Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 505
Filter
Add more filters

Publication year range
1.
Annu Rev Cell Dev Biol ; 34: 29-58, 2018 10 06.
Article in English | MEDLINE | ID: mdl-30110558

ABSTRACT

Cell adhesion to macromolecules in the microenvironment is essential for the development and maintenance of tissues, and its dysregulation can lead to a range of disease states, including inflammation, fibrosis, and cancer. The biomechanical and biochemical mechanisms that mediate cell adhesion rely on signaling by a range of effector proteins, including kinases and associated scaffolding proteins. The intracellular trafficking of these must be tightly controlled in space and time to enable effective cell adhesion and microenvironmental sensing and to integrate cell adhesion with, and compartmentalize it from, other cellular processes, such as gene transcription, protein degradation, and cell division. Delivery of adhesion receptors and signaling proteins from the plasma membrane to unanticipated subcellular locales is revealing novel biological functions. Here, we review the expected and unexpected trafficking, and sites of activity, of adhesion and growth factor receptors and intracellular kinase partners as we begin to appreciate the complexity and diversity of their spatial regulation.


Subject(s)
Cell Adhesion/genetics , Platelet Glycoprotein GPIb-IX Complex/genetics , Protein Transport/genetics , Receptors, Growth Factor/genetics , Cell Membrane/genetics , Cell Nucleus/genetics , Endosomes/genetics , Humans , Phosphotransferases/genetics
2.
Blood ; 143(4): 342-356, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-37922495

ABSTRACT

ABSTRACT: Glycoprotein Ibα (GPIbα) is expressed on the surface of platelets and megakaryocytes (MKs) and anchored to the membrane skeleton by filamin A (flnA). Although GPIb and flnA have fundamental roles in platelet biogenesis, the nature of this interaction in megakaryocyte biology remains ill-defined. We generated a mouse model expressing either human wild-type (WT) GPIbα (hGPIbαWT) or a flnA-binding mutant (hGPIbαFW) and lacking endogenous mouse GPIbα. Mice expressing the mutant GPIbα transgene exhibited macrothrombocytopenia with preserved GPIb surface expression. Platelet clearance was normal and differentiation of MKs to proplatelets was unimpaired in hGPIbαFW mice. The most striking abnormalities in hGPIbαFW MKs were the defective formation of the demarcation membrane system (DMS) and the redistribution of flnA from the cytoplasm to the peripheral margin of MKs. These abnormalities led to disorganized internal MK membranes and the generation of enlarged megakaryocyte membrane buds. The defective flnA-GPIbα interaction also resulted in misdirected release of buds away from the vasculature into bone marrow interstitium. Restoring the linkage between flnA and GPIbα corrected the flnA redistribution within MKs and DMS ultrastructural defects as well as restored normal bud size and release into sinusoids. These studies define a new mechanism of macrothrombocytopenia resulting from dysregulated MK budding. The link between flnA and GPIbα is not essential for the MK budding process, however, it plays a major role in regulating the structure of the DMS, bud morphogenesis, and the localized release of buds into the circulation.


Subject(s)
Megakaryocytes , Platelet Glycoprotein GPIb-IX Complex , Thrombocytopenia , Animals , Humans , Mice , Blood Platelets/metabolism , Cytoplasm/metabolism , Filamins/genetics , Filamins/metabolism , Megakaryocytes/metabolism , Morphogenesis , Platelet Glycoprotein GPIb-IX Complex/genetics , Platelet Glycoprotein GPIb-IX Complex/metabolism , Thrombocytopenia/genetics , Thrombocytopenia/metabolism
3.
Pediatr Blood Cancer ; 71(11): e31292, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39228058

ABSTRACT

BACKGROUND: The deletion region of 22q11.2 deletion syndrome (22q11.2DS) contains a gene encoding glycoprotein Ibß (GPIbß), which is required to express the GPIb/IX/V complex on the platelet surface. Therefore, patients with 22q11.2DS may have congenital platelet disorders. However, information is limited on platelets and bleeding symptoms. In this study, we investigated clinical information, including bleeding symptoms, platelet counts, and GPIb expression levels in children and adolescents/adults with 22q11.2DS. PROCEDURE: Thirty-two patients with 22q11.2DS were enrolled in a prospective cohort study between 2022 and 2023 at outpatient clinics within our institute. RESULTS: The median platelet counts in adolescents/adults with 22q11.2DS were significantly lower than those in children (p < .0001). A gradual decrease was found along with increasing age (p = .0006). Values of median GPIb expression on platelet surfaces (66% in children and 70% in adolescents/adults) were significantly lower than those in healthy controls (p < .0001 and p = .0002). Bleeding symptoms included surgery-related bleeding (52%), purpura (31%), and epistaxis (22%); most of them were minor. The median International Society on Thrombosis and Hemostasis bleeding assessment tool score was not significantly different between children and adolescents/adults (p = .2311). CONCLUSION: Although there was an age-related decrease in platelet count and a disease-related decrease in GPIb expression, no difference in bleeding symptoms was found between children and adolescents/adults. 22q11.2DS overall had minor bleeding symptoms in daily life, and the disease had little effect on spontaneous bleeding. However, some patients had major bleeding events; further accumulation of data on hemostasis during surgery and trauma is required.


Subject(s)
Blood Platelets , DiGeorge Syndrome , Hemorrhage , Humans , Adolescent , Female , Male , Child , Blood Platelets/pathology , Blood Platelets/metabolism , Adult , Hemorrhage/etiology , DiGeorge Syndrome/complications , DiGeorge Syndrome/genetics , DiGeorge Syndrome/blood , Prospective Studies , Child, Preschool , Platelet Count , Young Adult , Platelet Glycoprotein GPIb-IX Complex/genetics , Infant , Middle Aged , Blood Platelet Disorders/genetics , Blood Platelet Disorders/complications
4.
Br J Haematol ; 203(4): 673-677, 2023 11.
Article in English | MEDLINE | ID: mdl-37592722

ABSTRACT

Platelet-type von Willebrand disease (PT-VWD) is a rare autosomal dominant bleeding disorder characterized by an increased ristocetin-induced platelet aggregation (RIPA) and enhanced affinity of platelet glycoprotein Ibα (GPIbα) to von Willebrand factor (VWF). To date, only seven variants have been described with this gain-of-function effect, most of them located in the C-terminal disulphide loop of the VWF-binding domain of GPIbα. We herein describe a patient with moderate bleeding symptoms, mild thrombocytopenia and increased RIPA. By direct sequencing of GP1BA, a novel leucine-rich repeat heterozygous variant was identified (c.580C>T; predictably p.Leu194Phe), strongly suggestive as being the underlying cause for the PT-VWD phenotype of our patient.


Subject(s)
von Willebrand Diseases , von Willebrand Factor , Humans , von Willebrand Factor/genetics , Gain of Function Mutation , von Willebrand Diseases/diagnosis , Blood Platelets , Hemorrhage/genetics , Platelet Glycoprotein GPIb-IX Complex/genetics
5.
Arterioscler Thromb Vasc Biol ; 42(1): e10-e26, 2022 01.
Article in English | MEDLINE | ID: mdl-34732055

ABSTRACT

OBJECTIVE: Maturation of megakaryocytes culminates with extensive membrane rearrangements necessary for proplatelet formation. Mechanisms required for proplatelet extension and origin of membranes are still poorly understood. GTPase Rab5 (Ras-related protein in brain 5) regulates endocytic uptake and homotypic fusion of early endosomes and regulates phosphatidylinositol 3-monophosphate production important for binding of effector proteins during early-to-late endosomal/lysosomal maturation. Approach and Results: To investigate the role of Rab5 in megakaryocytes, we expressed GFP (green fluorescent protein)-coupled Rab5 wild type and its point mutants Q79L (active) and N133L (inactive) in primary murine fetal liver-derived megakaryocytes. Active Rab5 Q79L induced the formation of enlarged early endosomes, while inactive Rab5 N133L caused endosomal fragmentation. Consistently, an increased amount of transferrin internalization in Rab5 Q79L was impaired in Rab5 N133L expressing megakaryocytes, when compared with GFP or Rab5 wild type. Moreover, trafficking of GPIbß (glycoprotein Ib subunit beta), a subunit of major megakaryocytes receptor and membrane marker, was found to be mediated by Rab5 activity. While GPIbß was mostly present along the plasma membrane, and within cytoplasmic vesicles in Rab5 wild type megakaryocytes, it accumulated in the majority of Rab5 Q79L enlarged endosomes. Conversely, Rab5 N133L caused mostly GPIbß plasma membrane retention. Furthermore, Rab5 Q79L expression increased incorporation of the membrane dye (PKH26), indicating higher membrane content. Finally, while Rab5 Q79L increased proplatelet production, inactive Rab5 N133L strongly inhibited it and was coupled with a decrease in late endosomes/lysosomes. Localization of GPIbß in enlarged endosomes was phosphatidylinositol 3-monophosphate dependent. CONCLUSIONS: Taken together, our results demonstrate that Rab5-dependent endocytosis plays an important role in megakaryocytes receptor trafficking, membrane formation, and thrombopoiesis.


Subject(s)
Blood Platelets/enzymology , Endocytosis , Endosomes/enzymology , Megakaryocytes/enzymology , Platelet Glycoprotein GPIb-IX Complex/metabolism , Thrombopoiesis , rab5 GTP-Binding Proteins/metabolism , Animals , Cells, Cultured , Female , Male , Mice, Inbred C57BL , Platelet Glycoprotein GPIb-IX Complex/genetics , Point Mutation , Protein Transport , Transferrin/metabolism , rab5 GTP-Binding Proteins/genetics
6.
Int J Mol Sci ; 24(6)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36982712

ABSTRACT

Non-surgical bleeding (NSB) remains the most critical complication in patients under left ventricular assist device (LVAD) support. It is well known that blood exposed to high shear stress results in platelet dysfunction. Compared to patients without NSB, decreased surface expression of platelet receptor GPIbα was observed in LVAD patients with NSB. In this study, we aimed to compare the expression level of glycoprotein (GP)Ib-IX-V platelet receptor complex in HeartMate 3 (HM 3) patients with and without bleeding complications to investigate the alterations of the platelet transcriptomic profile on platelet damage and increased bleeding risk. Blood samples were obtained from HM 3 patients with NSB (bleeder group, n = 27) and without NSB (non-bleeder group, n = 55). The bleeder group was further divided into patients with early NSB (bleeder ≤ 3 mo, n = 19) and patients with late NSB (bleeder > 3 mo, n = 8). The mRNA and protein expression of GPIbα, GPIX and GPV were quantified for each patient. Non-bleeder, bleeder ≤ 3 mo and bleeder > 3 mo were comparable regarding the mRNA expression of GPIbα, GPIX and GPV (p > 0.05). The protein analysis revealed a significantly reduced expression level of the main receptor subunit GPIbα in bleeders ≤ 3 mo (p = 0.04). We suggest that the observed reduction of platelet receptor GPIbα protein expression in patients who experienced their first bleeding event within 3 months after LVAD implantation may influence platelet physiology. The alterations of functional GPIbα potentially reduce the platelet adhesion capacities, which may lead to an impaired hemostatic process and the elevated propensity of bleeding in HM 3 patients.


Subject(s)
Blood Platelets , Platelet Glycoprotein GPIb-IX Complex , Humans , Blood Platelets/metabolism , Cell Membrane/metabolism , Platelet Glycoprotein GPIb-IX Complex/genetics , Platelet Glycoprotein GPIb-IX Complex/metabolism , Hemorrhage/genetics , Platelet Adhesiveness , RNA, Messenger/metabolism
7.
Br J Haematol ; 199(5): 744-753, 2022 12.
Article in English | MEDLINE | ID: mdl-36173017

ABSTRACT

Constitutional thrombocytopenias are rare disorders, often difficult to discriminate from acquired thrombocytopenias. More than 80 genes have been described as being at the origin of these diseases. Among them, several variants of the glycoprotein Ib platelet subunit alpha (GP1BA) and glycoprotein Ib platelet subunit beta (GP1BB) genes, coding for the GpIb-IX-V glycoprotein complex, have been reported in the literature. The study reported here aimed at describing newly identified monoallelic anomalies affecting the GP1BA and GP1BB genes on a clinical, biological and molecular level. In a cohort of nine patients with macrothrombocytopenia, eight heterozygous variants of the GP1BA or GP1BB genes were identified. Five of them had never been described in the heterozygous state. Computer modelling disclosed structure/function relationships of these five variants.


Subject(s)
Bernard-Soulier Syndrome , Thrombocytopenia , Humans , Bernard-Soulier Syndrome/genetics , Platelet Glycoprotein GPIb-IX Complex/genetics , Thrombocytopenia/genetics , Heterozygote , Blood Platelets
8.
Haematologica ; 107(7): 1655-1668, 2022 07 01.
Article in English | MEDLINE | ID: mdl-34407604

ABSTRACT

Platelets play an essential role in thrombosis and hemostasis. Abnormal hemostasis can cause spontaneous or severe post-traumatic bleeding. Bernard-Soulier syndrome (BSS) is a rare inherited bleeding disorder caused by a complete quantitative deficiency in the GPIb-IX-V complex. Multiple mutations in GP9 lead to the clinical manifestations of BSS. Understanding the roles and underlying mechanisms of GP9 in thrombopoiesis and establishing a proper animal model of BSS would be valuable to understand the disease pathogenesis and to improve its medical management. Here, by using CRISPR-Cas9 technology, we created a zebrafish gp9SMU15 mutant to model human BSS. Disruption of zebrafish gp9 led to thrombocytopenia and a pronounced bleeding tendency, as well as an abnormal expansion of progenitor cells. The gp9SMU15 zebrafish can be used as a BSS animal model as the roles of GP9 in thrombocytopoiesis are highly conserved from zebrafish to mammals. Utilizing the BSS model, we verified the clinical GP9 mutations by in vivo functional assay and tested clinical drugs for their ability to increase platelets. Thus, the inherited BSS zebrafish model could be of benefit for in vivo verification of patient-derived GP9 variants of uncertain significance and for the development of potential therapeutic strategies for BSS.


Subject(s)
Bernard-Soulier Syndrome , Animals , Bernard-Soulier Syndrome/genetics , Blood Platelets/pathology , Mammals , Mutation , Platelet Glycoprotein GPIb-IX Complex/genetics , Zebrafish/genetics
9.
Haematologica ; 107(7): 1643-1654, 2022 07 01.
Article in English | MEDLINE | ID: mdl-34407603

ABSTRACT

Platelet-type von Willebrand disease (PT-VWD) is an inherited platelet disorder. It is characterized by macrothrombocytopenia and mucocutaneous bleeding, of variable severity, due to gain-of-function variants of GP1BA conferring to glycoprotein Ibα (GPIbα) enhanced affinity for von Willebrand factor (VWF). The bleeding tendency is conventionally attributed to thrombocytopenia and large VWF-multimer depletion. However, while some indications suggest that platelet dysfunction may contribute to the bleeding phenotype, no information on its characteristics and causes are available. The aim of the present study was to characterize platelet dysfunction in PT-VWD and shed light on its mechanism. Platelets from a PT-VWD patient carrying the p.M239V variant, and from PT-VWD mice carrying the p.G233V variant, showed a remarkable platelet function defect, with impaired aggregation, defective granule secretion and reduced adhesion under static and flow conditions. VWFbinding to GPIbα is known to trigger intracellular signaling involving Src-family kinases (SFK). We found that constitutive phosphorylation of the platelet SFK Lyn induces a negative-feedback loop downregulating platelet activation through phosphorylation of PECAM1 on Tyr686 and that this is triggered by the constitutive binding of VWF to GPIbα. These data show, for the first time, that the abnormal triggering of inhibitory signals mediated by Lyn and PECAM1 may lead to platelet dysfunction. In conclusion, our study unravels the mechanism of platelet dysfunction in PT-VWD caused by deranged inhibitory signaling. This is triggered by the constitutive binding of VWF to GPIbα which may significantly contribute to the bleeding phenotype of these patients.


Subject(s)
Thrombocytopenia , von Willebrand Diseases , Animals , Blood Platelets/metabolism , Hemorrhage/genetics , Mice , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Platelet Glycoprotein GPIb-IX Complex/genetics , Platelet Glycoprotein GPIb-IX Complex/metabolism , Thrombocytopenia/genetics , Thrombocytopenia/metabolism , von Willebrand Diseases/genetics , von Willebrand Diseases/metabolism , von Willebrand Factor/genetics , von Willebrand Factor/metabolism
10.
Platelets ; 33(2): 324-327, 2022 Feb 17.
Article in English | MEDLINE | ID: mdl-33813986

ABSTRACT

GP1bß is a component of the von Willebrand factor (vWF) receptor complex that is necessary for platelet formation and activation. A novel frameshift variant in GP1BB has been identified in a family with macrothrombocytopenia. The variant leads to a protein that is 101 amino acids longer than wild type with loss of the transmembrane domain. As there is no defect in platelet aggregation, the family are classified as heterozygous carriers of a Bernard-Soulier syndrome-related mutation. The levels of the vWF receptor on platelets are reduced to 50% of the controls, with the presence of large platelets but normal platelet aggregation demonstrating that decreased vWF receptor expression impacts proplatelet formation but not platelet function.


Subject(s)
Frameshift Mutation/genetics , Platelet Glycoprotein GPIb-IX Complex/genetics , Platelet Membrane Glycoproteins/metabolism , Thrombocytopenia/genetics , Female , Humans , Male , Platelet Aggregation
11.
Platelets ; 33(6): 811-816, 2022 Aug 18.
Article in English | MEDLINE | ID: mdl-35417661

ABSTRACT

The utility of mouse models to dissect the molecular basis of hemostasis and thrombosis is now well established. The anucleate properties of circulating blood platelet and their specialized release from mature megakaryocytes makes the use of in vivo models all the more informative and powerful. Indeed, they are powerful but there do exist limitations. Here, we review the contributions of mouse models to the pathogenesis of the Bernard-Soulier syndrome, their use in platelet-specific gene expression, the recent development of mice expressing both human GPIb-IX and human von Willebrand factor (VWF), and finally the use of GPIb-IX mouse models to examine the impact of platelet biology beyond clotting. The humanization of the receptor and ligand axis is likely to be a major advancement in the characterization of therapeutics in the complex pathogenesis that drives thrombosis. When appropriate, we highlight some limitations of each mouse model, but this is not to minimize the contributions these models to the field. Rather, the limitations are meant to provide context for any direct application to the important mechanisms supporting human primary hemostasis and thrombosis.


Subject(s)
Bernard-Soulier Syndrome , Thrombosis , Animals , Bernard-Soulier Syndrome/genetics , Blood Platelets/metabolism , Disease Models, Animal , Humans , Mice , Platelet Glycoprotein GPIb-IX Complex/genetics , Platelet Glycoprotein GPIb-IX Complex/metabolism , Thrombosis/metabolism , von Willebrand Factor/genetics , von Willebrand Factor/metabolism
12.
Int J Mol Sci ; 23(2)2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35055070

ABSTRACT

Bernard-Soulier syndrome (BSS) is a rare inherited disorder characterized by unusually large platelets, low platelet count, and prolonged bleeding time. BSS is usually inherited in an autosomal recessive (AR) mode of inheritance due to a deficiency of the GPIb-IX-V complex also known as the von Willebrand factor (VWF) receptor. We investigated a family with macrothrombocytopenia, a mild bleeding tendency, slightly lowered platelet aggregation tests, and suspected autosomal dominant (AD) inheritance. We have detected a heterozygous GP1BA likely pathogenic variant, causing monoallelic BSS. A germline GP1BA gene variant (NM_000173:c.98G > A:p.C33Y), segregating with the macrothrombocytopenia, was detected by whole-exome sequencing. In silico analysis of the protein structure of the novel GPIbα variant revealed a potential structural defect, which could impact proper protein folding and subsequent binding to VWF. Flow cytometry, immunoblot, and electron microscopy demonstrated further differences between p.C33Y GP1BA carriers and healthy controls. Here, we provide a detailed insight into its clinical presentation and phenotype. Moreover, the here described case first presents an mBSS patient with two previous ischemic strokes.


Subject(s)
Alleles , Bernard-Soulier Syndrome/diagnosis , Bernard-Soulier Syndrome/genetics , Genetic Predisposition to Disease , Genetic Variation , Phenotype , Platelet Glycoprotein GPIb-IX Complex/genetics , Bernard-Soulier Syndrome/blood , Blood Platelets/metabolism , Blood Platelets/ultrastructure , Czech Republic , DNA Mutational Analysis , Female , Genetic Association Studies , Humans , Immunophenotyping , Male , Pedigree , Platelet Count , Platelet Glycoprotein GPIb-IX Complex/metabolism , Thrombocytopenia/blood , Thrombocytopenia/diagnosis
13.
Wiad Lek ; 75(4 pt 2): 1002-1008, 2022.
Article in English | MEDLINE | ID: mdl-35633333

ABSTRACT

OBJECTIVE: The aim: To establish the role of allelic polymorphisms NOS3-T-786C, MTHFR-C667T, P2RY12--744C, (GPIbα)-C482T in the development of vascular lesions in patients with hypertension and diabetes mellitus type 2. PATIENTS AND METHODS: Materials and methods: The study included 100 patients with hypertension and diabetes mellitus type 2 (main group) and 50 patients without type 2 diabetes (control group). Patients underwent echocardiography, color duplex scanning of extracranial, brachiocephalic and femoral vessels. The distribution of allelic polymorphisms was investigated by isolation DNA from leukocytes and polymerase chain reaction (PCR). RESULTS: Results: The risk of vascular damages increases 2-fold when carrying all 4 risk alleles in monozygotic genotypes of polymorphic loci in patients with hypertension with concomitant type 2 diabetes (p<0,05). In gene-gene interaction, the values of contributions and directions of interaction between alleles of polymorphic loci are established (p<0,05). Genes create a paired hierarchy of interaction according to their functional activity; the largest contribution to the probable vascular damage depends on the allelic polymorphism NOS3-786CT (p<0,05), the lowest - on the allelic polymorphism P2RY12-744CC (H2H2). The genetic polymorphism of the MTHFR gene is independent of the influence of other studied polymorphisms (p<0,05); the genes P2RY12-744CT and GPIbα 482CT act synergistically with the gene NOS3-786CT, being in a weak negative interaction with each other. CONCLUSION: Conclusions: Phenotypic manifestations of endothelial dysfunction may be modified by allelic polymorphism of genes associated with endothelial and platelet functions with the risk of vascular complications.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Angiopathies , Hypertension , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Diabetic Angiopathies/genetics , Humans , Hypertension/complications , Hypertension/genetics , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Nitric Oxide Synthase Type III/genetics , Platelet Glycoprotein GPIb-IX Complex/genetics , Polymorphism, Genetic , Receptors, Purinergic P2Y12/genetics , Risk Factors
14.
Proteins ; 89(6): 731-741, 2021 06.
Article in English | MEDLINE | ID: mdl-33550613

ABSTRACT

The blood protein von Willebrand factor (VWF) is a key link between inflammation and pathological thrombus formation. In particular, oxidation of methionine residues in specific domains of VWF due to the release of oxidants in inflammatory conditions has been linked to an increased platelet-binding activity. However, the atomistic details of how methionine oxidation activates VWF have not been elucidated to date. Yet understanding the activation mechanism of VWF under oxidizing conditions can lead to the development of novel therapeutics that target VWF selectively under inflammatory conditions in order to reduce its thrombotic activity while maintaining its haemostatic function. In this manuscript, we used a combination of a dynamic flow assay and molecular dynamics (MD) simulations to investigate how methionine oxidation removes an auto-inhibitory mechanism of VWF. Results from the dynamic flow assay revealed that oxidation does not directly activate the A1 domain, which is the domain in VWF that contains the binding site to the platelet surface receptor glycoprotein Ibα (GpIbα), but rather removes the inhibitory function of the neighboring A2 and A3 domains. Furthermore, the MD simulations combined with free energy perturbation calculations suggested that methionine oxidation may destabilize the binding interface between the A1 and A2 domains leading to unmasking of the GpIbα-binding site in the A1 domain.


Subject(s)
Blood Platelets/chemistry , Methionine/chemistry , Platelet Glycoprotein GPIb-IX Complex/chemistry , von Willebrand Factor/chemistry , Animals , Binding Sites , Blood Platelets/metabolism , CHO Cells , Cricetulus , Gene Expression , Hemostasis/genetics , Humans , Inflammation , Kinetics , Methionine/metabolism , Molecular Dynamics Simulation , Oxidation-Reduction , Platelet Glycoprotein GPIb-IX Complex/genetics , Platelet Glycoprotein GPIb-IX Complex/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Rheology , Thermodynamics , Thrombosis/genetics , Thrombosis/metabolism , Thrombosis/pathology , von Willebrand Factor/genetics , von Willebrand Factor/metabolism
15.
Am J Med Genet A ; 185(5): 1532-1537, 2021 05.
Article in English | MEDLINE | ID: mdl-33569883

ABSTRACT

The 22q11.2 deletion syndrome (22q11.2 DS) is the most common deletion syndrome in humans. In most cases, it occurs de novo. A rare family of three with 22q11.2 deletion syndrome (22q11.2 DS) resulting from an unbalanced 18q;22q translocation is reported here. Their deletion region is atypical in that it includes only 26 of the 36 genes in the minimal critical 22q11.2 DS region but it involves the loss of the centromeric 22q region and the entire p arm. The deletion region overlaps with seven other rare atypical cases; common to all cases was the loss of a region including SEPT5-GP1BB proximally and most of ARVCF distally. Interrogation of the deleted 22q region proximal to the canonical 22q11.2 deletion region in the DECIPHER database showed seven cases with isolated or combined traits of 22q11.2 DS, including three with clefts. The phenotypes in the present family thus may result from the loss of a subset of genes in the critical region, or alternatively the loss of other genes or sequences in the proximal 22q deletion region, or interactive effects among these. Despite the identical deletion locus in the three affected family members, expression of the 22q11.2 DS traits differed substantially among them. These three related cases thus contribute to knowledge of 22q11.2 DS in that their unusual deletion locus co-occurred with the cardinal features of the syndrome while their identical deletions are associated with variable phenotypic expression.


Subject(s)
Cell Cycle Proteins/genetics , DiGeorge Syndrome/genetics , Platelet Glycoprotein GPIb-IX Complex/genetics , Septins/genetics , Translocation, Genetic/genetics , Adolescent , Adult , Child , Chromosome Deletion , Chromosomes, Human, Pair 18/genetics , Chromosomes, Human, Pair 22/genetics , DiGeorge Syndrome/pathology , Female , Genetic Predisposition to Disease , Humans , Male , Phenotype , Young Adult
16.
Platelets ; 32(3): 314-324, 2021 Apr 03.
Article in English | MEDLINE | ID: mdl-32896192

ABSTRACT

Platelets are increasingly being recognized for playing roles beyond thrombosis and hemostasis. Today we know that they mediate inflammation by direct interactions with innate immune cells or secretion of cytokines/chemokines. Here we review their interactions with neutrophils and monocytes/macrophages in infection and sepsis, stroke, myocardial infarction and venous thromboembolism. We discuss new roles for platelet surface receptors like GPVI or GPIb and also look at platelet contributions to the formation of neutrophil extracellular traps (NETs) as well as to deep vein thrombosis during infection, e.g. in COVID-19 patients.


Subject(s)
Blood Platelets/immunology , COVID-19/immunology , Myocardial Infarction/immunology , Neutrophils/immunology , Sepsis/immunology , Stroke/immunology , Venous Thromboembolism/immunology , Blood Platelets/pathology , COVID-19/genetics , COVID-19/pathology , COVID-19/virology , Cell Communication/genetics , Cell Communication/immunology , Cytokines/genetics , Cytokines/immunology , Extracellular Traps/genetics , Extracellular Traps/immunology , Gene Expression Regulation , Humans , Inflammation , Macrophages/immunology , Macrophages/pathology , Monocytes/immunology , Monocytes/pathology , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Neutrophils/pathology , Platelet Glycoprotein GPIb-IX Complex/genetics , Platelet Glycoprotein GPIb-IX Complex/immunology , Platelet Membrane Glycoproteins/genetics , Platelet Membrane Glycoproteins/immunology , Sepsis/genetics , Sepsis/pathology , Stroke/genetics , Stroke/pathology , Venous Thromboembolism/genetics , Venous Thromboembolism/pathology
17.
Int J Mol Sci ; 22(19)2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34638529

ABSTRACT

Bernard-Soulier syndrome (BSS) is an autosomal-recessive bleeding disorder caused by biallelic variants in the GP1BA, GP1BB, and GP9 genes encoding the subunits GPIbα, GPIbß, and GPIX of the GPIb-IX complex. Pathogenic variants usually affect the extracellular or transmembrane domains of the receptor subunits. We investigated a family with BSS caused by the homozygous c.528_550del (p.Arg177Serfs*124) variant in GP1BB, which is the first mutation ever identified that affects the cytoplasmic domain of GPIbß. The loss of the intracytoplasmic tail of GPIbß results in a mild form of BSS, characterized by only a moderate reduction of the GPIb-IX complex expression and mild or absent bleeding tendency. The variant induces a decrease of the total platelet expression of GPIbß; however, all of the mutant subunit expressed in platelets is correctly assembled into the GPIb-IX complex in the plasma membrane, indicating that the cytoplasmic domain of GPIbß is not involved in assembly and trafficking of the GPIb-IX receptor. Finally, the c.528_550del mutation exerts a dominant effect and causes mild macrothrombocytopenia in heterozygous individuals, as also demonstrated by the investigation of a second unrelated pedigree. The study of this novel GP1BB variant provides new information on pathophysiology of BSS and the assembly mechanisms of the GPIb-IX receptor.


Subject(s)
Bernard-Soulier Syndrome/genetics , Platelet Glycoprotein GPIb-IX Complex/genetics , Thrombocytopenia/genetics , Adult , Bernard-Soulier Syndrome/blood , Bernard-Soulier Syndrome/pathology , Blood Platelets/physiology , Female , Humans , Male , Middle Aged , Pedigree , Platelet Glycoprotein GPIb-IX Complex/metabolism , Protein Domains/genetics , Thrombocytopenia/pathology , von Willebrand Factor/metabolism
18.
J Cell Mol Med ; 24(17): 9945-9957, 2020 09.
Article in English | MEDLINE | ID: mdl-32666618

ABSTRACT

The current standard biomarker for myocardial infarction (MI) is high-sensitive troponin. Although powerful in clinical setting, search for new markers is warranted as early diagnosis of MI is associated with improved outcomes. Extracellular vesicles (EVs) attracted considerable interest as new blood biomarkers. A training cohort used for diagnostic modelling included 30 patients with STEMI, 38 with stable angina (SA) and 30 matched-controls. Extracellular vesicle concentration was assessed by nanoparticle tracking analysis. Extracellular vesicle surface-epitopes were measured by flow cytometry. Diagnostic models were developed using machine learning algorithms and validated on an independent cohort of 80 patients. Serum EV concentration from STEMI patients was increased as compared to controls and SA. EV levels of CD62P, CD42a, CD41b, CD31 and CD40 increased in STEMI, and to a lesser extent in SA patients. An aggregate marker including EV concentration and CD62P/CD42a levels achieved non-inferiority to troponin, discriminating STEMI from controls (AUC = 0.969). A random forest model based on EV biomarkers discriminated the two groups with 100% accuracy. EV markers and RF model confirmed high diagnostic performance at validation. In conclusion, patients with acute MI or SA exhibit characteristic EV biomarker profiles. EV biomarkers hold great potential as early markers for the management of patients with MI.


Subject(s)
Angina, Stable/blood , Biomarkers/blood , Epitopes/blood , Extracellular Vesicles/genetics , ST Elevation Myocardial Infarction/blood , Acute Coronary Syndrome/blood , Acute Coronary Syndrome/metabolism , Acute Coronary Syndrome/pathology , Aged , Angina, Stable/genetics , Angina, Stable/pathology , CD40 Antigens/blood , Cohort Studies , Epitope Mapping , Epitopes/genetics , Female , Humans , Integrin alpha2/blood , Male , Middle Aged , P-Selectin/blood , Percutaneous Coronary Intervention , Platelet Endothelial Cell Adhesion Molecule-1/blood , Platelet Glycoprotein GPIb-IX Complex/genetics , ST Elevation Myocardial Infarction/genetics , ST Elevation Myocardial Infarction/pathology
19.
Circulation ; 139(10): 1300-1319, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30586735

ABSTRACT

BACKGROUND: Platelet-neutrophil interactions contribute to vascular occlusion and tissue damage in thromboinflammatory disease. Platelet glycoprotein Ibα (GPIbα), a key receptor for the cell-cell interaction, is believed to be constitutively active for ligand binding. Here, we established the role of platelet-derived protein disulfide isomerase (PDI) in reducing the allosteric disulfide bonds in GPIbα and enhancing the ligand-binding activity under thromboinflammatory conditions. METHODS: Bioinformatic analysis identified 2 potential allosteric disulfide bonds in GPIbα. Agglutination assays, flow cytometry, surface plasmon resonance analysis, a protein-protein docking model, proximity ligation assays, and mass spectrometry were used to demonstrate a direct interaction between PDI and GPIbα and to determine a role for PDI in regulating GPIbα function and platelet-neutrophil interactions. Also, real-time microscopy and animal disease models were used to study the pathophysiological role of PDI-GPIbα signaling under thromboinflammatory conditions. RESULTS: Deletion or inhibition of platelet PDI significantly reduced GPIbα-mediated platelet agglutination. Studies using PDI-null platelets and recombinant PDI or Anfibatide, a clinical-stage GPIbα inhibitor, revealed that the oxidoreductase activity of platelet surface-bound PDI was required for the ligand-binding function of GPIbα. PDI directly bound to the extracellular domain of GPIbα on the platelet surface and reduced the Cys4-Cys17 and Cys209-Cys248 disulfide bonds. Real-time microscopy with platelet-specific PDI conditional knockout and sickle cell disease mice demonstrated that PDI-regulated GPIbα function was essential for platelet-neutrophil interactions and vascular occlusion under thromboinflammatory conditions. Studies using a mouse model of ischemia/reperfusion-induced stroke indicated that PDI-GPIbα signaling played a crucial role in tissue damage. CONCLUSIONS: Our results demonstrate that PDI-facilitated cleavage of the allosteric disulfide bonds tightly regulates GPIbα function, promoting platelet-neutrophil interactions, vascular occlusion, and tissue damage under thromboinflammatory conditions.


Subject(s)
Anemia, Sickle Cell/enzymology , Blood Platelets/enzymology , Inflammation/enzymology , Neutrophils/metabolism , Platelet Adhesiveness , Platelet Glycoprotein GPIb-IX Complex/metabolism , Protein Disulfide-Isomerases/metabolism , Thrombosis/enzymology , Anemia, Sickle Cell/blood , Anemia, Sickle Cell/genetics , Animals , Disease Models, Animal , Hemoglobins/genetics , Hemoglobins/metabolism , Humans , Inflammation/blood , Inflammation/genetics , Ligands , Mice, Inbred C57BL , Mice, Knockout , Platelet Glycoprotein GPIb-IX Complex/genetics , Protein Binding , Protein Disulfide-Isomerases/deficiency , Protein Disulfide-Isomerases/genetics , Signal Transduction , Thrombosis/blood , Thrombosis/genetics
20.
Haematologica ; 105(11): 2631-2638, 2020 11 01.
Article in English | MEDLINE | ID: mdl-33131252

ABSTRACT

von Willebrand factor (VWF) is a blood glycoprotein that plays an important role in platelet thrombus formation through interaction between its A1 domain and platelet glycoprotein Ib. ARC1779, an aptamer to the VWF A1 domain, was evaluated in a clinical trial for acquired thrombotic thrombocytopenic purpura (aTTP). Subsequently, caplacizumab, an anti-VWF A1 domain nanobody, was approved for aTTP in Europe and the United States. We recently developed a novel DNA aptamer, TAGX-0004, to the VWF A1 domain; it contains an artificial base and demonstrates high affinity for VWF. To compare the effects of these three agents on VWF A1, their ability to inhibit ristocetin- or botrocetin-induced platelet aggregation under static conditions was analyzed, and the inhibition of thrombus formation under high shear stress was investigated in a microchip flow chamber system. In both assays, TAGX-0004 showed stronger inhibition than ARC1779, and had comparable inhibitory effects to caplacizumab. The binding sites of TAGX-0004 and ARC1779 were analyzed with surface plasmon resonance performed using alanine scanning mutagenesis of the VWF A1 domain. An electrophoretic mobility shift assay showed that R1395 and R1399 in the A1 domain bound to both aptamers. R1287, K1362, and R1392 contributed to ARC1779 binding, and F1366 was essential for TAGX-0004 binding. Surface plasmon resonance analysis of the binding sites of caplacizumab identified five amino acids in the VWF A1 domain (K1362, R1392, R1395, R1399, and K1406). These results suggested that TAGX-0004 possessed better pharmacological properties than caplacizumab in vitro and might be similarly promising for aTTP treatment.


Subject(s)
Aptamers, Nucleotide , Thrombosis , Europe , Humans , Platelet Glycoprotein GPIb-IX Complex/genetics , Single-Domain Antibodies , Thrombosis/drug therapy , von Willebrand Factor/genetics
SELECTION OF CITATIONS
SEARCH DETAIL