Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 244
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Microbiol ; 121(5): 940-953, 2024 05.
Article in English | MEDLINE | ID: mdl-38419272

ABSTRACT

Plasmodium is an obligate intracellular parasite that requires intense lipid synthesis for membrane biogenesis and survival. One of the principal membrane components is oleic acid, which is needed to maintain the membrane's biophysical properties and fluidity. The malaria parasite can modify fatty acids, and stearoyl-CoA Δ9-desaturase (Scd) is an enzyme that catalyzes the synthesis of oleic acid by desaturation of stearic acid. Scd is dispensable in P. falciparum blood stages; however, its role in mosquito and liver stages remains unknown. We show that P. berghei Scd localizes to the ER in the blood and liver stages. Disruption of Scd in the rodent malaria parasite P. berghei did not affect parasite blood stage propagation, mosquito stage development, or early liver-stage development. However, when Scd KO sporozoites were inoculated intravenously or by mosquito bite into mice, they failed to initiate blood-stage infection. Immunofluorescence analysis revealed that organelle biogenesis was impaired and merozoite formation was abolished, which initiates blood-stage infections. Genetic complementation of the KO parasites restored merozoite formation to a level similar to that of WT parasites. Mice immunized with Scd KO sporozoites confer long-lasting sterile protection against infectious sporozoite challenge. Thus, the Scd KO parasite is an appealing candidate for inducing protective pre-erythrocytic immunity and hence its utility as a GAP.


Subject(s)
Malaria , Merozoites , Organelle Biogenesis , Plasmodium berghei , Sporozoites , Stearoyl-CoA Desaturase , Animals , Female , Mice , Anopheles/parasitology , Endoplasmic Reticulum/metabolism , Liver/parasitology , Malaria/parasitology , Merozoites/growth & development , Merozoites/metabolism , Plasmodium berghei/genetics , Plasmodium berghei/growth & development , Plasmodium berghei/metabolism , Plasmodium berghei/enzymology , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Sporozoites/growth & development , Sporozoites/metabolism , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics
2.
Mol Microbiol ; 121(6): 1095-1111, 2024 06.
Article in English | MEDLINE | ID: mdl-38574236

ABSTRACT

The protozoan parasite Plasmodium, the causative agent of malaria, undergoes an obligatory stage of intra-hepatic development before initiating a blood-stage infection. Productive invasion of hepatocytes involves the formation of a parasitophorous vacuole (PV) generated by the invagination of the host cell plasma membrane. Surrounded by the PV membrane (PVM), the parasite undergoes extensive replication. During intracellular development in the hepatocyte, the parasites provoke the Plasmodium-associated autophagy-related (PAAR) response. This is characterized by a long-lasting association of the autophagy marker protein, and ATG8 family member, LC3B with the PVM. LC3B localization at the PVM does not follow the canonical autophagy pathway since upstream events specific to canonical autophagy are dispensable. Here, we describe that LC3B localization at the PVM of Plasmodium parasites requires the V-ATPase and its interaction with ATG16L1. The WD40 domain of ATG16L1 is crucial for its recruitment to the PVM. Thus, we provide new mechanistic insight into the previously described PAAR response targeting Plasmodium liver stage parasites.


Subject(s)
Autophagy-Related Proteins , Autophagy , Hepatocytes , Liver , Microtubule-Associated Proteins , Plasmodium berghei , Vacuolar Proton-Translocating ATPases , Vacuoles , Vacuoles/metabolism , Vacuoles/parasitology , Plasmodium berghei/genetics , Plasmodium berghei/growth & development , Plasmodium berghei/metabolism , Plasmodium berghei/enzymology , Animals , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/genetics , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Liver/parasitology , Mice , Hepatocytes/parasitology , Vacuolar Proton-Translocating ATPases/metabolism , Vacuolar Proton-Translocating ATPases/genetics , Malaria/parasitology , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Humans
3.
PLoS Pathog ; 16(9): e1008891, 2020 09.
Article in English | MEDLINE | ID: mdl-32956401

ABSTRACT

The transitions between developmental stages are critical points in the Plasmodium life cycle. The development of Plasmodium in the livers of their mammalian hosts bridges malaria transmission and the onset of clinical symptoms elicited by red blood cell infection. The egress of Plasmodium parasites from the liver must be a carefully orchestrated process to ensure a successful switch to the blood stage of infection. Cysteine protease activity is known to be required for liver-stage Plasmodium egress, but the crucial cysteine protease(s) remained unidentified. Here, we characterize a member of the papain-like cysteine protease family, Plasmodium berghei serine repeat antigen 4 (PbSERA4), that is required for efficient initiation of blood-stage infection. Through the generation PbSERA4-specific antisera and the creation of transgenic parasites expressing fluorescently tagged protein, we show that PbSERA4 is expressed and proteolytically processed in the liver and blood stages of infection. Targeted disruption of PbSERA4 results in viable and virulent blood-stage parasites. However, upon transmission from mosquitoes to mice, Pbsera4(-) parasites displayed a reduced capacity to initiate a new round of asexual blood-stage replication. Our results from cultured cells indicate that this defect results from an inability of the PbSERA4-deficient parasites to egress efficiently from infected cells at the culmination of liver-stage development. Protection against infection with wildtype P. berghei could be generated in animals in which Pbsera4(-) parasites failed to establish infection. Our findings confirm that liver-stage merozoite release is an active process and demonstrate that this parasite-encoded cysteine protease contributes to parasite escape from the liver.


Subject(s)
Cysteine Proteases/metabolism , Liver/parasitology , Malaria/enzymology , Plasmodium berghei/enzymology , Protozoan Proteins/metabolism , Animals , Cysteine Proteases/genetics , Liver/metabolism , Malaria/genetics , Mice , Plasmodium berghei/genetics , Protozoan Proteins/genetics , Rats , Rats, Sprague-Dawley
4.
PLoS Pathog ; 16(8): e1008131, 2020 08.
Article in English | MEDLINE | ID: mdl-32866196

ABSTRACT

Invasion of hepatocytes by Plasmodium sporozoites initiates the pre-erythrocytic step of a malaria infection. Subsequent development of the parasite within hepatocytes and exit from them is essential for starting the disease-causing erythrocytic cycle. Identification of signaling pathways that operate in pre-erythrocytic stages provides insight into a critical step of infection and potential targets for chemoprotection from malaria. We demonstrate that P. berghei homologs of Calcium Dependent Protein Kinase 1 (CDPK1), CDPK4 and CDPK5 play overlapping but distinct roles in sporozoite invasion and parasite egress from hepatocytes. All three kinases are expressed in sporozoites. All three are required for optimal motility of sporozoites and consequently their invasion of hepatocytes. Increased cGMP can compensate for the functional loss of CDPK1 and CDPK5 during sporozoite invasion but cannot overcome loss of CDPK4. CDPK1 and CDPK5 expression is downregulated after sporozoite invasion. CDPK5 reappears in a subset of late stage liver stages and is present in all merosomes. Chemical inhibition of CDPK4 and depletion of CDPK5 in liver stages implicate these kinases in the formation and/or release of merosomes from mature liver stages. Furthermore, depletion of CDPK5 in merosomes significantly delays initiation of the erythrocytic cycle without affecting infectivity of hepatic merozoites. These data suggest that CDPK5 may be required for the rupture of merosomes. Our work provides evidence that sporozoite invasion requires CDPK1 and CDPK5, and suggests that CDPK5 participates in the release of hepatic merozoites.


Subject(s)
Down-Regulation , Gene Expression Regulation, Enzymologic , Malaria/epidemiology , Merozoites/enzymology , Plasmodium berghei/enzymology , Protein Kinases/biosynthesis , Protozoan Proteins/biosynthesis , Sporozoites/enzymology , Animals , Erythrocytes/enzymology , Erythrocytes/parasitology , Female , Hep G2 Cells , Humans , Liver/enzymology , Liver/parasitology , Malaria/pathology , Mice
5.
Biochem J ; 478(13): 2697-2713, 2021 07 16.
Article in English | MEDLINE | ID: mdl-34133730

ABSTRACT

During malarial infection, Plasmodium parasites digest human hemoglobin to obtain free amino acids for protein production and maintenance of osmotic pressure. The Plasmodium M1 and M17 aminopeptidases are both postulated to have an essential role in the terminal stages of the hemoglobin digestion process and are validated drug targets for the design of new dual-target anti-malarial compounds. In this study, we profiled the substrate specificity fingerprints and kinetic behaviors of M1 and M17 aminopeptidases from Plasmodium falciparum and Plasmodium vivax, and the mouse model species, Plasmodium berghei. We found that although the Plasmodium M1 aminopeptidases share a largely similar, broad specificity at the P1 position, the P. falciparum M1 displays the greatest diversity in specificity and P. berghei M1 showing a preference for charged P1 residues. In contrast, the Plasmodium M17 aminopeptidases share a highly conserved preference for hydrophobic residues at the P1 position. The aminopeptidases also demonstrated intra-peptide sequence specificity, particularly the M1 aminopeptidases, which showed a definitive preference for peptides with fewer negatively charged intrapeptide residues. Overall, the P. vivax and P. berghei enzymes had a faster substrate turnover rate than the P. falciparum enzymes, which we postulate is due to subtle differences in structural dynamicity. Together, these results build a kinetic profile that allows us to better understand the catalytic nuances of the M1 and M17 aminopeptidases from different Plasmodium species.


Subject(s)
Aminopeptidases/metabolism , Peptides/metabolism , Plasmodium/enzymology , Protozoan Proteins/metabolism , Aminopeptidases/classification , Aminopeptidases/genetics , Animals , Biocatalysis/drug effects , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Kinetics , Leucine/analogs & derivatives , Leucine/pharmacology , Malaria/parasitology , Mice , Plasmodium/genetics , Plasmodium/physiology , Plasmodium berghei/enzymology , Plasmodium berghei/genetics , Plasmodium falciparum/enzymology , Plasmodium falciparum/genetics , Plasmodium vivax/enzymology , Plasmodium vivax/genetics , Protease Inhibitors/pharmacology , Protozoan Proteins/genetics , Recombinant Proteins/metabolism , Species Specificity , Substrate Specificity
6.
Biochem Biophys Res Commun ; 549: 61-66, 2021 04 16.
Article in English | MEDLINE | ID: mdl-33667710

ABSTRACT

The glyoxalase system is a ubiquitous detoxification pathway of methylglyoxal, a cytotoxic byproduct of glycolysis. Actively proliferating cells, such as cancer cells, depend on their energy metabolism for glycolysis. Therefore, the glyoxalase system has been evaluated as a target of anticancer drugs. The malaria sporozoite, which is the infective stage of the malaria parasite, actively proliferates and produces thousands of merozoites within 2-3 days in hepatocytes. This is the first step of infection in mammalian hosts. The glyoxalase system appears to play an important role in this active proliferation stage of the malaria parasite in hepatocytes. In this study, we aimed to dissect the role of the glyoxalase system in malaria parasite proliferation in hepatocytes to examine its potential as a target of malaria prevention using a reverse genetics approach. The malaria parasite possesses a glyoxalase system, comprised of glyoxalases and GloI-like protein, in the cytosol and apicoplast. We generated cytosolic glyoxalase II (cgloII) knockout, apicoplast targeted glyoxalase gloII (tgloII) knockout, and cgloII and tgloII double-knockout parasites and performed their phenotypic analysis. We did not observe any defects in the cgloII or tgloII knockout parasites. In contrast, we observed approximately 90% inhibition of the liver-stage proliferation of cgloII and tgloII double-knockout parasites in vivo. These findings suggest that although the glyoxalase system is dispensable, it plays an important role in parasite proliferation in hepatocytes. Additionally, the results indicate a complementary relationship between the cytosolic and apicoplast glyoxalase pathways. We expect that the parasite utilizes a system similar to that observed in cancer cells to enable its rapid proliferation in hepatocytes; this process could be targeted in the development of novel strategies to prevent malaria.


Subject(s)
Lactoylglutathione Lyase/metabolism , Life Cycle Stages , Liver/parasitology , Metabolic Networks and Pathways , Plasmodium berghei/enzymology , Plasmodium berghei/growth & development , Animals , Female , Gene Knockout Techniques , Malaria/parasitology , Malaria/pathology , Mice, Inbred BALB C , Mice, Inbred ICR , Parasites/metabolism
7.
J Biol Chem ; 293(16): 5878-5894, 2018 04 20.
Article in English | MEDLINE | ID: mdl-29449371

ABSTRACT

Plasmodium falciparum (Pf), the causative agent of malaria, has an iron-sulfur cluster-containing class I fumarate hydratase (FH) that catalyzes the interconversion of fumarate to malate, a well-known reaction in the tricarboxylic acid cycle. In humans, the same reaction is catalyzed by class II FH that has no sequence or structural homology with the class I enzyme from Plasmodium Fumarate is generated in large quantities in the parasite as a by-product of AMP synthesis and is converted to malate by FH and then used in the generation of the key metabolites oxaloacetate, aspartate, and pyruvate. Previous studies have identified the FH reaction as being essential to P. falciparum, but biochemical characterization of PfFH that may provide leads for the development of specific inhibitors is lacking. Here, we report on the kinetic characterization of purified recombinant PfFH, functional complementation of fh deficiency in Escherichia coli, and mitochondrial localization in the parasite. We found that the substrate analog mercaptosuccinic acid is a potent PfFH inhibitor, with a Ki value in the nanomolar range. The fh gene could not be knocked out in Plasmodium berghei when transfectants were introduced into BALB/c mice; however, fh knockout was successful when C57BL/6 mice were used as host, suggesting that the essentiality of the fh gene to the parasite was mouse strain-dependent.


Subject(s)
Fumarate Hydratase/metabolism , Malaria/parasitology , Plasmodium berghei/enzymology , Plasmodium falciparum/enzymology , Animals , Fumarate Hydratase/analysis , Fumarate Hydratase/genetics , Fumarates/metabolism , Gene Knockout Techniques , Genes, Essential , Humans , Malates/metabolism , Mice, Inbred BALB C , Mice, Inbred C57BL , Oxaloacetic Acid/metabolism , Plasmodium berghei/genetics , Plasmodium berghei/growth & development , Plasmodium berghei/metabolism , Plasmodium falciparum/genetics , Plasmodium falciparum/growth & development , Plasmodium falciparum/metabolism , Substrate Specificity , Thiomalates/metabolism
8.
PLoS Pathog ; 13(6): e1006396, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28617870

ABSTRACT

The combination of drug resistance, lack of an effective vaccine, and ongoing conflict and poverty means that malaria remains a major global health crisis. Understanding metabolic pathways at all parasite life stages is important in prioritising and targeting novel anti-parasitic compounds. The unusual heme synthesis pathway of the rodent malaria parasite, Plasmodium berghei, requires eight enzymes distributed across the mitochondrion, apicoplast and cytoplasm. Deletion of the ferrochelatase (FC) gene, the final enzyme in the pathway, confirms that heme synthesis is not essential in the red blood cell stages of the life cycle but is required to complete oocyst development in mosquitoes. The lethality of FC deletions in the mosquito stage makes it difficult to study the impact of these mutations in the subsequent liver stage. To overcome this, we combined locus-specific fluorophore expression with a genetic complementation approach to generate viable, heterozygous oocysts able to produce a mix of FC expressing and FC deficient sporozoites. These sporozoites show normal motility and can invade liver cells, where FC deficient parasites can be distinguished by fluorescence and phenotyped. Parasites lacking FC exhibit a severe growth defect within liver cells, with development failure detectable in the early to mid stages of liver development in vitro. FC deficient parasites could not complete liver stage development in vitro nor infect naïve mice, confirming liver stage arrest. These results validate the heme pathway as a potential target for prophylactic drugs targeting liver stage parasites. In addition, we demonstrate that our simple genetic approach can extend the phenotyping window beyond the insect stages, opening considerable scope for straightforward reverse genetic analysis of genes that are dispensable in blood stages but essential for completing mosquito development.


Subject(s)
Anopheles/parasitology , Genetic Complementation Test/methods , Heme/biosynthesis , Liver/parasitology , Malaria/parasitology , Plasmodium berghei/growth & development , Plasmodium berghei/metabolism , Protozoan Proteins/metabolism , Animals , Anopheles/growth & development , Erythrocytes/metabolism , Erythrocytes/parasitology , Female , Humans , Life Cycle Stages , Liver/metabolism , Male , Mice , Plasmodium berghei/enzymology , Plasmodium berghei/genetics , Protozoan Proteins/genetics
9.
Proc Natl Acad Sci U S A ; 113(26): 7183-8, 2016 06 28.
Article in English | MEDLINE | ID: mdl-27303037

ABSTRACT

Transmission of the malaria parasite from the mammalian host to the mosquito vector requires the formation of adequately adapted parasite forms and stage-specific organelles. Here we show that formation of the crystalloid-a unique and short-lived organelle of the Plasmodium ookinete and oocyst stage required for sporogony-is dependent on the precisely timed expression of the S-acyl-transferase DHHC10. DHHC10, translationally repressed in female Plasmodium berghei gametocytes, is activated translationally during ookinete formation, where the protein is essential for the formation of the crystalloid, the correct targeting of crystalloid-resident protein LAP2, and malaria parasite transmission.


Subject(s)
Acyltransferases/physiology , Plasmodium berghei/pathogenicity , Protozoan Proteins/physiology , Animals , Female , Malaria/transmission , Mice, Inbred BALB C , Oocysts/physiology , Organelles/physiology , Plasmodium berghei/enzymology , Plasmodium berghei/physiology
10.
Infect Immun ; 86(8)2018 08.
Article in English | MEDLINE | ID: mdl-29784863

ABSTRACT

In animal models of experimental cerebral malaria (ECM), the glycosylphosphatidylinositols (GPIs) and GPI anchors are the major factors that induce nuclear factor kappa B (NF-κB) activation and proinflammatory responses, which contribute to malaria pathogenesis. GPIs and GPI anchors are transported to the cell surface via a process called GPI transamidation, which involves the GPI transamidase (GPI-T) complex. In this study, we showed that GPI16, one of the GPI-T subunits, is highly conserved among Plasmodium species. Genetic knockout of pbgpi16 (Δpbgpi16) in the rodent malaria parasite Plasmodium berghei strain ANKA led to a significant reduction of the amounts of GPIs in the membranes of merozoites, as well as surface display of several GPI-anchored merozoite surface proteins. Compared with the wild-type parasites, Δpbgpi16 parasites in C57BL/6 mice caused much less NF-κB activation and elicited a substantially attenuated T helper type 1 response. As a result, Δpbgpi16 mutant-infected mice displayed much less severe brain pathology, and considerably fewer Δpbgpi16 mutant-infected mice died from ECM. This study corroborated the GPI toxin as a significant inducer of ECM and further suggested that vaccines against parasite GPIs may be a promising strategy to limit the severity of malaria.


Subject(s)
Aminoacyltransferases/metabolism , Glycosylphosphatidylinositols/metabolism , Malaria, Cerebral/pathology , Malaria, Cerebral/parasitology , Plasmodium berghei/enzymology , Protozoan Proteins/metabolism , Virulence Factors/metabolism , Aminoacyltransferases/genetics , Animals , Brain/pathology , Cell Membrane/chemistry , Disease Models, Animal , Female , Gene Knockout Techniques , Membrane Proteins/analysis , Merozoites/chemistry , Mice, Inbred C57BL , NF-kappa B/metabolism , Plasmodium berghei/genetics , Protozoan Proteins/analysis , Survival Analysis , Th1 Cells/immunology , Virulence Factors/genetics
11.
PLoS Pathog ; 12(1): e1005370, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26735921

ABSTRACT

Plasmodium salivary sporozoites are the infectious form of the malaria parasite and are dormant inside salivary glands of Anopheles mosquitoes. During dormancy, protein translation is inhibited by the kinase UIS1 that phosphorylates serine 59 in the eukaryotic initiation factor 2α (eIF2α). De-phosphorylation of eIF2α-P is required for the transformation of sporozoites into the liver stage. In mammalian cells, the de-phosphorylation of eIF2α-P is mediated by the protein phosphatase 1 (PP1). Using a series of genetically knockout parasites we showed that in malaria sporozoites, contrary to mammalian cells, the eIF2α-P phosphatase is a member of the PP2C/PPM phosphatase family termed UIS2. We found that eIF2α was highly phosphorylated in uis2 conditional knockout sporozoites. These mutant sporozoites maintained the crescent shape after delivery into mammalian host and lost their infectivity. Both uis1 and uis2 were highly transcribed in the salivary gland sporozoites but uis2 expression was inhibited by the Pumilio protein Puf2. The repression of uis2 expression was alleviated when sporozoites developed into liver stage. While most eukaryotic phosphatases interact transiently with their substrates, UIS2 stably bound to phosphorylated eIF2α, raising the possibility that high-throughput searches may identify chemicals that disrupt this interaction and prevent malaria infection.


Subject(s)
Host-Parasite Interactions/physiology , Malaria/parasitology , Phosphoric Monoester Hydrolases/metabolism , Plasmodium berghei/enzymology , Plasmodium berghei/growth & development , Sporozoites/enzymology , Sporozoites/growth & development , Animals , Cell Line , Eukaryotic Initiation Factor-2/metabolism , Gene Knockout Techniques , Humans , Immunoblotting , Immunoprecipitation , Life Cycle Stages , Mice , Phosphorylation
12.
Cell Microbiol ; 19(1)2017 01.
Article in English | MEDLINE | ID: mdl-27324409

ABSTRACT

Malaria parasites can synthesize fatty acids via a type II fatty acid synthesis (FASII) pathway located in their apicoplast. The FASII pathway has been pursued as an anti-malarial drug target, but surprisingly little is known about its role in lipid metabolism. Here we characterize the apicoplast glycerol 3-phosphate acyltransferase that acts immediately downstream of FASII in human (Plasmodium falciparum) and rodent (Plasmodium berghei) malaria parasites and investigate how this enzyme contributes to incorporating FASII fatty acids into precursors for membrane lipid synthesis. Apicoplast targeting of the P. falciparum and P. berghei enzymes are confirmed by fusion of the N-terminal targeting sequence to GFP and 3' tagging of the full length protein. Activity of the P. falciparum enzyme is demonstrated by complementation in mutant bacteria, and critical residues in the putative active site identified by site-directed mutagenesis. Genetic disruption of the P. falciparum enzyme demonstrates it is dispensable in blood stage parasites, even in conditions known to induce FASII activity. Disruption of the P. berghei enzyme demonstrates it is dispensable in blood and mosquito stage parasites, and only essential for development in the late liver stage, consistent with the requirement for FASII in rodent malaria models. However, the P. berghei mutant liver stage phenotype is found to only partially phenocopy loss of FASII, suggesting newly made fatty acids can take multiple pathways out of the apicoplast and so giving new insight into the role of FASII and apicoplast glycerol 3-phosphate acyltransferase in malaria parasites.


Subject(s)
Apicoplasts/metabolism , Fatty Acids/metabolism , Glycerol-3-Phosphate O-Acyltransferase/metabolism , Plasmodium berghei/metabolism , Plasmodium falciparum/metabolism , Apicoplasts/enzymology , Bacteria/genetics , Bacteria/metabolism , DNA Mutational Analysis , Gene Knockout Techniques , Genetic Complementation Test , Plasmodium berghei/enzymology , Plasmodium falciparum/enzymology , Plasmodium falciparum/genetics , Protein Transport
13.
Proc Natl Acad Sci U S A ; 112(33): 10216-23, 2015 Aug 18.
Article in English | MEDLINE | ID: mdl-25831536

ABSTRACT

Mitochondrial ATP synthase is driven by chemiosmotic oxidation of pyruvate derived from glycolysis. Blood-stage malaria parasites eschew chemiosmosis, instead relying almost solely on glycolysis for their ATP generation, which begs the question of whether mitochondrial ATP synthase is necessary during the blood stage of the parasite life cycle. We knocked out the mitochondrial ATP synthase ß subunit gene in the rodent malaria parasite, Plasmodium berghei, ablating the protein that converts ADP to ATP. Disruption of the ß subunit gene of the ATP synthase only marginally reduced asexual blood-stage parasite growth but completely blocked mouse-to-mouse transmission via Anopheles stephensi mosquitoes. Parasites lacking the ß subunit gene of the ATP synthase generated viable gametes that fuse and form ookinetes but cannot progress beyond this stage. Ookinetes lacking the ß subunit gene of the ATP synthase had normal motility but were not viable in the mosquito midgut and never made oocysts or sporozoites, thereby abrogating transmission to naive mice via mosquito bite. We crossed the self-infertile ATP synthase ß subunit knockout parasites with a male-deficient, self-infertile strain of P. berghei, which restored fertility and production of oocysts and sporozoites, which demonstrates that mitochondrial ATP synthase is essential for ongoing viability through the female, mitochondrion-carrying line of sexual reproduction in P. berghei malaria. Perturbation of ATP synthase completely blocks transmission to the mosquito vector and could potentially be targeted for disease control.


Subject(s)
Gene Expression Regulation, Enzymologic , Malaria/parasitology , Mitochondria/enzymology , Mitochondrial Proton-Translocating ATPases/metabolism , Plasmodium berghei/enzymology , Adenosine Diphosphate/chemistry , Adenosine Triphosphate/chemistry , Animals , Bacterial Proteins/metabolism , Computational Biology , Crosses, Genetic , Culicidae , Female , Glycolysis , Luminescent Proteins/metabolism , Male , Mice , Oocysts/enzymology , Oxygen/chemistry , Phenotype , Plasmodium berghei/pathogenicity , Sporozoites/enzymology , Transgenes
14.
Mol Microbiol ; 102(2): 349-363, 2016 10.
Article in English | MEDLINE | ID: mdl-27425827

ABSTRACT

Invasion of hepatocytes by sporozoites is essential for Plasmodium to initiate infection of the mammalian host. The parasite's subsequent intracellular differentiation in the liver is the first developmental step of its mammalian cycle. Despite their biological significance, surprisingly little is known of the signalling pathways required for sporozoite invasion. We report that sporozoite invasion of hepatocytes requires signalling through two second-messengers - cGMP mediated by the parasite's cGMP-dependent protein kinase (PKG), and Ca2+ , mediated by the parasite's calcium-dependent protein kinase 4 (CDPK4). Sporozoites expressing a mutated form of Plasmodium berghei PKG or carrying a deletion of the CDPK4 gene are defective in invasion of hepatocytes. Using specific and potent inhibitors of Plasmodium PKG and CDPK4, we demonstrate that PKG and CDPK4 are required for sporozoite motility, and that PKG regulates the secretion of TRAP, an adhesin that is essential for motility. Chemical inhibition of PKG decreases parasite egress from hepatocytes by inhibiting either the formation or release of merosomes. In contrast, genetic inhibition of CDPK4 does not significantly decrease the number of merosomes. By revealing the requirement for PKG and CDPK4 in Plasmodium sporozoite invasion, our work enables a better understanding of kinase pathways that act in different Plasmodium stages.


Subject(s)
Cyclic GMP-Dependent Protein Kinases/metabolism , Hepatocytes/parasitology , Plasmodium berghei/metabolism , Protein Kinases/metabolism , Animals , Anopheles/parasitology , Calcium/metabolism , Calcium-Binding Proteins/metabolism , Cyclic GMP/metabolism , Hep G2 Cells , Hepatocytes/metabolism , Humans , Plasmodium berghei/enzymology , Plasmodium berghei/genetics , Plasmodium falciparum/enzymology , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Signal Transduction , Sporozoites/metabolism
15.
PLoS Pathog ; 11(3): e1004760, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25786000

ABSTRACT

The coordinated exit of intracellular pathogens from host cells is a process critical to the success and spread of an infection. While phospholipases have been shown to play important roles in bacteria host cell egress and virulence, their role in the release of intracellular eukaryotic parasites is largely unknown. We examined a malaria parasite protein with phospholipase activity and found it to be involved in hepatocyte egress. In hepatocytes, Plasmodium parasites are surrounded by a parasitophorous vacuole membrane (PVM), which must be disrupted before parasites are released into the blood. However, on a molecular basis, little is known about how the PVM is ruptured. We show that Plasmodium berghei phospholipase, PbPL, localizes to the PVM in infected hepatocytes. We provide evidence that parasites lacking PbPL undergo completely normal liver stage development until merozoites are produced but have a defect in egress from host hepatocytes. To investigate this further, we established a live-cell imaging-based assay, which enabled us to study the temporal dynamics of PVM rupture on a quantitative basis. Using this assay we could show that PbPL-deficient parasites exhibit impaired PVM rupture, resulting in delayed parasite egress. A wild-type phenotype could be re-established by gene complementation, demonstrating the specificity of the PbPL deletion phenotype. In conclusion, we have identified for the first time a Plasmodium phospholipase that is important for PVM rupture and in turn for parasite exit from the infected hepatocyte and therefore established a key role of a parasite phospholipase in egress.


Subject(s)
Hepatocytes/microbiology , Malaria/enzymology , Phospholipases/metabolism , Protozoan Proteins/metabolism , Animals , Disease Models, Animal , Fluorescent Antibody Technique , Hepatocytes/enzymology , Mice , Plasmodium berghei/enzymology , Plasmodium berghei/pathogenicity , Reverse Transcriptase Polymerase Chain Reaction , Transcriptome , Vacuoles/enzymology , Vacuoles/microbiology
16.
Cell Microbiol ; 18(11): 1625-1641, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27084458

ABSTRACT

As the Plasmodium parasite transitions between mammalian and mosquito host, it has to adjust quickly to new environments. Palmitoylation, a reversible and dynamic lipid post-translational modification, plays a central role in regulating this process and has been implicated with functions for parasite morphology, motility and host cell invasion. While proteins associated with the gliding motility machinery have been described to be palmitoylated, no palmitoyl transferase responsible for regulating gliding motility has previously been identified. Here, we characterize two palmityol transferases with gene tagging and gene deletion approaches. We identify DHHC3, a palmitoyl transferase, as a mediator of ookinete development, with a crucial role for gliding motility in ookinetes and sporozoites, and we co-localize the protein with a marker for the inner membrane complex in the ookinete stage. Ookinetes and sporozoites lacking DHHC3 are impaired in gliding motility and exhibit a strong phenotype in vivo; with ookinetes being significantly less infectious to their mosquito host and sporozoites being non-infectious to mice. Importantly, genetic complementation of the DHHC3-ko parasite completely restored virulence. We generated parasites lacking both DHHC3, as well as the palmitoyl transferase DHHC9, and found an enhanced phenotype for these double knockout parasites, allowing insights into the functional overlap and compensational nature of the large family of PbDHHCs. These findings contribute to our understanding of the organization and mechanism of the gliding motility machinery, which as is becoming increasingly clear, is mediated by palmitoylation.


Subject(s)
Acyltransferases/physiology , Anopheles/parasitology , Liver/parasitology , Plasmodium berghei/enzymology , Protozoan Proteins/physiology , Animals , Hep G2 Cells , Host-Parasite Interactions , Humans , Lipoylation , Mice , Oocysts/enzymology , Oocysts/growth & development , Plasmodium berghei/physiology , Protein Processing, Post-Translational , Salivary Glands/parasitology , Sporozoites/enzymology , Sporozoites/growth & development
17.
Malar J ; 16(1): 247, 2017 06 12.
Article in English | MEDLINE | ID: mdl-28606087

ABSTRACT

BACKGROUND: Aspartate, which is converted from oxaloacetate (OAA) by aspartate aminotransferase, is considered an important precursor for purine salvage and pyrimidine de novo biosynthesis, and is thus indispensable for the growth of Plasmodium parasites at the asexual blood stages. OAA can be produced in malaria parasites via two routes: (i) from phosphoenolpyruvate (PEP) by phosphoenolpyruvate carboxylase (PEPC) in the cytosol, or (ii) from fumarate by consecutive reactions catalyzed by fumarate hydratase (FH) and malate:quinone oxidoreductase (MQO) in the mitochondria of malaria parasites. Although PEPC-deficient Plasmodium falciparum and Plasmodium berghei (rodent malaria) parasites show a growth defect, the mutant P. berghei can still cause experimental cerebral malaria (ECM) with similar dynamics to wild-type parasites. In contrast, the importance of FH and MQO for parasite viability, growth and virulence is not fully understood because no FH- and MQO-deficient P. falciparum has been established. In this study, the role of FH and MQO in the pathogenicity of asexual-blood-stage Plasmodium parasites causing cerebral malaria was examined. RESULTS: First, FH- and MQO-deficient parasites were generated by inserting a luciferase-expressing cassette into the fh and mqo loci in the genome of P. berghei ANKA strain. Second, the viability of FH-deficient and MQO-deficient parasites that express luciferase was determined by measuring luciferase activity, and the effect of FH or MQO deficiency on the development of ECM was examined. While the viability of FH-deficient P. berghei was comparable to that of control parasites, MQO-deficient parasites exhibited considerably reduced viability. FH activity derived from erythrocytes was also detected. This result and the absence of phenotype in FH-deficient P. berghei parasites suggest that fumarate can be metabolized to malate by host or parasite FH in P. berghei-infected erythrocytes. Furthermore, although the growth of FH- and MQO-deficient parasites was impaired, the development of ECM was suppressed only in mice infected with MQO-deficient parasites. CONCLUSIONS: These findings suggest that MQO-mediated mitochondrial functions are required for development of ECM of asexual-blood-stage Plasmodium parasites.


Subject(s)
Malaria, Cerebral/prevention & control , Mitochondria/enzymology , Oxidoreductases/antagonists & inhibitors , Plasmodium berghei/enzymology , Animals , Blood-Brain Barrier/metabolism , Erythrocytes/parasitology , Female , Fumarate Hydratase/antagonists & inhibitors , Fumarate Hydratase/deficiency , Fumarate Hydratase/physiology , Fumarates/metabolism , Malates/metabolism , Male , Membrane Potential, Mitochondrial , Mice , Mice, Inbred C57BL , Mitochondria/physiology , Oxaloacetic Acid/metabolism , Oxidoreductases/deficiency , Oxidoreductases/physiology , Plasmodium berghei/genetics , Plasmodium berghei/growth & development , Specific Pathogen-Free Organisms
18.
Exp Parasitol ; 181: 82-87, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28803903

ABSTRACT

Actin has important roles in Plasmodium parasites but its exact function in different life stages is not yet fully elucidated. Here we report the localization of ubiquitous actin I in gametocytes of the rodent model parasite P. berghei. Using an antibody specifically recognizing F-actin and deconvolution microscopy we detected actin I in a punctate pattern in gametocytes. 3D-Structured Illumination Microscopy which allows sub-diffraction limit imaging resolved the signal into structures of less than 130 nm length. A portion of actin I was soluble, but the protein was also found complexed in a stabilized form which could only be completely solubilized by treatment with SDS. An additional population of actin was pelleted at 100 000 × g, consistent with F-actin. Our results suggest that actin in this non-motile form of the parasite is present in short filaments cross-linked to other structures in a cytoskeleton.


Subject(s)
Actins/analysis , Plasmodium berghei/chemistry , Actins/immunology , Animals , Antimalarials/pharmacology , Atovaquone/pharmacology , Depsipeptides/pharmacology , Female , Male , Mice , Mice, Inbred BALB C , Microscopy, Fluorescence , Phosphopyruvate Hydratase/genetics , Phosphopyruvate Hydratase/immunology , Plasmodium berghei/enzymology , Plasmodium berghei/growth & development
19.
Infect Immun ; 84(11): 3252-3262, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27600503

ABSTRACT

Malarial parasites have evolved complex regulation of heme supply and disposal to adjust to heme-rich and -deprived host environments. In addition to its own pathway for heme biosynthesis, Plasmodium likely harbors mechanisms for heme scavenging from host erythrocytes. Elaborate compartmentalization of de novo heme synthesis into three subcellular locations, including the vestigial plastid organelle, indicates critical roles in life cycle progression. In this study, we systematically profile the essentiality of heme biosynthesis by targeted gene deletion of enzymes in early steps of this pathway. We show that disruption of endogenous heme biosynthesis leads to a first detectable defect in oocyst maturation and sporogony in the Anopheles vector, whereas blood stage propagation, colonization of mosquito midguts, or initiation of oocyst development occurs indistinguishably from that of wild-type parasites. Although sporozoites are produced by parasites lacking an intact pathway for heme biosynthesis, they are absent from mosquito salivary glands, indicative of a vital role for heme biosynthesis only in sporozoite maturation. Rescue of the first defect in sporogony permitted analysis of potential roles in liver stages. We show that liver stage parasites benefit from but do not strictly depend upon their own aminolevulinic acid synthase and that they can scavenge aminolevulinic acid from the host environment. Together, our experimental genetics analysis of Plasmodium enzymes for heme biosynthesis exemplifies remarkable shifts between the use of endogenous and host resources during life cycle progression.


Subject(s)
Bacterial Proteins/physiology , Heme/biosynthesis , Liver/parasitology , Plasmodium berghei/enzymology , Sporozoites/physiology , Animals , Anopheles/parasitology , Disease Models, Animal , Female , Gene Expression Profiling , Life Cycle Stages , Mice , Mice, Inbred C57BL , Oocysts , Plasmodium berghei/growth & development , Real-Time Polymerase Chain Reaction
20.
Antimicrob Agents Chemother ; 60(1): 258-63, 2016 01.
Article in English | MEDLINE | ID: mdl-26503662

ABSTRACT

The evolutionary selection of malaria parasites within individual hosts is an important factor in the emergence of drug resistance but is still not well understood. We have examined the selection process for drug resistance in the mouse malaria agent Plasmodium berghei and compared the dynamics of the selection for atovaquone and pyrimethamine. Resistance to these drugs has been shown to be associated with genetic lesions in the dihydrofolate reductase gene in the case of pyrimethamine and in the mitochondrial cytochrome b gene for atovaquone. A mouse malaria model for the selection of drug resistance, based on repeated incomplete treatment (RICT) with a therapeutic dose of antimalarial drugs, was established. The number of treatment cycles for the development of stable resistance to atovaquone (2.47 ± 0.70; n = 19) was found to be significantly lower than for pyrimethamine (5.44 ± 1.46; n = 16; P < 0.0001), even when the parental P. berghei Leiden strain was cloned prior to the resistance selection. Similar results were obtained with P. berghei Edinburgh. Mutational changes underlying the resistance were identified to be S110N in dihydrofolate reductase for pyrimethamine and Y268N, Y268C, Y268S, L271V-K272R, and G280D in cytochrome b for atovaquone. These results are consistent with the rate of mitochondrial DNA mutation being higher than that in the nucleus and suggest that mutation leading to pyrimethamine resistance is not a rare event.


Subject(s)
Antimalarials/pharmacology , Atovaquone/pharmacology , Cytochromes b/genetics , Drug Resistance/genetics , Plasmodium berghei/drug effects , Pyrimethamine/pharmacology , Tetrahydrofolate Dehydrogenase/genetics , Amino Acid Substitution , Animals , Cell Nucleus/drug effects , Cell Nucleus/enzymology , Cell Nucleus/genetics , Cytochromes b/metabolism , Drug Resistance/drug effects , Gene Expression , Host-Parasite Interactions , Malaria/drug therapy , Malaria/parasitology , Mice , Mice, Inbred BALB C , Mitochondria/drug effects , Mitochondria/enzymology , Mitochondria/genetics , Mutation Rate , Parasitic Sensitivity Tests , Plasmodium berghei/enzymology , Plasmodium berghei/genetics , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Selection, Genetic , Tetrahydrofolate Dehydrogenase/metabolism , Treatment Failure
SELECTION OF CITATIONS
SEARCH DETAIL