevented during frost periods. Besides the ability for supercooling and pre-frost dehydration of tissues, extracellular ice formation is another strategy to control ice development in tissues. During extracellular ice formation, partially large ice bodies accumulate in intercellular spaces, often at preferred sites which can also be expandable. In this contribution, the physico-chemical processes underlying the water movements towards the sites of extracellular ice formation are studied theoretically, based on observations on the frost hardy horsetail species Equisetum hyemale, with the overall aim to obtain a better understanding of the physical processes involved in extracellular ice formation. In E. hyemale, ice accumulates in the extensive internal canal system. The study focuses on the processes which are triggered in the cellular osmotic-mechanic system by falling, and especially subzero temperatures. It can be shown that when the temperature falls, (1) water flow out of cells is actuated and (2) "stiff-walled" cells lose less water than "soft-walled" cells. Furthermore, (3) cell water loss increases with increasing (= less negative) turgor loss point. These processes are not related to any specific activities of the cell but are solely a consequence of the structure of the cellular osmotic system. On this basis, a directed water flow can be initiated triggered by subzero temperatures. The suggested mechanism may be quite common in frost hardy species with extracellular ice formation.


Subject(s)
Equisetum/physiology , Extracellular Space/chemistry , Freezing , Models, Biological , Cell Size , Equisetum/cytology , Equisetum/ultrastructure , Ice , Plant Stems/cytology , Plant Stems/ultrastructure , Temperature , Water
10.
Int J Mol Sci ; 20(24)2019 Dec 16.
Article in English | MEDLINE | ID: mdl-31888281

ABSTRACT

The development of dwarf fruit trees with smaller and compact characteristics leads to significantly increased fruit production, which is a major objective of pear (Pyrus bretschneideri) breeding. We identified the S-acylation activity of PbPAT14, an S-acyltransferase gene related to plant development, using a yeast (Saccharomyces cerevisiae) complementation assay, and also PbPAT14 could rescue the growth defect of the Arabidopsis mutant atpat14. We further studied the function of PbPAT14 by designing three guide RNAs for PbPAT14 to use in the CRISPR/Cas9 system. We obtained 22 positive transgenic pear lines via Agrobacterium-mediated transformation using cotyledons from seeds of Pyrus betulifolia ('Duli'). Six of these lines exhibited the dwarf yellowing phenotype and were homozygous mutations according to sequencing analysis. Ultrastructure analysis suggested that this dwarfism was manifested by shorter, thinner stems due to a reduction in cell number. A higher level of endogenous abscisic acid (ABA) and a higher transcript level of the ABA pathway genes in the mutant lines revealed that the PbPAT14 function was related to the ABA pathway. Overall, our experimental results increase the understanding of how PATs function in plants and help elucidate the mechanism of plant dwarfism.


Subject(s)
Abscisic Acid/metabolism , Acyltransferases/genetics , Gene Knockout Techniques , Pyrus/enzymology , Pyrus/genetics , Acyltransferases/metabolism , Arabidopsis/genetics , Base Sequence , Gene Expression Regulation, Plant , Mutation/genetics , Phenotype , Plant Growth Regulators/metabolism , Plant Leaves/anatomy & histology , Plant Leaves/ultrastructure , Plant Stems/anatomy & histology , Plant Stems/ultrastructure , Plants, Genetically Modified
11.
New Phytol ; 217(1): 117-126, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28940305

ABSTRACT

Embolism removal is critical for restoring hydraulic pathways in some plants, as residual gas bubbles should expand when vessels are reconnected to the transpiration stream. Much of our understanding of embolism removal remains theoretical as a consequence of the lack of in vivo images of the process at high magnification. Here, we used in vivo X-ray micro-computed tomography (microCT) to visualize the final stages of xylem refilling in grapevine (Vitis vinifera) paired with scanning electron microscopy. Before refilling, vessel walls were covered with a surface film, but vessel perforation plate openings and intervessel pits were filled with air. Bubbles were removed from intervessel pits first, followed by bubbles within perforation plates, which hold the last volumes of air which eventually dissolve. Perforation plates were dimorphic, with more steeply angled scalariform plates in narrow diameter vessels, compared with the simple perforation plates in older secondary xylem, which may favor rapid refilling and compartmentalization of embolisms that occur in small vessels, while promoting high hydraulic conductivity in large vessels. Our study provides direct visual evidence of the spatial and temporal dynamics of the final stages of embolism removal.


Subject(s)
Plant Transpiration , Vitis/ultrastructure , X-Ray Microtomography/methods , Xylem/ultrastructure , Plant Stems/metabolism , Plant Stems/ultrastructure , Vitis/metabolism , Water/metabolism , Xylem/metabolism
12.
Plant Physiol ; 173(2): 1109-1124, 2017 02.
Article in English | MEDLINE | ID: mdl-28069670

ABSTRACT

We report n-6 monounsaturated primary alcohols (C26:1, C28:1, and C30:1 homologs) in the cuticular waxes of Arabidopsis (Arabidopsis thaliana) inflorescence stem, a class of wax not previously reported in Arabidopsis. The Arabidopsis cer17 mutant was completely deficient in these monounsaturated alcohols, and CER17 was found to encode a predicted ACYL-COENZYME A DESATURASE LIKE4 (ADS4). Studies of the Arabidopsis cer4 mutant and yeast variously expressing CER4 (a predicted fatty acyl-CoA reductase) with CER17/ADS4, demonstrated CER4's principal role in synthesis of these monounsaturated alcohols. Besides unsaturated alcohol deficiency, cer17 mutants exhibited a thickened and irregular cuticle ultrastructure and increased amounts of cutin monomers. Although unsaturated alcohols were absent throughout the cer17 stem, the mutation's effects on cutin monomers and cuticle ultrastructure were much more severe in distal than basal stems, consistent with observations that the CER17/ADS4 transcript was much more abundant in distal than basal stems. Furthermore, distal but not basal stems of a double mutant deficient for both CER17/ADS4 and LONG-CHAIN ACYL-COA SYNTHETASE1 produced even more cutin monomers and a thicker and more disorganized cuticle ultrastructure and higher cuticle permeability than observed for wild type or either mutant parent, indicating a dramatic genetic interaction on conversion of very long chain acyl-CoA precursors. These results provide evidence that CER17/ADS4 performs n-6 desaturation of very long chain acyl-CoAs in both distal and basal stems and has a major function associated with governing cutin monomer amounts primarily in the distal segments of the inflorescence stem.


Subject(s)
Alcohols/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Fatty Acid Desaturases/metabolism , Membrane Lipids/metabolism , Waxes/metabolism , Amino Acid Sequence , Arabidopsis/metabolism , Arabidopsis/ultrastructure , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Chromatography, Gas , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/ultrastructure , Epistasis, Genetic , Fatty Acid Desaturases/chemistry , Fatty Acid Desaturases/genetics , Gene Expression Regulation, Plant , Inflorescence/metabolism , Mutation/genetics , Plant Epidermis/cytology , Plant Epidermis/metabolism , Plant Epidermis/ultrastructure , Plant Stems/metabolism , Plant Stems/ultrastructure , Protein Transport
13.
Am J Bot ; 105(9): 1443-1452, 2018 09.
Article in English | MEDLINE | ID: mdl-30168862

ABSTRACT

PREMISE OF THE STUDY: The stem of Vitis vinifera, a climbing vine of global economic importance, is characterized by both wide and narrow vessels and high specific hydraulic conductivity. While the effect of drought stress has been studied in 1- and 2-yr-old stems, there are few data documenting effects of drought stress on the anatomical structure of the mature, woody stem near the base of the vine. Here we describe mature wood anatomical responses to two irrigation regimes on wood anatomy and specific hydraulic conductivity in Vitis vinifera Merlot vines. METHODS: For 4 years, irrigation was applied constantly at low, medium, or high levels, or at alternating levels at two different periods during the growing season, either early spring or late summer, resulting in late season or early spring deficits, respectively. The following variables were measured: trunk diameter, annual ring width and area, vessel diameter, specific hydraulic conductivity and stem water potential. KEY RESULTS: High water availability early in the season (late deficit) resulted in vigorous vegetative growth (greater trunk diameter, ring width and area), wider vessels and increased specific hydraulic conductivity. High water availability early in the season caused a shift of the vessel population towards the wider frequency classes. These late deficit vines showed more negative water potential values late in the season than vines that received low but relatively constant irrigation. CONCLUSIONS: We concluded that high water availability during vegetative growth period of Vitis increases vessels diameter and hydraulic conductivity and causes the vines to be more vulnerable to drought stress late in the season.


Subject(s)
Plant Stems/anatomy & histology , Vitis/anatomy & histology , Water/metabolism , Dehydration , Plant Stems/physiology , Plant Stems/ultrastructure , Seasons , Vitis/physiology , Vitis/ultrastructure
14.
Phytopathology ; 108(9): 1067-1077, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29648946

ABSTRACT

Phytoplasmas parasitize plant phloem tissue and cause many economically important plant diseases. Jujube witches'-broom disease is a destructive phytoplasma disease of Chinese jujube (Ziziphus jujuba). To elucidate the influence of phytoplasma on host photosynthetic, carbohydrate and energy metabolisms, four types of jujube tissues showing disease symptoms with different severity were investigated at the structural, physiological, and molecular levels. Quantitative real-time PCR and high-performance liquid chromatography results showed that the down-regulation of genes related to photosynthesis and the lower contents of chlorophyll in diseased leaves. This clearly inhibited the light-harvesting and photosystem II activity of photosynthesis; however, overexpression of genes related to starch, sucrose and glucose synthesis led to higher contents of these carbohydrates. Meanwhile, transmission electron microscopy images revealed that dense amounts of phytoplasmas accumulated in the sieve elements of diseased petiole phloem, and the structure of the grana and stroma lamellae of chloroplasts in the diseased leaves was destroyed. Phytoplasma infection inhibited photosynthesis and led to abnormal carbohydrate accumulation in the diseased leaves. Furthermore, comparative metabolite analysis indicated that phytoplasma infection also stimulated amino acids and energy metabolisms of the diseased leaves. Continually inhibiting the photosynthetic process and stimulating carbohydrate and energy metabolisms of diseased trees may exhaust their nutrients. Our results highlight the importance of changing host metabolisms during the pathogenic process.


Subject(s)
Carbohydrate Metabolism , Energy Metabolism , Photosynthesis , Phytoplasma/pathogenicity , Plant Diseases/immunology , Ziziphus/immunology , Chlorophyll/metabolism , Chloroplasts/ultrastructure , Models, Biological , Plant Diseases/microbiology , Plant Leaves/immunology , Plant Leaves/microbiology , Plant Leaves/physiology , Plant Leaves/ultrastructure , Plant Stems/immunology , Plant Stems/microbiology , Plant Stems/physiology , Plant Stems/ultrastructure , Ziziphus/microbiology , Ziziphus/physiology , Ziziphus/ultrastructure
15.
Proc Natl Acad Sci U S A ; 112(50): 15504-9, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26631749

ABSTRACT

Grasses produce tiller and panicle branching at vegetative and reproductive stages; the branching patterns largely define the diversity of grasses and constitute a major determinant for grain yield of many cereals. Here we show that a spatiotemporally coordinated gene network consisting of the MicroRNA 156 (miR156/)miR529/SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) and miR172/APETALA2 (AP2) pathways regulates tiller and panicle branching in rice. SPL genes negatively control tillering, but positively regulate inflorescence meristem and spikelet transition. Underproduction or overproduction of SPLs reduces panicle branching, but by distinct mechanisms: miR156 and miR529 fine-tune the SPL levels for optimal panicle size. miR172 regulates spikelet transition by targeting AP2-like genes, which does not affect tillering, and the AP2-like proteins play the roles by interacting with TOPLESS-related proteins (TPRs). SPLs modulate panicle branching by directly regulating the miR172/AP2 and PANICLE PHYTOMER2 (PAP2)/Rice TFL1/CEN homolog 1 (RCN1) pathways and also by integrating other regulators, most of which are not involved in tillering regulation. These findings may also have significant implications for understanding branching regulation of other grasses and for application in rice genetic improvement.


Subject(s)
Oryza/growth & development , Plant Stems/growth & development , Amino Acid Sequence , Epistasis, Genetic , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Genes, Plant , Meristem/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Molecular Sequence Data , Oryza/anatomy & histology , Oryza/ultrastructure , Plant Proteins/chemistry , Plant Proteins/metabolism , Plant Stems/anatomy & histology , Plant Stems/ultrastructure , Protein Binding , Reproduction
16.
Planta ; 246(3): 525-535, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28526983

ABSTRACT

MAIN CONCLUSION: Severe leaf removal decreases storage starch and sucrose in grapevine cv. Cabernet Sauvignon fruiting cuttings and modulates the activity of key enzymes and the expression of sugar transporter genes. Leaf removal is an agricultural practice that has been shown to modify vineyard efficiency and grape and wine composition. In this study, we took advantage of the ability to precisely control the number of leaves to fruits in Cabernet Sauvignon fruiting cuttings to study the effect of source-sink ratios (2 (2L), 6 (6L) and 12 (12) leaves per cluster) on starch metabolism and accumulation. Starch concentration was significantly higher in canes from 6L (42.13 ± 1.44 mg g DW-1) and 12L (43.50 ± 2.85 mg g DW-1) than in 2L (22.72 ± 3.10 mg g DW-1) plants. Moreover, carbon limitation promoted a transcriptional adjustment of genes involved in starch metabolism in grapevine woody tissues, including a decrease in the expression of the plastidic glucose-6-phosphate translocator, VvGPT1. Contrarily, the transcript levels of the gene coding the catalytic subunit VvAGPB1 of the VvAGPase complex were higher in canes from 2L plants than in 6L and 12L, which positively correlated with the biochemical activity of this enzyme. Sucrose concentration increased in canes from 2L to 6L and 12L plants, and the amount of total phenolics followed the same trend. Expression studies showed that VvSusy transcripts decreased in canes from 2L to 6L and 12L plants, which correlated with the biochemical activity of insoluble invertase, while the expression of the sugar transporters VvSUC11 and VvSUC12, together with VvSPS1, which codes an enzyme involved in sucrose synthesis, increased. Thus, sucrose seems to control starch accumulation through the adjustment of the cane sink strength.


Subject(s)
Monosaccharide Transport Proteins/metabolism , Plant Stems/metabolism , Starch/metabolism , Vitis/metabolism , Carbohydrate Metabolism/physiology , Chromatography, High Pressure Liquid , Gene Expression Regulation, Plant/physiology , Microscopy, Electron, Scanning , Plant Stems/physiology , Plant Stems/ultrastructure , Real-Time Polymerase Chain Reaction , Vitis/enzymology , Vitis/physiology , beta-Fructofuranosidase/metabolism
17.
Plant Biotechnol J ; 15(9): 1093-1104, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28117552

ABSTRACT

Genetic modification of plant cell walls has been posed to reduce lignocellulose recalcitrance for enhancing biomass saccharification. Since cellulose synthase (CESA) gene was first identified, several dozen CESA mutants have been reported, but almost all mutants exhibit the defective phenotypes in plant growth and development. In this study, the rice (Oryza sativa) Osfc16 mutant with substitutions (W481C, P482S) at P-CR conserved site in CESA9 shows a slightly affected plant growth and higher biomass yield by 25%-41% compared with wild type (Nipponbare, a japonica variety). Chemical and ultrastructural analyses indicate that Osfc16 has a significantly reduced cellulose crystallinity (CrI) and thinner secondary cell walls compared with wild type. CESA co-IP detection, together with implementations of a proteasome inhibitor (MG132) and two distinct cellulose inhibitors (Calcofluor, CGA), shows that CESA9 mutation could affect integrity of CESA4/7/9 complexes, which may lead to rapid CESA proteasome degradation for low-DP cellulose biosynthesis. These may reduce cellulose CrI, which improves plant lodging resistance, a major and integrated agronomic trait on plant growth and grain production, and enhances biomass enzymatic saccharification by up to 2.3-fold and ethanol productivity by 34%-42%. This study has for the first time reported a direct modification for the low-DP cellulose production that has broad applications in biomass industries.


Subject(s)
Cellulose/metabolism , Glucosyltransferases/metabolism , Lignin/metabolism , Oryza/enzymology , Biomass , Cell Membrane/metabolism , Cell Wall/metabolism , Glucosyltransferases/genetics , Models, Biological , Mutation , Oryza/genetics , Oryza/growth & development , Oryza/ultrastructure , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Stems/enzymology , Plant Stems/genetics , Plant Stems/growth & development , Plant Stems/ultrastructure
18.
J Exp Bot ; 68(18): 5079-5091, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-29036633

ABSTRACT

Brassica napus is one of the world's most valuable oilseeds and is under constant pressure by the necrotrophic fungal pathogen, Sclerotinia sclerotiorum, the causal agent of white stem rot. Despite our growing understanding of host pathogen interactions at the molecular level, we have yet to fully understand the biological processes and underlying gene regulatory networks responsible for determining disease outcomes. Using global RNA sequencing, we profiled gene activity at the first point of infection on the leaf surface 24 hours after pathogen exposure in susceptible (B. napus cv. Westar) and tolerant (B. napus cv. Zhongyou 821) plants. We identified a family of ethylene response factors that may contribute to host tolerance to S. sclerotiorum by activating genes associated with fungal recognition, subcellular organization, and redox homeostasis. Physiological investigation of redox homeostasis was further studied by quantifying cellular levels of the glutathione and ascorbate redox pathway and the cycling enzymes associated with host tolerance to S. sclerotiorum. Functional characterization of an Arabidopsis redox mutant challenged with the fungus provides compelling evidence into the role of the ascorbate-glutathione redox hub in the maintenance and enhancement of plant tolerance against fungal pathogens.


Subject(s)
Ascomycota/physiology , Brassica napus/genetics , Gene Regulatory Networks , Host-Pathogen Interactions , Plant Diseases/microbiology , Brassica napus/microbiology , Brassica napus/physiology , Brassica napus/ultrastructure , Ethylenes/metabolism , Oxidation-Reduction , Plant Leaves/genetics , Plant Leaves/microbiology , Plant Leaves/physiology , Plant Leaves/ultrastructure , Plant Stems/genetics , Plant Stems/microbiology , Plant Stems/physiology , Plant Stems/ultrastructure , Sequence Analysis, RNA
19.
Plant Cell ; 26(11): 4462-82, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25381351

ABSTRACT

Histochemical screening of a flax ethyl methanesulfonate population led to the identification of 93 independent M2 mutant families showing ectopic lignification in the secondary cell wall of stem bast fibers. We named this core collection the Linum usitatissimum (flax) lbf mutants for lignified bast fibers and believe that this population represents a novel biological resource for investigating how bast fiber plants regulate lignin biosynthesis. As a proof of concept, we characterized the lbf1 mutant and showed that the lignin content increased by 350% in outer stem tissues containing bast fibers but was unchanged in inner stem tissues containing xylem. Chemical and NMR analyses indicated that bast fiber ectopic lignin was highly condensed and rich in G-units. Liquid chromatography-mass spectrometry profiling showed large modifications in the oligolignol pool of lbf1 inner- and outer-stem tissues that could be related to ectopic lignification. Immunological and chemical analyses revealed that lbf1 mutants also showed changes to other cell wall polymers. Whole-genome transcriptomics suggested that ectopic lignification of flax bast fibers could be caused by increased transcript accumulation of (1) the cinnamoyl-CoA reductase, cinnamyl alcohol dehydrogenase, and caffeic acid O-methyltransferase monolignol biosynthesis genes, (2) several lignin-associated peroxidase genes, and (3) genes coding for respiratory burst oxidase homolog NADPH-oxidases necessary to increase H2O2 supply.


Subject(s)
Cell Wall/chemistry , Flax/genetics , Gene Expression Regulation, Plant , Lignin/metabolism , Plant Proteins/genetics , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Aldehyde Oxidoreductases/genetics , Aldehyde Oxidoreductases/metabolism , Cell Wall/ultrastructure , Computational Biology , Flax/chemistry , Flax/enzymology , Flax/ultrastructure , Gene Expression Profiling , Hydrogen Peroxide/metabolism , Lignin/chemistry , Methyltransferases/genetics , Methyltransferases/metabolism , Mutation , Oligonucleotide Array Sequence Analysis , Organ Specificity , Phylogeny , Plant Proteins/metabolism , Plant Stems/chemistry , Plant Stems/enzymology , Plant Stems/genetics , Plant Stems/ultrastructure , Plants, Genetically Modified , Transcriptome , Xylem/chemistry , Xylem/enzymology , Xylem/genetics , Xylem/ultrastructure
20.
Ann Bot ; 120(5): 805-817, 2017 11 10.
Article in English | MEDLINE | ID: mdl-29028868

ABSTRACT

Background and Aims: The ubiquitous feather mosses Pleurozium schreberi and Hylocomium splendens form a thick, continuous boundary layer between the soil and the atmosphere, and play important roles in hydrology and nutrient cycling in tundra and boreal ecosystems. The water fluxes among these mosses and environmental factors controlling them are poorly understood. The aim of this study was to investigate whether feather mosses are capable of internal transport and to provide a better understanding of species-specific morphological traits underlying this function. The impacts of environmental conditions on their internal transport rates were also investigated. Methods: Cells involved in water and food conduction in P. schreberi and H. splendens were identified by transmission electron microscopy. Symplasmic and apoplasmic fluorescent tracers were applied to the moss stems to determine the routes of internal short- and long-distance transport and the impact of air humidity on the transport rates. Key Results: Symplasmic transport over short distances occurs via food-conducting cells in both mosses. Pleurozium schreberi is also capable of apoplasmic internal long-distance transport via a central strand of hydroids. These are absent in H. splendens. Reduced air humidity significantly increased the internal transport of both species, and the increase was significantly faster for P. schreberi than for H. splendens. Conclusions: Pleurozium schreberi and Hylocomium splendens are capable of internal transport but the pathway and conductivity differ due to differences in stem anatomy. These results help explain their varying desiccation tolerance and possibly their differing physiology and autecology and, ultimately, their impact on ecosystem functioning.


Subject(s)
Bryopsida/anatomy & histology , Bryopsida/metabolism , Water/metabolism , Biological Transport , Bryopsida/ultrastructure , Microscopy, Electron, Transmission , Plant Stems/anatomy & histology , Plant Stems/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL