Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
J Neurosci ; 43(15): 2665-2681, 2023 04 12.
Article in English | MEDLINE | ID: mdl-36898835

ABSTRACT

The Slack channel (KCNT1, Slo2.2) is a sodium-activated and chloride-activated potassium channel that regulates heart rate and maintains the normal excitability of the nervous system. Despite intense interest in the sodium gating mechanism, a comprehensive investigation to identify the sodium-sensitive and chloride-sensitive sites has been missing. In the present study, we identified two potential sodium-binding sites in the C-terminal domain of the rat Slack channel by conducting electrophysical recordings and systematic mutagenesis of cytosolic acidic residues in the rat Slack channel C terminus. In particular, by taking advantage of the M335A mutant, which results in the opening of the Slack channel in the absence of cytosolic sodium, we found that among the 92 screened negatively charged amino acids, E373 mutants could completely remove sodium sensitivity of the Slack channel. In contrast, several other mutants showed dramatic decreases in sodium sensitivity but did not abolish it altogether. Furthermore, molecular dynamics (MD) simulations performed at the hundreds of nanoseconds timescale revealed one or two sodium ions at the E373 position or an acidic pocket composed of several negatively charged residues. Moreover, the MD simulations predicted possible chloride interaction sites. By screening predicted positively charged residues, we identified R379 as a chloride interaction site. Thus, we conclude that the E373 site and the D863/E865 pocket are two potential sodium-sensitive sites, while R379 is a chloride interaction site in the Slack channel.SIGNIFICANCE STATEMENT The research presented here identified two distinct sodium and one chloride interaction sites located in the intracellular C-terminal domain of the Slack (Slo2.2, KCNT1) channel. Identification of the sites responsible for the sodium and chloride activation of the Slack channel sets its gating property apart from other potassium channels in the BK channel family. This finding sets the stage for future functional and pharmacological studies of this channel.


Subject(s)
Potassium Channels, Sodium-Activated , Animals , Rats , Chlorides/metabolism , Potassium Channels, Sodium-Activated/metabolism , Sodium/metabolism
2.
J Neurosci ; 42(14): 3049-3064, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35197318

ABSTRACT

Anxiety disorders are a series of mental disorders characterized by anxiety and fear, but the molecular basis of these disorders remains unclear. In the present study, we find that the global Slack KO male mice exhibit anxious behaviors, whereas the Slack Y777H male mice manifest anxiolytic behaviors. The expression of Slack channels is rich in basolateral amygdala (BLA) glutamatergic neurons and downregulated in chronic corticosterone-treated mice. In addition, electrophysiological data show enhanced excitability of BLA glutamatergic neurons in the Slack KO mice and decreased excitability of these neurons in the Slack Y777H mice. Furthermore, the Slack channel deletion in BLA glutamatergic neurons is sufficient to result in enhanced avoidance behaviors, whereas Kcnt1 gene expression in the BLA or BLA-ventral hippocampus (vHPC) glutamatergic projections reverses anxious behaviors of the Slack KO mice. Our study identifies the role of the Slack channel in controlling anxious behaviors by decreasing the excitability of BLA-vHPC glutamatergic projections, providing a potential target for anxiolytic therapies.SIGNIFICANCE STATEMENT Anxiety disorders are a series of mental disorders characterized by anxiety and fear, but the molecular basis of these disorders remains unclear. Here, we examined the behaviors of loss- and gain-of-function of Slack channel mice in elevated plus maze and open field tests and found the anxiolytic role of the Slack channel. By altering the Slack channel expression in the specific neuronal circuit, we demonstrated that the Slack channel played its anxiolytic role by decreasing the excitability of BLA-vHPC glutamatergic projections. Our data reveal the role of the Slack channel in the regulation of anxiety, which may provide a potential molecular target for anxiolytic therapies.


Subject(s)
Anxiety , Basolateral Nuclear Complex , Nerve Tissue Proteins , Potassium Channels, Sodium-Activated , Animals , Anxiety/metabolism , Basolateral Nuclear Complex/metabolism , Hippocampus/metabolism , Male , Mice , Mice, Knockout , Nerve Tissue Proteins/metabolism , Potassium Channels, Sodium-Activated/metabolism
3.
Neurochem Res ; 48(1): 72-81, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35987975

ABSTRACT

Acitretin is an oral drug approved by the Food and Drug Administration that is commonly used to treat psoriasis. In recent years, acitretin has been identified as a candidate drug for the treatment of Alzheimer's disease, but its role in neuronal development is still unclear. In this study, the human neuroblastoma cell line SH-SY5Y was used as a model to study neuronal differentiation. We found that acitretin effectively promoted the differentiation of SH-SY5Y cells into neuronal cells and upregulated the expression of the neuronal marker ß-III tubulin and the mature neuronal marker NFH. Differentially expressed genes were identified by RNA sequencing and analyzed by bioinformatics approaches. The results showed that genes associated with neuron development-related pathways, such as SSPO and KCNT1, had significant changes in expression. Analysis showed that PRKCA and CAMK2B may play important roles in the process by which acitretin promotes neurodevelopment. Through whole-cell patch clamping and a microelectrode array assay, we found that acitretin-treated neurons generated electrical spikes similar to those generated by mature neurons. This study provided evidence to support an accessible and safe model of neuron-like cells and verified that acitretin can promote the differentiation of neurons and has the potential to treat brain tumors and neurodevelopmental and neurodegenerative diseases.


Subject(s)
Acitretin , Neuroblastoma , Humans , Acitretin/pharmacology , Acitretin/metabolism , Cell Line, Tumor , Neuroblastoma/metabolism , Neurons/metabolism , Cell Differentiation/physiology , Potassium Channels, Sodium-Activated/metabolism , Nerve Tissue Proteins/metabolism
4.
Bioorg Med Chem ; 95: 117487, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37812884

ABSTRACT

Malignant migrating partial seizure of infancy (MMPSI) is a devastating and pharmacoresistant form of infantile epilepsy. MMPSI has been linked to multiple gain-of-function (GOF) mutations in the KCNT1 gene, which encodes for a potassium channel often referred to as SLACK. SLACK channels are sodium-activated potassium channels distributed throughout the central nervous system (CNS) and the periphery. The investigation described here aims to discover SLACK channel inhibitor tool compounds and profile their pharmacokinetic and pharmacodynamic properties. A SLACK channel inhibitor VU0531245 (VU245) was identified via a high-throughput screen (HTS) campaign. Structure-activity relationship (SAR) studies were conducted in five distinct regions of the hit VU245. VU245 analogs were evaluated for their ability to affect SLACK channel activity using a thallium flux assay in HEK-293 cells stably expressing wild-type (WT) human SLACK. Selected analogs were tested for metabolic stability in mouse liver microsomes and plasma-protein binding in mouse plasma. The same set of analogs was tested via thallium flux for activity versus human A934T SLACK and other structurally related potassium channels, including SLICK and Maxi-K. In addition, potencies for selected VU245 analogs were obtained using whole-cell electrophysiology (EP) assays in CHO cells stably expressing WT human SLACK through an automated patch clamp system. Results revealed that this scaffold tolerates structural changes in some regions, with some analogs demonstrating improved SLACK inhibitory activity, good selectivity against the other channels tested, and modest improvements in metabolic clearance. Analog VU0935685 represents a new, structurally distinct small-molecule inhibitor of SLACK channels that can serve as an in vitro tool for studying this target.


Subject(s)
Potassium Channels , Thallium , Animals , Cricetinae , Humans , Mice , Cricetulus , HEK293 Cells , Nerve Tissue Proteins/metabolism , Potassium Channels/genetics , Potassium Channels/metabolism , Potassium Channels, Sodium-Activated/genetics , Potassium Channels, Sodium-Activated/metabolism , Seizures , Thallium/metabolism , Oxadiazoles/chemistry , Oxadiazoles/metabolism
5.
J Neurophysiol ; 125(5): 1690-1697, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33788620

ABSTRACT

Potassium channels play an important role regulating transmembrane electrical activity in essentially all cell types. We were especially interested in those that determine the intrinsic electrical properties of mammalian central neurons. Over 30 different potassium channels have been molecularly identified in brain neurons, but there often is not a clear distinction between molecular structure and the function of a particular channel in the cell. Using patch-clamp methods to search for single potassium channels in excised inside-out (ISO) somatic patches with symmetrical potassium, we found that nearly all patches contained non-voltage-inactivating channels with a single-channel conductance of 100-200 pS. This conductance range is consistent with the family of sodium-activated potassium channels (Slo2.1, Slo2.2, or collectively, KNa). The activity of these channels was positively correlated with a low cytoplasmic Na+ concentration (2-20 mM). Cell-attached recordings from intact neurons, however, showed little or no activity of this K+ channel. Attempts to increase channel activity by increasing intracellular sodium concentration ([Na+]i) with bursts of action potentials or direct perfusion of Na+ through a whole cell pipette had little effect on KNa channel activity. Furthermore, excised outside-out (OSO) patches across a range of intracellular [Na+] showed less channel activity than we had seen with excised ISO patches. Blocking the Na+/K+ pump with ouabain increased the activity of the KNa channels in excised OSO patches to levels comparable with ISO-excised patches. Our results suggest that despite their apparent high levels of expression, the activity of somatic KNa channels is tightly regulated by the activity of the Na+/K+ pump.NEW & NOTEWORTHY We studied KNa channels in mouse hippocampal CA1 neurons. Excised inside-out patches showed the channels to be prevalent and active in most patches in the presence of Na+. Cell-attached recordings from intact neurons, however, showed little channel activity. Increasing cytoplasmic sodium in intact cells showed a small effect on channel activity compared with that seen in inside-out excised patches. Blockade of the Na+/K+ pump with ouabain, however, restored the activity of the channels to that seen in inside-out patches.


Subject(s)
CA1 Region, Hippocampal/physiology , Potassium Channels, Sodium-Activated/physiology , Pyramidal Cells/physiology , Sodium/metabolism , Animals , CA1 Region, Hippocampal/drug effects , CA1 Region, Hippocampal/metabolism , Cardiotonic Agents/pharmacology , Male , Mice , Nerve Tissue Proteins/physiology , Ouabain/pharmacology , Patch-Clamp Techniques , Potassium Channels, Sodium-Activated/drug effects , Potassium Channels, Sodium-Activated/metabolism , Pyramidal Cells/drug effects , Pyramidal Cells/metabolism
6.
FASEB J ; 34(1): 1591-1601, 2020 01.
Article in English | MEDLINE | ID: mdl-31914597

ABSTRACT

The Slack (KCNT1) gene encodes sodium-activated potassium channels that are abundantly expressed in the central nervous system. Human mutations alter the function of Slack channels, resulting in epilepsy and intellectual disability. Most of the disease-causing mutations are located in the extended cytoplasmic C-terminus of Slack channels and result in increased Slack current. Previous experiments have shown that the C-terminus of Slack channels binds a number of cytoplasmic signaling proteins. One of these is Phactr1, an actin-binding protein that recruits protein phosphatase 1 (PP1) to certain phosphoprotein substrates. Using co-immunoprecipitation, we found that Phactr1 is required to link the channels to actin. Using patch clamp recordings, we found that co-expression of Phactr1 with wild-type Slack channels reduces the current amplitude but has no effect on Slack channels in which a conserved PKC phosphorylation site (S407) that regulates the current amplitude has been mutated. Furthermore, a Phactr1 mutant that disrupts the binding of PP1 but not that of actin fails to alter Slack currents. Our data suggest that Phactr1 regulates the Slack by linking PP1 to the channel. Targeting Slack-Phactr1 interactions may therefore be helpful in developing the novel therapies for brain disorders associated with the malfunction of Slack channels.


Subject(s)
Potassium Channels, Sodium-Activated/metabolism , Protein Phosphatase 1/metabolism , Actins/metabolism , Animals , Cell Line , HEK293 Cells , Humans , Membrane Potentials/physiology , Mice , Mutation/genetics , Neurons/metabolism , Patch-Clamp Techniques/methods , Rats , Signal Transduction/physiology
7.
Int J Mol Sci ; 22(1)2021 Jan 02.
Article in English | MEDLINE | ID: mdl-33401689

ABSTRACT

The sodium-activated potassium channel Slack (KNa1.1, Slo2.2, or Kcnt1) is highly expressed in populations of sensory neurons, where it mediates the sodium-activated potassium current (IKNa) and modulates neuronal activity. Previous studies suggest that Slack is involved in the processing of neuropathic pain. However, mechanisms underlying the regulation of Slack activity in this context are poorly understood. Using whole-cell patch-clamp recordings we found that Slack-mediated IKNa in sensory neurons of mice is reduced after peripheral nerve injury, thereby contributing to neuropathic pain hypersensitivity. Interestingly, Slack is closely associated with ATP-sensitive P2X3 receptors in a population of sensory neurons. In vitro experiments revealed that Slack-mediated IKNa may be bidirectionally modulated in response to P2X3 activation. Moreover, mice lacking Slack show altered nocifensive responses to P2X3 stimulation. Our study identifies P2X3/Slack signaling as a mechanism contributing to hypersensitivity after peripheral nerve injury and proposes a potential novel strategy for treatment of neuropathic pain.


Subject(s)
Adenosine Triphosphate/analogs & derivatives , Calcium/pharmacology , Nerve Tissue Proteins/metabolism , Neuralgia/metabolism , Potassium Channels, Sodium-Activated/metabolism , Receptors, Purinergic P2X3/metabolism , Sensory Receptor Cells/physiology , Adenosine Triphosphate/pharmacology , Animals , Behavior Rating Scale , Ganglia, Spinal/drug effects , Ganglia, Spinal/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/genetics , Patch-Clamp Techniques , Peripheral Nerves/pathology , Potassium Channels/metabolism , Potassium Channels/physiology , Potassium Channels, Sodium-Activated/genetics , Receptors, Purinergic P2X3/physiology , Sensory Receptor Cells/drug effects , Sensory Receptor Cells/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Signal Transduction/physiology
8.
Brain ; 142(10): 2996-3008, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31532509

ABSTRACT

Epilepsy of infancy with migrating focal seizures was first described in 1995. Fifteen years later, KCNT1 gene mutations were identified as the major disease-causing gene of this disease. Currently, the data on epilepsy of infancy with migrating focal seizures associated with KCNT1 mutations are heterogeneous and many questions remain unanswered including the prognosis and the long-term outcome especially regarding epilepsy, neurological and developmental status and the presence of microcephaly. The aim of this study was to assess data from patients with epilepsy in infancy with migrating focal seizures with KCNT1 mutations to refine the phenotype spectrum and the outcome. We used mind maps based on medical reports of children followed in the network of the French reference centre for rare epilepsies and we developed family surveys to assess the long-term outcome. Seventeen patients were included [age: median (25th-75th percentile): 4 (2-15) years, sex ratio: 1.4, length of follow-up: 4 (2-15) years]. Seventy-one per cent started at 6 (1-52) days with sporadic motor seizures (n = 12), increasing up to a stormy phase with long lasting migrating seizures at 57 (30-89) days. The others entered this stormy phase directly at 1 (1-23) day. Ten patients entered a consecutive phase at 1.3 (1-2.8) years where seizures persisted at least daily (n = 8), but presented different semiology: brief and hypertonic with a nocturnal (n = 6) and clustered (n = 6) aspects. Suppression interictal patterns were identified on the EEG in 71% of patients (n = 12) sometimes from the first EEG (n = 6). Three patients received quinidine without reported efficacy. Long-term outcome was poor with neurological sequelae and active epilepsy except for one patient who had an early and long-lasting seizure-free period. Extracerebral symptoms probably linked with KCNT1 mutation were present, including arteriovenous fistula, dilated cardiomyopathy and precocious puberty. Eight patients (47%) had died at 3 (1.5-15.4) years including three from suspected sudden unexpected death in epilepsy. Refining the electro-clinical characteristics and the temporal sequence of epilepsy in infancy with migrating focal seizures should help diagnosis of this epilepsy. A better knowledge of the outcome allows one to advise families and to define the appropriate follow-up and therapies. Extracerebral involvement should be investigated, in particular the cardiac system, as it may be involved in the high prevalence of sudden unexpected death in epilepsy in these cases.


Subject(s)
Epilepsies, Partial/genetics , Mutation , Nerve Tissue Proteins/genetics , Potassium Channels, Sodium-Activated/genetics , Sudden Unexpected Death in Epilepsy , Adolescent , Brain Mapping/methods , Child , Child, Preschool , Electroencephalography/methods , Epilepsies, Partial/metabolism , Female , Humans , Longitudinal Studies , Male , Nerve Tissue Proteins/metabolism , Phenotype , Potassium Channels/genetics , Potassium Channels/metabolism , Potassium Channels, Sodium-Activated/metabolism
9.
J Physiol ; 597(20): 5079-5092, 2019 10.
Article in English | MEDLINE | ID: mdl-31429072

ABSTRACT

KEY POINTS: Ageing is associated with changes in the respiratory system including in the lungs, rib cage and muscles. Neural drive to the diaphragm, the principal inspiratory muscle, has been reported to increase during quiet breathing with ageing. We demonstrated that low-threshold motor units of the human diaphragm recruited during quiet breathing have similar discharge frequencies across age groups and shorter discharge times in older age. With ageing, motor unit action potential area increased. We propose that there are minimal functionally significant changes in the discharge properties of diaphragm motor units with ageing despite remodelling of the motor unit in the periphery. ABSTRACT: There are changes in the skeletal, pulmonary and respiratory neuromuscular systems with healthy ageing. During eupnoea, one study has shown relatively higher crural diaphragm electromyographic activity (EMG) in healthy older adults (>51 years) than in younger adults, but these measures may be affected by the normalisation process used. A more direct method to assess neural drive involves the measurement of discharge properties of motor units. Here, to assess age-related changes in neural drive to the diaphragm during eupnoea, EMG was recorded from the costal diaphragm using a monopolar needle electrode in participants from three age groups (n ≥ 7 each): older (65-80 years); middle-aged (43-55 years) and young (23-26 years). In each group, 154, 174 and 110 single motor units were discriminated, respectively. A mixed-effects linear model showed no significant differences between age groups for onset (group mean range 9.5-10.2 Hz), peak (14.1-15.0 Hz) or offset (7.8-8.5 Hz) discharge frequencies during eupnoea. The motor unit recruitment was delayed in the older group (by ∼15% of inspiratory time; p = 0.02 cf. middle-aged group) and had an earlier offset time (by ∼15% of inspiratory time; p = 0.04 cf. young group). However, the onset of multiunit activity was similar across groups, consistent with no global increase in neural drive to the diaphragm with ageing. The area of diaphragm motor unit potentials was ∼40% larger in the middle-aged and older groups (P < 0.02), which indicates axonal sprouting and re-innervation of muscle fibres associated with ageing, even in middle-aged participants.


Subject(s)
Aging/physiology , Diaphragm/innervation , Diaphragm/physiology , Potassium Channels, Sodium-Activated/metabolism , Adult , Aged , Aged, 80 and over , Analysis of Variance , Arteries/cytology , Electromyography , Female , Humans , Male , Middle Aged , Myocytes, Smooth Muscle/physiology , Potassium Channels, Sodium-Activated/genetics , Respiratory Function Tests , Young Adult
10.
J Physiol ; 597(20): 5093-5108, 2019 10.
Article in English | MEDLINE | ID: mdl-31444905

ABSTRACT

KEY POINTS: We report that a sodium-activated potassium current, IKNa , has been inadvertently overlooked in both conduit and resistance arterial smooth muscle cells. IKNa is a major K+ resting conductance and is absent in cells of IKNa knockout (KO) mice. The phenotype of the IKNa KO is mild hypertension, although KO mice react more strongly than wild-type with raised blood pressure when challenged with vasoconstrictive agents. IKNa is negatively regulated by angiotensin II acting through Gαq protein-coupled receptors. In current clamp, KO arterial smooth muscle cells have easily evoked Ca2+ -dependent action potentials. ABSTRACT: Although several potassium currents have been reported to play a role in arterial smooth muscle (ASM), we find that one of the largest contributors to membrane conductance in both conduit and resistance ASMs has been inadvertently overlooked. In the present study, we show that IKNa , a sodium-activated potassium current, contributes a major portion of macroscopic outward current in a critical physiological voltage range that determines intrinsic cell excitability; IKNa is the largest contributor to ASM cell resting conductance. A genetic knockout (KO) mouse strain lacking KNa channels (KCNT1 and KCNT2) shows only a modest hypertensive phenotype. However, acute administration of vasoconstrictive agents such as angiotensin II (Ang II) and phenylephrine results in an abnormally large increase in blood pressure in the KO animals. In wild-type animals Ang II acting through Gαq protein-coupled receptors down-regulates IKNa , which increases the excitability of the ASMs. The complete genetic removal of IKNa in KO mice makes the mutant animal more vulnerable to vasoconstrictive agents, thus producing a paroxysmal-hypertensive phenotype. This may result from the lowering of cell resting K+ conductance allowing the cells to depolarize more readily to a variety of excitable stimuli. Thus, the sodium-activated potassium current may serve to moderate blood pressure in instances of heightened stress. IKNa may represent a new therapeutic target for hypertension and stroke.


Subject(s)
Muscle, Smooth, Vascular/physiology , Potassium Channels, Sodium-Activated/metabolism , Angiotensin II , Animals , Intermediate-Conductance Calcium-Activated Potassium Channels/genetics , Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism , Mice , Mice, Knockout , Potassium Channels, Sodium-Activated/genetics , Rats , Rats, Sprague-Dawley
11.
Genome Med ; 15(1): 30, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37127706

ABSTRACT

BACKGROUND: Single-cell RNA sequencing (scRNA-seq) provides valuable insights into human islet cell types and their corresponding stable gene expression profiles. However, this approach requires cell dissociation that complicates its utility in vivo. On the other hand, single-nucleus RNA sequencing (snRNA-seq) has compatibility with frozen samples, elimination of dissociation-induced transcriptional stress responses, and affords enhanced information from intronic sequences that can be leveraged to identify pre-mRNA transcripts. METHODS: We obtained nuclear preparations from fresh human islet cells and generated snRNA-seq datasets. We compared these datasets to scRNA-seq output obtained from human islet cells from the same donor. We employed snRNA-seq to obtain the transcriptomic profile of human islets engrafted in immunodeficient mice. In both analyses, we included the intronic reads in the snRNA-seq data with the GRCh38-2020-A library. RESULTS: First, snRNA-seq analysis shows that the top four differentially and selectively expressed genes in human islet endocrine cells in vitro and in vivo are not the canonical genes but a new set of non-canonical gene markers including ZNF385D, TRPM3, LRFN2, PLUT (ß-cells); PTPRT, FAP, PDK4, LOXL4 (α-cells); LRFN5, ADARB2, ERBB4, KCNT2 (δ-cells); and CACNA2D3, THSD7A, CNTNAP5, RBFOX3 (γ-cells). Second, by integrating information from scRNA-seq and snRNA-seq of human islet cells, we distinguish three ß-cell sub-clusters: an INS pre-mRNA cluster (ß3), an intermediate INS mRNA cluster (ß2), and an INS mRNA-rich cluster (ß1). These display distinct gene expression patterns representing different biological dynamic states both in vitro and in vivo. Interestingly, the INS mRNA-rich cluster (ß1) becomes the predominant sub-cluster in vivo. CONCLUSIONS: In summary, snRNA-seq and pre-mRNA analysis of human islet cells can accurately identify human islet cell populations, subpopulations, and their dynamic transcriptome profile in vivo.


Subject(s)
Islets of Langerhans , Transcriptome , Humans , Mice , Animals , Gene Expression Profiling , RNA Precursors/metabolism , Islets of Langerhans/metabolism , Sequence Analysis, RNA , RNA, Small Nuclear/metabolism , RNA, Messenger/metabolism , Single-Cell Analysis , Potassium Channels, Sodium-Activated/genetics , Potassium Channels, Sodium-Activated/metabolism , Protein-Lysine 6-Oxidase/genetics , Protein-Lysine 6-Oxidase/metabolism , Membrane Glycoproteins/genetics , Nerve Tissue Proteins/genetics
12.
Commun Biol ; 6(1): 1029, 2023 10 11.
Article in English | MEDLINE | ID: mdl-37821582

ABSTRACT

Mutations of the Na+-activated K+ channel Slack (KCNT1) are associated with terrible epilepsy syndromes that already begin in infancy. Here we report increased severity of acute kainic acid-induced seizures in adult and juvenile Slack knockout mice (Slack-/-) in vivo. Fittingly, we find exacerbation of cell death following kainic acid exposure in organotypic hippocampal slices as well as dissociated hippocampal cultures from Slack-/- in vitro. Furthermore, in cultured Slack-/- neurons, kainic acid-triggered Ca2+ influx and K+ efflux as well as depolarization-induced tetrodotoxin-sensitive inward currents are higher compared to the respective controls. This apparent changes in ion homeostasis could possibly explain altered action potential kinetics of Slack-/- neurons: steeper rise slope, decreased threshold, and duration of afterhyperpolarization, which ultimately lead to higher action potential frequencies during kainic acid application or injection of depolarizing currents. Based on our data, we propose Slack as crucial gatekeeper of neuronal excitability to acutely limit seizure severity.


Subject(s)
Kainic Acid , Potassium Channels , Mice , Animals , Potassium Channels/genetics , Potassium Channels, Sodium-Activated/genetics , Potassium Channels, Sodium-Activated/metabolism , Kainic Acid/toxicity , Kainic Acid/metabolism , Neurons/physiology , Seizures/chemically induced , Seizures/metabolism , Mice, Knockout
13.
J Mol Biol ; 433(15): 167091, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34090923

ABSTRACT

Ion conduction is an essential function for electrical activity in all organisms. The non-selective ion channel NaK was previously shown to adopt two stable conformations of the selectivity filter. Here, we present solid-state NMR measurements of NaK demonstrating a population shift between these conformations induced by changing the ions in the sample while the overall structure of NaK is not affected. We show that two K+-selective mutants (NaK2K and NaK2K-Y66F) suffer a complete loss of selectivity filter stability under Na+ conditions, but do not collapse into a defined structure. Widespread chemical shift perturbations are seen between the Na+ and K+ states of the K+-selective mutants in the region of the pore helix indicating structural changes. We conclude that the stronger link between the selectivity filter and the pore helix in the K+-selective mutants, compared to the non-selective wild-type NaK channel, reduces the ion-dependent conformational flexibility of the selectivity filter.


Subject(s)
Mutation , Potassium Channels, Sodium-Activated/chemistry , Potassium Channels, Sodium-Activated/metabolism , Sodium/metabolism , Hydrogen Bonding , Magnetic Resonance Imaging , Models, Molecular , Potassium Channels, Sodium-Activated/genetics , Protein Conformation , Protein Stability
14.
Methods Mol Biol ; 2188: 133-155, 2021.
Article in English | MEDLINE | ID: mdl-33119850

ABSTRACT

Genetic mutations have long been implicated in epilepsy, particularly in genes that encode ion channels and neurotransmitter receptors. Among some of those identified are voltage-gated sodium, potassium and calcium channels, and ligand-gated gamma-aminobutyric acid (GABA), neuronal nicotinic acetylcholine (CHRN), and glutamate receptors, making them key therapeutic targets. In this chapter we discuss the use of automated electrophysiological technologies to examine the impact of gene defects in two potassium channels associated with different epilepsy syndromes. The hKCNC1 gene encodes the voltage-gated potassium channel hKV3.1, and mutations in this gene cause progressive myoclonus epilepsy (PME) and ataxia due to a potassium channel mutation (MEAK). The hKCNT1 gene encodes the weakly voltage-dependent sodium-activated potassium channel hKCNT1, and mutations in this gene cause a wide spectrum of seizure disorders, including severe autosomal dominant sleep-related hypermotor epilepsy (ADSHE) and epilepsy of infancy with migrating focal seizures (EIMFS), both conditions associated with drug-resistance. Importantly, both of these potassium channels play vital roles in regulating neuronal excitability. Since its discovery in the late nineteen seventies, the patch-clamp technique has been regarded as the bench-mark technology for exploring ion channel characteristics. In more recent times, innovations in automated patch-clamp technologies, of which there are many, are enabling the study of ion channels with much greater productivity that manual systems are capable of. Here we describe aspects of Nanion NPC-16 Patchliner, examining the effects of temperature on stably and transiently transfected mammalian cells, the latter of which for most automated systems on the market is quite challenging. Remarkable breakthroughs in the development of other automated electrophysiological technologies, such as multielectrode arrays that support extracellular signal recordings, provide additional features to examine network activity in the area of ion channel research, particularly epilepsy. Both of these automated technologies enable the acquisition of consistent, robust, and reproducible data. Numerous systems have been developed with very similar capabilities, however, not all the systems on the market are adapted to work with primary cells, particularly neurons that can be problematic. This chapter also showcases methods that demonstrate the versatility of Nanion NPC-16 Patchliner and the Multi Channel Systems (MCS) multielectrode array (MEA) assay for acutely dissociated murine primary cortical neurons, enabling the study of potassium channel mutations implicated in severe refractory epilepsies.


Subject(s)
Epilepsy/pathology , Neurons/pathology , Patch-Clamp Techniques/methods , Animals , Cells, Cultured , Electrophysiological Phenomena , Epilepsy/genetics , Epilepsy/metabolism , Equipment Design , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Mutation , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Patch-Clamp Techniques/instrumentation , Potassium Channels, Sodium-Activated/genetics , Potassium Channels, Sodium-Activated/metabolism , Shaw Potassium Channels/genetics , Shaw Potassium Channels/metabolism , Transfection/instrumentation , Transfection/methods
15.
ACS Chem Neurosci ; 11(21): 3658-3671, 2020 11 04.
Article in English | MEDLINE | ID: mdl-33143429

ABSTRACT

Malignant migrating partial seizures of infancy is a rare, devastating form of epilepsy most commonly associated with gain-of-function mutations in the potassium channel, Slack. Not only is this condition almost completely pharmacoresistant, there are not even selective drug-like tools available to evaluate whether inhibition of these overactivated, mutant Slack channels may represent a viable path forward toward new antiepileptic therapies. Therefore, we used a high-throughput thallium flux assay to screen a drug-like, 100 000-compound library in search of inhibitors of both wild-type and a disease-associated mutant Slack channel. Using this approach, we discovered VU0606170, a selective Slack channel inhibitor with low micromolar potency. Critically, VU0606170 also proved effective at significantly decreasing the firing rate in overexcited, spontaneously firing cortical neuron cultures. Taken together, our data provide compelling evidence that selective inhibition of Slack channel activity can be achieved with small molecules and that inhibition of Slack channel activity in neurons produces efficacy consistent with an antiepileptic effect. Thus, the identification of VU0606170 provides a much-needed tool for advancing our understanding of the role of the Slack channel in normal physiology and disease as well as its potential as a target for therapeutic intervention.


Subject(s)
Calcium Signaling , Nerve Tissue Proteins , Potassium Channels, Sodium-Activated , Cells, Cultured , HEK293 Cells , Humans , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Potassium Channels, Sodium-Activated/antagonists & inhibitors , Potassium Channels, Sodium-Activated/metabolism
16.
Elife ; 92020 04 21.
Article in English | MEDLINE | ID: mdl-32314960

ABSTRACT

Slo2 potassium channels play important roles in neuronal function, and their mutations in humans may cause epilepsies and cognitive defects. However, it is largely unknown how Slo2 is regulated by other proteins. Here we show that the function of C. elegans Slo2 (SLO-2) depends on adr-1, a gene important to RNA editing. ADR-1 promotes SLO-2 function not by editing the transcripts of slo-2 but those of scyl-1, which encodes an orthologue of mammalian SCYL1. Transcripts of scyl-1 are greatly decreased in adr-1 mutants due to deficient RNA editing at a single adenosine in their 3'-UTR. SCYL-1 physically interacts with SLO-2 in neurons. Single-channel open probability (Po) of neuronal SLO-2 is ~50% lower in scyl-1 knockout mutant than wild type. Moreover, human Slo2.2/Slack Po is doubled by SCYL1 in a heterologous expression system. These results suggest that SCYL-1/SCYL1 is an evolutionarily conserved regulator of Slo2 channels.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , DNA-Binding Proteins/metabolism , Gene Expression Regulation/physiology , Neurons/metabolism , Potassium Channels, Sodium-Activated/metabolism , Animals , Caenorhabditis elegans , Humans , Mice , RNA Editing/physiology
17.
Brain Dev ; 42(9): 691-695, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32773162

ABSTRACT

INTRODUCTION: KCNT2 was recently recognized as a gene associated with neurodevelopmental disorder and epilepsy. CASE REPORT: We present an additional observation of a 16-year-old male patient with a novel de novo KCNT2 likely pathogenic variant and review the five previously reported cases of de novo variants in this gene. DISCUSSION: Whole exome sequencing identified the missense variant c.725C > A p.(Thr242Asn), which was confirmed by Sanger sequencing. Our patient has a refractory stereotyped and monomorphic type of hyperkinetic focal motor seizure, similar to what is seen in frontal lobe epilepsy, occurring only during sleep. This type of seizure is not usually seen in epileptic encephalopathies.


Subject(s)
Brain Diseases/genetics , Epilepsy, Frontal Lobe/genetics , Potassium Channels, Sodium-Activated/genetics , Adolescent , Brain Diseases/metabolism , Child , Epilepsy, Frontal Lobe/diagnosis , Epilepsy, Generalized/genetics , Female , Humans , Male , Mutation, Missense/genetics , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics , Phenotype , Potassium Channels, Sodium-Activated/metabolism , Exome Sequencing , Young Adult
18.
Cell Rep ; 33(4): 108303, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33113364

ABSTRACT

Gain-of-function (GOF) variants in K+ channels cause severe childhood epilepsies, but there are no mechanisms to explain how increased K+ currents lead to network hyperexcitability. Here, we introduce a human Na+-activated K+ (KNa) channel variant (KCNT1-Y796H) into mice and, using a multiplatform approach, find motor cortex hyperexcitability and early-onset seizures, phenotypes strikingly similar to those of human patients. Although the variant increases KNa currents in cortical excitatory and inhibitory neurons, there is an increase in the KNa current across subthreshold voltages only in inhibitory neurons, particularly in those with non-fast-spiking properties, resulting in inhibitory-neuron-specific impairments in excitability and action potential (AP) generation. We further observe evidence of synaptic rewiring, including increases in homotypic synaptic connectivity, accompanied by network hyperexcitability and hypersynchronicity. These findings support inhibitory-neuron-specific mechanisms in mediating the epileptogenic effects of KCNT1 channel GOF, offering cell-type-specific currents and effects as promising targets for therapeutic intervention.


Subject(s)
Action Potentials/genetics , Epilepsy/genetics , GABAergic Neurons/metabolism , Nerve Tissue Proteins/metabolism , Potassium Channels, Sodium-Activated/metabolism , Seizures/genetics , Animals , Disease Models, Animal , Humans , Mice
19.
Sci Rep ; 10(1): 3213, 2020 02 21.
Article in English | MEDLINE | ID: mdl-32081855

ABSTRACT

Gain-of-function mutations in KCNT1, the gene encoding Slack (KNa1.1) channels, result in epilepsy of infancy with migrating focal seizures (EIMFS) and several other forms of epilepsy associated with severe intellectual disability. We have generated a mouse model of this condition by replacing the wild type gene with one encoding Kcnt1R455H, a cytoplasmic C-terminal mutation homologous to a human R474H variant that results in EIMFS. We compared behavior patterns and seizure activity in these mice with those of wild type mice and Kcnt1-/- mice. Complete loss of Kcnt1 produced deficits in open field behavior and motor skill learning. Although their thresholds for electrically and chemically induced seizures were similar to those of wild type animals, Kcnt1-/- mice were significantly protected from death after maximum electroshock-induced seizures. In contrast, homozygous Kcnt1R455H/R455H mice were embryonic lethal. Video-EEG monitoring of heterozygous Kcnt1+/R455H animals revealed persistent interictal spikes, spontaneous seizures and a substantially decreased threshold for pentylenetetrazole-induced seizures. Surprisingly, Kcnt1+/R455H mice were not impaired in tasks of exploratory behavior or procedural motor learning. These findings provide an animal model for EIMFS and suggest that Slack channels are required for the development of procedural learning and of pathways that link cortical seizures to other regions required for animal survival.


Subject(s)
Genetic Predisposition to Disease , Learning , Motor Skills , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Potassium Channels, Sodium-Activated/genetics , Potassium Channels, Sodium-Activated/metabolism , Seizures/genetics , Animals , Behavior, Animal , Electroencephalography , Heterozygote , Homozygote , Humans , Mice , Mice, Transgenic , Mutation , Rats
20.
Nat Commun ; 11(1): 4076, 2020 08 14.
Article in English | MEDLINE | ID: mdl-32796851

ABSTRACT

Group 3 innate lymphoid cells (ILC3) are an important regulator for immunity, inflammation and tissue homeostasis in the intestine, but how ILC3 activation is regulated remains elusive. Here we identify a new circular RNA (circRNA) circKcnt2 that is induced in ILC3s during intestinal inflammation. Deletion of circKcnt2 causes gut ILC3 activation and severe colitis in mice. Mechanistically, circKcnt2, as a nuclear circRNA, recruits the nucleosome remodeling deacetylase (NuRD) complex onto Batf promoter to inhibit Batf expression; this in turn suppresses Il17 expression and thereby ILC3 inactivation to promote innate colitis resolution. Furthermore, Mbd3-/-Rag1-/- and circKcnt2-/-Rag1-/- mice develop severe innate colitis following dextran sodium sulfate (DSS) treatments, while simultaneous deletion of Batf promotes colitis resolution. In summary, our data support a function of the circRNA circKcnt2 in regulating ILC3 inactivation and resolution of innate colitis.


Subject(s)
Colitis/immunology , Colitis/metabolism , Lymphocytes/metabolism , Potassium Channels, Sodium-Activated/metabolism , RNA, Circular/metabolism , Animals , Colitis/pathology , DNA-Binding Proteins/genetics , Disease Models, Animal , Female , Homeodomain Proteins/genetics , Homeostasis , Humans , Immunity, Innate , Inflammation/immunology , Inflammation/pathology , Intestines/pathology , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Mice, Knockout , Potassium Channels, Sodium-Activated/genetics , RNA, Circular/genetics , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL