Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.406
Filter
Add more filters

Publication year range
1.
Cell ; 175(4): 962-972.e10, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30388453

ABSTRACT

Many US immigrant populations develop metabolic diseases post immigration, but the causes are not well understood. Although the microbiome plays a role in metabolic disease, there have been no studies measuring the effects of US immigration on the gut microbiome. We collected stool, dietary recalls, and anthropometrics from 514 Hmong and Karen individuals living in Thailand and the United States, including first- and second-generation immigrants and 19 Karen individuals sampled before and after immigration, as well as from 36 US-born European American individuals. Using 16S and deep shotgun metagenomic DNA sequencing, we found that migration from a non-Western country to the United States is associated with immediate loss of gut microbiome diversity and function in which US-associated strains and functions displace native strains and functions. These effects increase with duration of US residence and are compounded by obesity and across generations.


Subject(s)
Asian People , Emigration and Immigration , Gastrointestinal Microbiome , Adult , Bacteroides/isolation & purification , Dietary Fiber/metabolism , Emigrants and Immigrants , Humans , Metagenome , Obesity/epidemiology , Obesity/microbiology , Prevotella/isolation & purification , United States
2.
Nat Immunol ; 19(7): 755-765, 2018 07.
Article in English | MEDLINE | ID: mdl-29915298

ABSTRACT

The cytokines IL-17A and IL-17F have 50% amino-acid identity and bind the same receptor; however, their functional differences have remained obscure. Here we found that Il17f-/- mice resisted chemically induced colitis, but Il17a-/- mice did not, and that Il17f-/- CD45RBhiCD4+ T cells induced milder colitis in lymphocyte-deficient Rag2-/- mice, accompanied by an increase in intestinal regulatory T cells (Treg cells). Clostridium cluster XIVa in colonic microbiota capable of inducing Treg cells was increased in both Il17f-/- mice and mice given transfer Il17f-/- T cells, due to decreased expression of a group of antimicrobial proteins. There was substantial production of IL-17F, but not of IL-17A, not only by naive T cells but also by various colon-resident cells under physiological conditions. Furthermore, antibody to IL-17F suppressed the development of colitis, but antibody to IL-17A did not. These observations suggest that IL-17F is an effective target for the treatment of colitis.


Subject(s)
Colitis/immunology , Gastrointestinal Microbiome , Interleukin-17/antagonists & inhibitors , T-Lymphocytes, Regulatory/immunology , Animals , Cells, Cultured , Clostridium/growth & development , Clostridium/isolation & purification , Colitis/drug therapy , Interleukin-17/genetics , Interleukin-17/physiology , Intestines/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Phospholipases A2/biosynthesis , Phospholipases A2/genetics , Prevotella/isolation & purification , Ribonuclease, Pancreatic/biosynthesis , Ribonuclease, Pancreatic/genetics , beta-Defensins/biosynthesis
3.
Immunity ; 50(3): 692-706.e7, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30824326

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a severe form of lung fibrosis with a high mortality rate. However, the etiology of IPF remains unknown. Here, we report that alterations in lung microbiota critically promote pulmonary fibrosis pathogenesis. We found that lung microbiota was dysregulated, and the dysregulated microbiota in turn induced production of interleukin-17B (IL-17B) during bleomycin-induced mouse lung fibrosis. Either lung-microbiota depletion or IL-17B deficiency ameliorated the disease progression. IL-17B cooperated with tumor necrosis factor-α to induce expression of neutrophil-recruiting genes and T helper 17 (Th17)-cell-promoting genes. Three pulmonary commensal microbes, which belong to the genera Bacteroides and Prevotella, were identified to promote fibrotic pathogenesis through IL-17R signaling. We further defined that the outer membrane vesicles (OMVs) that were derived from the identified commensal microbes induced IL-17B production through Toll-like receptor-Myd88 adaptor signaling. Together our data demonstrate that specific pulmonary symbiotic commensals can promote lung fibrosis by regulating a profibrotic inflammatory cytokine network.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/microbiology , Interleukin-17/metabolism , Lung/metabolism , Lung/microbiology , Microbiota/physiology , Animals , Bacteroides/metabolism , Cytokines/metabolism , Disease Models, Animal , Inflammation/metabolism , Mice , Mice, Inbred C57BL , Myeloid Differentiation Factor 88/metabolism , Neutrophils/metabolism , Prevotella/metabolism , Signal Transduction/physiology , Toll-Like Receptors/metabolism , Tumor Necrosis Factor-alpha/metabolism
4.
EMBO J ; 41(19): e110629, 2022 10 04.
Article in English | MEDLINE | ID: mdl-35968812

ABSTRACT

Dysbiosis of vaginal microbiota is associated with increased HIV-1 acquisition, but the underlying cellular mechanisms remain unclear. Vaginal Langerhans cells (LCs) protect against mucosal HIV-1 infection via autophagy-mediated degradation of HIV-1. As LCs are in continuous contact with bacterial members of the vaginal microbiome, we investigated the impact of commensal and dysbiosis-associated vaginal (an)aerobic bacterial species on the antiviral function of LCs. Most of the tested bacteria did not affect the HIV-1 restrictive function of LCs. However, Prevotella timonensis induced a vast uptake of HIV-1 by vaginal LCs. Internalized virus remained infectious for days and uptake was unaffected by antiretroviral drugs. P. timonensis-exposed LCs efficiently transmitted HIV-1 to target cells both in vitro and ex vivo. Additionally, P. timonensis exposure enhanced uptake and transmission of the HIV-1 variants that establish infection after sexual transmission, the so-called Transmitted Founder variants. Our findings, therefore, suggest that P. timonensis might set the stage for enhanced HIV-1 susceptibility during vaginal dysbiosis and advocate targeted treatment of P. timonensis during bacterial vaginosis to limit HIV-1 infection.


Subject(s)
HIV Infections , HIV-1 , Antiviral Agents , Dysbiosis , Female , Humans , Langerhans Cells , Prevotella
5.
Immunity ; 46(1): 29-37, 2017 01 17.
Article in English | MEDLINE | ID: mdl-28087240

ABSTRACT

Elevated inflammation in the female genital tract is associated with increased HIV risk. Cervicovaginal bacteria modulate genital inflammation; however, their role in HIV susceptibility has not been elucidated. In a prospective cohort of young, healthy South African women, we found that individuals with diverse genital bacterial communities dominated by anaerobes other than Gardnerella were at over 4-fold higher risk of acquiring HIV and had increased numbers of activated mucosal CD4+ T cells compared to those with Lactobacillus crispatus-dominant communities. We identified specific bacterial taxa linked with reduced (L. crispatus) or elevated (Prevotella, Sneathia, and other anaerobes) inflammation and HIV infection and found that high-risk bacteria increased numbers of activated genital CD4+ T cells in a murine model. Our results suggest that highly prevalent genital bacteria increase HIV risk by inducing mucosal HIV target cells. These findings might be leveraged to reduce HIV acquisition in women living in sub-Saharan Africa.


Subject(s)
Cervix Uteri/microbiology , HIV Infections/microbiology , Vagina/microbiology , Animals , Bacteria, Anaerobic , CD4-Positive T-Lymphocytes/immunology , Cohort Studies , Female , Flow Cytometry , Humans , Lactobacillus , Mice , Microbiota/immunology , Prevotella , South Africa
6.
EMBO J ; 40(23): e108287, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34676563

ABSTRACT

Prevotella copri is a prevalent inhabitant of the human gut and has been associated with plant-rich diet consumption and diverse health states. The underlying genetic basis of these associations remains enigmatic due to the lack of genetic tools. Here, we developed a novel versatile genetic toolbox for rapid and efficient genetic insertion and allelic exchange applicable to P. copri strains from multiple clades. Enabled by the genetic platform, we systematically investigated the specificity of polysaccharide utilization loci (PULs) and identified four highly conserved PULs for utilizing arabinan, pectic galactan, arabinoxylan, and inulin, respectively. Further genetic and functional analysis of arabinan utilization systems illustrate that P. copri has evolved two distinct types of arabinan-processing PULs (PULAra ) and that the type-II PULAra is significantly enriched in individuals consuming a vegan diet compared to other diets. In summary, this genetic toolbox will enable functional genetic studies for P. copri in future.


Subject(s)
Diet, Vegetarian , Gastrointestinal Microbiome , Genetic Loci , Genome, Bacterial , Polysaccharides/metabolism , Prevotella/genetics , Prevotella/metabolism , Feces/microbiology , Humans , Prevotella/classification , Prevotella/isolation & purification
7.
Genome Res ; 32(6): 1112-1123, 2022 06.
Article in English | MEDLINE | ID: mdl-35688483

ABSTRACT

The oral microbiome is linked to oral and systemic health, but its fluctuation under frequent daily activities remains elusive. Here, we sampled saliva at 10- to 60-min intervals to track the high-resolution microbiome dynamics during the course of human activities. This dense time series data showed that eating activity markedly perturbed the salivary microbiota, with tongue-specific Campylobacter concisus and Oribacterium sinus and dental plaque-specific Lautropia mirabilis, Rothia aeria, and Neisseria oralis increased after every meal in a temporal order. The observation was reproducible in multiple subjects and across an 11-mo period. The microbiome composition showed significant diurnal oscillation patterns at different taxonomy levels with Prevotella/Alloprevotella increased at night and Bergeyella HMT 206/Haemophilus slowly increased during the daytime. We also identified microbial co-occurring patterns in saliva that are associated with the intricate biogeography of the oral microbiome. Microbial source tracking analysis showed that the contributions of distinct oral niches to the salivary microbiome were dynamically affected by daily activities, reflecting the role of saliva in exchanging microbes with other oral sites. Collectively, our study provides insights into the temporal microbiome variation in saliva and highlights the need to consider daily activities and diurnal factors in design of oral microbiome studies.


Subject(s)
Microbiota , Saliva , Humans , Prevotella , RNA, Ribosomal, 16S , Saliva/microbiology
8.
J Infect Dis ; 230(1): e43-e47, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052703

ABSTRACT

Dysbiosis of the vaginal microbiome poses a serious risk for sexual human immunodeficiency virus type 1 (HIV-1) transmission. Prevotella spp are abundant during vaginal dysbiosis and associated with enhanced HIV-1 susceptibility; however, underlying mechanisms remain unclear. Here, we investigated the direct effect of vaginal bacteria on HIV-1 susceptibility of vaginal CD4+ T cells. Notably, pre-exposure to Prevotella timonensis enhanced HIV-1 uptake by vaginal T cells, leading to increased viral fusion and enhanced virus production. Pre-exposure to antiretroviral inhibitors abolished P timonensis-enhanced infection. Our study shows that the vaginal microbiome directly affects mucosal CD4+ T-cell susceptibility, emphasizing importance of vaginal dysbiosis diagnosis and treatment.


Subject(s)
CD4-Positive T-Lymphocytes , Dysbiosis , HIV Infections , HIV-1 , Prevotella , Vagina , Humans , Female , Prevotella/isolation & purification , Dysbiosis/microbiology , Vagina/microbiology , Vagina/virology , Vagina/immunology , CD4-Positive T-Lymphocytes/immunology , HIV Infections/microbiology , HIV Infections/immunology , HIV Infections/virology , Disease Susceptibility , Microbiota , Virus Internalization
9.
J Neuroinflammation ; 21(1): 147, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38835057

ABSTRACT

BACKGROUND: The gut microbiota plays a critical role in regulating brain function through the microbiome-gut-brain axis (MGBA). Dysbiosis of the gut microbiota is associated with neurological impairment in Traumatic brain injury (TBI) patients. Our previous study found that TBI results in a decrease in the abundance of Prevotella copri (P. copri). P. copri has been shown to have antioxidant effects in various diseases. Meanwhile, guanosine (GUO) is a metabolite of intestinal microbiota that can alleviate oxidative stress after TBI by activating the PI3K/Akt pathway. In this study, we investigated the effect of P. copri transplantation on TBI and its relationship with GUO-PI3K/Akt pathway. METHODS: In this study, a controlled cortical impact (CCI) model was used to induce TBI in adult male C57BL/6J mice. Subsequently, P. copri was transplanted by intragastric gavage for 7 consecutive days. To investigate the effect of the GUO-PI3K/Akt pathway in P. copri transplantation therapy, guanosine (GUO) was administered 2 h after TBI for 7 consecutive days, and PI3K inhibitor (LY294002) was administered 30 min before TBI. Various techniques were used to assess the effects of these interventions, including quantitative PCR, neurological behavior tests, metabolite analysis, ELISA, Western blot analysis, immunofluorescence, Evans blue assays, transmission electron microscopy, FITC-dextran permeability assay, gastrointestinal transit assessment, and 16 S rDNA sequencing. RESULTS: P. copri abundance was significantly reduced after TBI. P. copri transplantation alleviated motor and cognitive deficits tested by the NSS, Morris's water maze and open field test. P. copri transplantation attenuated oxidative stress and blood-brain barrier damage and reduced neuronal apoptosis after TBI. In addition, P. copri transplantation resulted in the reshaping of the intestinal flora, improved gastrointestinal motility and intestinal permeability. Metabolomics and ELISA analysis revealed a significant increase in GUO levels in feces, serum and injured brain after P. copri transplantation. Furthermore, the expression of p-PI3K and p-Akt was found to be increased after P. copri transplantation and GUO treatment. Notably, PI3K inhibitor LY294002 treatment attenuated the observed improvements. CONCLUSIONS: We demonstrate for the first time that P. copri transplantation can improve GI functions and alter gut microbiota dysbiosis after TBI. Additionally, P. copri transplantation can ameliorate neurological deficits, possibly via the GUO-PI3K/Akt signaling pathway after TBI.


Subject(s)
Brain Injuries, Traumatic , Disease Models, Animal , Mice, Inbred C57BL , Animals , Mice , Male , Neurological Rehabilitation/methods , Prevotella , Gastrointestinal Microbiome/physiology , Phosphatidylinositol 3-Kinases/metabolism
10.
J Antimicrob Chemother ; 79(4): 868-874, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38394460

ABSTRACT

OBJECTIVES: Recently, reports on antimicrobial-resistant Bacteroides and Prevotella isolates have increased in the Netherlands. This urged the need for a surveillance study on the antimicrobial susceptibility profile of Bacteroides, Phocaeicola, Parabacteroides and Prevotella isolates consecutively isolated from human clinical specimens at eight different Dutch laboratories. METHODS: Each laboratory collected 20-25 Bacteroides (including Phocaeicola and Parabacteroides) and 10-15 Prevotella isolates for 3 months. At the national reference laboratory, the MICs of amoxicillin, amoxicillin/clavulanic acid, piperacillin/tazobactam, meropenem, imipenem, metronidazole, clindamycin, tetracycline and moxifloxacin were determined using agar dilution. Isolates with a high MIC of metronidazole or a carbapenem, or harbouring cfiA, were subjected to WGS. RESULTS: Bacteroides thetaiotaomicron/faecis isolates had the highest MIC90 values, whereas Bacteroides fragilis had the lowest MIC90 values for amoxicillin/clavulanic acid, piperacillin/tazobactam, meropenem, imipenem and moxifloxacin. The antimicrobial profiles of the different Prevotella species were similar, except for amoxicillin, for which the MIC50 ranged from 0.125 to 16 mg/L for Prevotella bivia and Prevotella buccae, respectively. Three isolates with high metronidazole MICs were sequenced, of which one Bacteroides thetaiotaomicron isolate harboured a plasmid-located nimE gene and a Prevotella melaninogenica isolate harboured a nimA gene chromosomally.Five Bacteroides isolates harboured a cfiA gene and three had an IS element upstream, resulting in high MICs of carbapenems. The other two isolates harboured no IS element upstream of the cfiA gene and had low MICs of carbapenems. CONCLUSIONS: Variations in resistance between species were observed. To combat emerging resistance in anaerobes, monitoring resistance and conducting surveillance are essential.


Subject(s)
Anti-Infective Agents , Metronidazole , Humans , Meropenem , Moxifloxacin , Netherlands , Laboratories , Bacteroides , Anti-Bacterial Agents/pharmacology , Carbapenems , Bacteroides fragilis , Imipenem , Microbial Sensitivity Tests , Piperacillin , Tazobactam , Prevotella/genetics , Amoxicillin , Clavulanic Acid
11.
BMC Microbiol ; 24(1): 268, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030520

ABSTRACT

BACKGROUND: Recently, there has been an increase in the number of studies focusing on the association between the gut microbiome and obesity or inflammatory diseases, especially in adults. However, there is a lack of studies investigating the association between gut microbiome and gastrointestinal (GI) diseases in adolescents. METHOD: We obtained 16S rRNA-seq datasets for gut microbiome analysis from 202 adolescents, comprising ulcerative colitis (UC), Crohn's disease (CD), obesity (Ob), and healthy controls (HC). We utilized Quantitative Insights Into Microbial Ecology (QIIME) and Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) to acquire Operational Taxonomic Units (OTUs). Subsequently, we analyzed Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology (KO) terms and pathway enrichment for the identified OTUs. RESULTS: In this study, we investigated the difference between the gut microbiomes in adolescents with GI diseases and those in healthy adolescents using 202 samples of 16S rRNA sequencing data. The distribution of the six main gut microbiota (i.e., unclassified Dorea, unclassified Lachnospiraceae, unclassified Ruminococcus, Faecalibacterium prausnitzii, Prevotella copri, unclassified Sutterella) was different based on the status of obesity and inflammatory diseases. Dysbiosis was observed within Lachnospiraceae in adolescents with inflammatory diseases (i.e., UC and CD), and in adolescents with obesity within Prevotella and Sutterella. More specifically, our results showed that the relative abundance of Faecalibacterium prausnitzii and unclassified Lachnospiraceae was more than 10% and 8% higher, respectively, in the UC group compared to the CD, Ob, and HC groups. Additionally, the Ob group had over 20% and over 3% higher levels of Prevotella copri and unclassified Sutterella, respectively, compared to the UC, CD, and HC groups. Also, inspecting associations between the six specific microbiota and KO terms, we found that the six microbiota -relating KO terms were associated with NOD-like receptor signaling. These six taxa differences may affect the immune system and inflammatory response by affecting NOD-like receptor signaling in the host during critical adolescence. CONCLUSION: In this study, we discovered that dysbiosis of the microbial community had varying degrees of influence on the inflammatory and immune response pathways in adolescents with inflammatory diseases and obesity.


Subject(s)
Bacteria , Gastrointestinal Microbiome , Obesity , Phylogeny , RNA, Ribosomal, 16S , Humans , Gastrointestinal Microbiome/genetics , Adolescent , RNA, Ribosomal, 16S/genetics , Obesity/microbiology , Obesity/immunology , Female , Male , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/immunology , Crohn Disease/microbiology , Crohn Disease/immunology , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/immunology , Dysbiosis/microbiology , Prevotella/genetics , Prevotella/classification , Prevotella/isolation & purification , Faecalibacterium prausnitzii/genetics , Feces/microbiology
12.
BMC Microbiol ; 24(1): 201, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851693

ABSTRACT

BACKGROUND: People living with HIV (PLWH) are at increased risk of acquisition of multidrug resistant organisms due to higher rates of predisposing factors. The gut microbiome is the main reservoir of the collection of antimicrobial resistance determinants known as the gut resistome. In PLWH, changes in gut microbiome have been linked to immune activation and HIV-1 associated complications. Specifically, gut dysbiosis defined by low microbial gene richness has been linked to low Nadir CD4 + T-cell counts. Additionally, sexual preference has been shown to strongly influence gut microbiome composition in PLWH resulting in different Prevotella or Bacteroides enriched enterotypes, in MSM (men-who-have-sex-with-men) or no-MSM, respectively. To date, little is known about gut resistome composition in PLWH due to the scarcity of studies using shotgun metagenomics. The present study aimed to detect associations between different microbiome features linked to HIV-1 infection and gut resistome composition. RESULTS: Using shotgun metagenomics we characterized the gut resistome composition of 129 HIV-1 infected subjects showing different HIV clinical profiles and 27 HIV-1 negative controls from a cross-sectional observational study conducted in Barcelona, Spain. Most no-MSM showed a Bacteroides-enriched enterotype and low microbial gene richness microbiomes. We did not identify differences in resistome diversity and composition according to HIV-1 infection or immune status. However, gut resistome was more diverse in MSM group, Prevotella-enriched enterotype and gut micorbiomes with high microbial gene richness compared to no-MSM group, Bacteroides-enriched enterotype and gut microbiomes with low microbial gene richness. Additionally, gut resistome beta-diversity was different according to the defined groups and we identified a set of differentially abundant antimicrobial resistance determinants based on the established categories. CONCLUSIONS: Our findings reveal a significant correlation between gut resistome composition and various host variables commonly associated with gut microbiome, including microbiome enterotype, microbial gene richness, and sexual preference. These host variables have been previously linked to immune activation and lower Nadir CD4 + T-Cell counts, which are prognostic factors of HIV-related comorbidities. This study provides new insights into the relationship between antibiotic resistance and clinical characteristics of PLWH.


Subject(s)
Gastrointestinal Microbiome , HIV Infections , Adult , Female , Humans , Male , Middle Aged , Bacteria/genetics , Bacteria/classification , Bacteria/drug effects , Bacteria/isolation & purification , Dysbiosis/microbiology , Feces/microbiology , Feces/virology , Gastrointestinal Microbiome/genetics , HIV Infections/microbiology , HIV Infections/virology , HIV Infections/complications , HIV-1/genetics , HIV-1/drug effects , Homosexuality, Male , Metagenomics , Prevotella/genetics , Prevotella/isolation & purification , Sexual Behavior , Spain
13.
Exp Dermatol ; 33(5): e15087, 2024 May.
Article in English | MEDLINE | ID: mdl-38685821

ABSTRACT

Hidradenitis Suppurativa (HS) is a chronic autoinflammatory skin disease with activated keratinocytes, tunnel formation and a complex immune infiltrate in tissue. The HS microbiome is polymicrobial with an abundance of commensal gram-positive facultative (GPs) Staphylococcus species and gram-negative anaerobic (GNA) bacteria like Prevotella, Fusobacterium and Porphyromonas with increasing predominance of GNAs with disease severity. We sought to define the keratinocyte response to bacteria commonly isolated from HS lesions to probe pathogenic relationships between HS and the microbiome. Type strains of Prevotella nigrescens, Prevotella melaninogenica, Prevotella intermedia, Prevotella asaccharolytica, Fusobacterium nucleatum, as well as Staphylococcus aureus and the normal skin commensal Staphylococcus epidermidis were heat-killed and co-incubated with normal human keratinocytes. RNA was collected and analysed using RNAseq and RT-qPCR. The supernatant was collected from cell culture for protein quantification. Transcriptomic profiles between HS clinical samples and stimulated keratinocytes were compared. Co-staining of patient HS frozen sections was used to localize bacteria in lesions. A mouse intradermal injection model was used to investigate early immune recruitment. TLR4 and JAK inhibitors were used to investigate mechanistic avenues of bacterial response inhibition. GNAs, especially F. nucleatum, stimulated vastly higher CXCL8, IL17C, CCL20, IL6, TNF and IL36γ transcription in normal skin keratinocytes than the GPs S. epidermidis and S. aureus. Using RNAseq, we found that F. nucleatum (and Prevotella) strongly induced the IL-17 pathway in keratinocytes and overlapped with transcriptome profiles of HS patient clinical samples. Bacteria were juxtaposed to activated keratinocytes in vivo, and F. nucleatum strongly recruited murine neutrophil and macrophage migration. Both the TLR4 and pan-JAK inhibitors reduced cytokine production. Detailed transcriptomic profiling of healthy skin keratinocytes exposed to GNAs prevalent in HS revealed a potent, extensive inflammatory response vastly stronger than GPs. GNAs stimulated HS-relevant genes, including many genes in the IL-17 response pathway, and were significantly associated with HS tissue transcriptomes. The close association of activated keratinocytes with bacteria in HS lesions and innate infiltration in murine skin cemented GNA pathogenic potential. These novel mechanistic insights could drive future targeted therapies.


Subject(s)
Hidradenitis Suppurativa , Keratinocytes , Keratinocytes/immunology , Keratinocytes/microbiology , Keratinocytes/metabolism , Humans , Animals , Mice , Hidradenitis Suppurativa/microbiology , Hidradenitis Suppurativa/immunology , Staphylococcus aureus/immunology , Staphylococcus epidermidis/immunology , Fusobacterium nucleatum/immunology , Transcriptome , Cytokines/metabolism , Bacteria, Anaerobic , Interleukin-17/metabolism , Microbiota , Prevotella/immunology
14.
Int J Mol Sci ; 25(4)2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38396863

ABSTRACT

Metabolic dysfunction-associated fatty liver disease (MAFLD), formerly known as non-alcoholic fatty liver disease (NAFLD), is characterized by hepatic fat accumulation by metabolic dysfunction. The rising prevalence of MAFLD, especially among Asians, may be associated with changes in gut microbiota. We investigated gut microbiota characteristics and potential mechanisms leading to MAFLD development according to enterotypes. Case-control studies examining the gut microbiota composition between MAFLD and non-MAFLD participants were searched in public databases until July 2023. Gut microbiota was categorized into two enterotypes by principal component analysis. According to the enterotypes, LEfSe, ALDEx2, XGBoost, and DCiPatho were utilized to identify differential abundances and pathogenic microbes in the gut between the MAFLD and non-MAFLD groups. We analyzed microbial community networks with the SprCC module and predicted microbial functions. In the Prevotella enterotype (ET-P), 98.6% of Asians and 65.1% of Caucasians were associated with MAFLD (p = 0.049). MAFLD incidence was correlated with enterotype, age, obesity, and ethnicity (p < 0.05). Asian MAFLD patients exhibited decreased Firmicutes and Akkermansia muciniphila and increased Bacteroidetes and P. copri. The pathogenicity scores were 0.006 for A. muciniphila and 0.868 for P. copri. The Asian MAFLD group showed decreased stability and complexity in the gut microbiota network. Metagenome function analysis revealed higher fructose metabolism and lipopolysaccharide (LPS) biosynthesis and lower animal proteins and α-linolenic acid metabolism in Asians with MAFLD compared with the non-MAFLD group. LPS biosynthesis was positively correlated with P. copri (p < 0.05). In conclusion, P. copri emerged as a potential microbial biomarker for MAFLD. These findings enhance our understanding of the pathological mechanisms of MAFLD mediated through the gut microbiota, providing insights for future interventions.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Humans , Lipopolysaccharides , Dysbiosis , Prevotella/genetics
15.
Trop Anim Health Prod ; 56(5): 169, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769230

ABSTRACT

Rumen cud transfaunation re-establishes rumen micro environment and improves fermentation in recipient animals affected with digestive disorders. Preserving rumen cud or fluid will increase its availability for the treatment of rumen fermentation disorders, without having to maintain donor animals. Rumen fluid collected from healthy goats, fed standard ration having roughage 70% and concentrate 30%, was lyophilized (prefreezing -80 °C, 48 h; lyophilization -45 °C, 32 h) using 5% glycerol as cryoprotectant. The 16 S metagenome analysis of the lyophilized rumen fluid (LRF) revealed an abundance of Prevotella (33.2%). Selenomonas ruminantium (1.87%) and Megasphaera elsdenii (0.23%) were also present. Twenty-four goats having history of high grain feeding and exhibiting clinical symptoms of rumen fermentation disorders were randomly distributed into either one of the two treatment groups viz., T1 = oral administration of LRF 31 g/animal/day and T2 = oral administration of sodium bicarbonate (SB) 15 g/animal/day. Post intervention LRF and SB, improved animal body condition, feed intake, fecal consistency, elevated the ruminal pH at 48 h, reduced propionate and lactate at 48 h, reduced total volatile fatty acids (TVFA) and ammonia nitrogen at 24 h. Significant reduction in serum blood urea nitrogen (BUN) and urea levels were observed even from 24 h post intervention irrespective of the treatments. LRF significantly improved acetate and decreased propionate production compared to SB. LRF at 7.5% (v/v) can thus be used to counteract ruminal fermentation disorders in goats sequel to high grain ration.


Subject(s)
Animal Feed , Fermentation , Goats , Rumen , Animals , Goats/physiology , Rumen/microbiology , Rumen/metabolism , Animal Feed/analysis , Freeze Drying , Diet/veterinary , Edible Grain/chemistry , Prevotella , Hydrogen-Ion Concentration , Fatty Acids, Volatile/metabolism , Fatty Acids, Volatile/analysis , Acidosis/veterinary , Random Allocation , Megasphaera , Selenomonas , Male
16.
J Infect Dis ; 228(5): 646-656, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37427495

ABSTRACT

BACKGROUND: Bacterial vaginosis (BV) is a common vaginal dysbiosis that often recurs following first-line antibiotics. We investigated if vaginal microbiota composition was associated with BV recurrence. METHODS: We analyzed samples and data from 121 women who participated in 3 published trials evaluating novel interventions for improving BV cure, including concurrent antibiotic treatment of regular sexual partners (RSPs). Women diagnosed with BV received first-line antibiotics and self-collected vaginal swabs pretreatment and the day after finishing antibiotics (immediately posttreatment). 16S rRNA gene sequencing was performed on vaginal samples. Logistic regression explored associations between BV recurrence and features of the vaginal microbiota pre- and posttreatment. RESULTS: Sixteen women (13% [95% confidence interval {CI}, 8%-21%]) experienced BV recurrence within 1 month of treatment. Women with an untreated RSP were more likely to experience recurrence than women with no RSP (P = .008) or an RSP who received treatment (P = .011). A higher abundance of Prevotella pretreatment (adjusted odds ratio [AOR], 1.35 [95% CI, 1.05-1.91]) and Gardnerella immediately posttreatment (AOR, 1.23 [95% CI, 1.03-1.49]) were associated with increased odds of BV recurrence. CONCLUSIONS: Having specific Prevotella spp prior to recommended treatment and persistence of Gardnerella immediately posttreatment may contribute to the high rates of BV recurrence. Interventions that target these taxa are likely required to achieve sustained BV cure.


Subject(s)
Vaginosis, Bacterial , Female , Humans , Vaginosis, Bacterial/complications , Anti-Bacterial Agents/therapeutic use , Gardnerella/genetics , Prevotella/genetics , RNA, Ribosomal, 16S/genetics , Vagina/microbiology , Treatment Failure
17.
Proteomics ; 23(21-22): e2200121, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36444514

ABSTRACT

The time-resolved impact of monensin on the active rumen microbiome was studied in a rumen-simulating technique (Rusitec) with metaproteomic and metabolomic approaches. Monensin treatment caused a decreased fibre degradation potential that was observed by the reduced abundance of proteins assigned to fibrolytic bacteria and glycoside hydrolases, sugar transporters and carbohydrate metabolism. Decreased proteolytic activities resulted in reduced amounts of ammonium as well as branched-chain fatty acids. The family Prevotellaceae exhibited increased resilience in the presence of monensin, with a switch of the metabolism from acetate to succinate production. Prevotella species harbour a membrane-bound electron transfer complex, which drives the reduction of fumarate to succinate, which is the substrate for propionate production in the rumen habitat. Besides the increased succinate production, a concomitant depletion of methane concentration was observed upon monensin exposure. Our study demonstrates that Prevotella sp. shifts its metabolism successfully in response to monensin exposure and Prevotellaceae represents the key bacterial family stabilizing the rumen microbiota during exposure to monensin.


Subject(s)
Microbiota , Monensin , Animals , Monensin/pharmacology , Monensin/metabolism , Succinic Acid/metabolism , Prevotella/metabolism , Bacteria/metabolism , Succinates/metabolism , Rumen/metabolism , Rumen/microbiology , Fermentation , Diet
18.
Ann Rheum Dis ; 82(5): 621-629, 2023 05.
Article in English | MEDLINE | ID: mdl-36627170

ABSTRACT

OBJECTIVES: Prevotella copri is considered to be a contributing factor in rheumatoid arthritis (RA). However, in some non-Westernised countries, healthy individuals also harbour an abundance of P. copri in the intestine. This study investigated the pathogenicity of RA patient-derived P. copri (P. copri RA) compared with healthy control-derived P. copri (P. copri HC). METHODS: We obtained 13 P. copri strains from the faeces of patients with RA and healthy controls. Following whole genome sequencing, the sequences of P. copri RA and P. copri HC were compared. To analyse the arthritis-inducing ability of P. copri, we examined two arthritis models (1) a collagen-induced arthritis model harbouring P. copri under specific-pathogen-free conditions and (2) an SKG mouse arthritis model under P. copri-monocolonised conditions. Finally, to evaluate the ability of P. copri to activate innate immune cells, we performed in vitro stimulation of bone marrow-derived dendritic cells (BMDCs) by P. copri RA and P. copri HC. RESULTS: Comparative genomic analysis revealed no apparent differences in the core gene contents between P. copri RA and P. copri HC, but pangenome analysis revealed the high genome plasticity of P. copri. We identified a P. copri RA-specific genomic region as a conjugative transposon. In both arthritis models, P. copri RA-induced more severe arthritis than P. copri HC. In vitro BMDC stimulation experiments revealed the upregulation of IL-17 and Th17-related cytokines (IL-6, IL-23) by P. copri RA. CONCLUSION: Our findings reveal the genetic diversity of P. copri, and the genomic signatures associated with strong arthritis-inducing ability of P. copri RA. Our study contributes towards elucidation of the complex pathogenesis of RA.


Subject(s)
Arthritis, Rheumatoid , Gastrointestinal Microbiome , Animals , Mice , Gastrointestinal Microbiome/genetics , Arthritis, Rheumatoid/genetics , Prevotella/genetics , Genomics , Disease Models, Animal
19.
BMC Infect Dis ; 23(1): 841, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38031010

ABSTRACT

BACKGROUND: The studies on SARS-CoV-2 and human microbiota have yielded inconsistent results regarding microbiota α-diversity and key microbiota. To address these issues and explore the predictive ability of human microbiota for the prognosis of SARS-CoV-2 infection, we conducted a reanalysis of existing studies. METHODS: We reviewed the existing studies on SARS-CoV-2 and human microbiota in the Pubmed and Bioproject databases (from inception through October 29, 2021) and extracted the available raw 16S rRNA sequencing data of human microbiota. Firstly, we used meta-analysis and bioinformatics methods to reanalyze the raw data and evaluate the impact of SARS-CoV-2 on human microbial α-diversity. Secondly, machine learning (ML) was employed to assess the ability of microbiota to predict the prognosis of SARS-CoV-2 infection. Finally, we aimed to identify the key microbiota associated with SARS-CoV-2 infection. RESULTS: A total of 20 studies related to SARS-CoV-2 and human microbiota were included, involving gut (n = 9), respiratory (n = 11), oral (n = 3), and skin (n = 1) microbiota. Meta-analysis showed that in gut studies, when limiting factors were studies ruled out the effect of antibiotics, cross-sectional and case-control studies, Chinese studies, American studies, and Illumina MiSeq sequencing studies, SARS-CoV-2 infection was associated with down-regulation of microbiota α-diversity (P < 0.05). In respiratory studies, SARS-CoV-2 infection was associated with down-regulation of α-diversity when the limiting factor was V4 sequencing region (P < 0.05). Additionally, the α-diversity of skin microbiota was down-regulated at multiple time points following SARS-CoV-2 infection (P < 0.05). However, no significant difference in oral microbiota α-diversity was observed after SARS-CoV-2 infection. ML models based on baseline respiratory (oropharynx) microbiota profiles exhibited the ability to predict outcomes (survival and death, Random Forest, AUC = 0.847, Sensitivity = 0.833, Specificity = 0.750) after SARS-CoV-2 infection. The shared differential Prevotella and Streptococcus in the gut, respiratory tract, and oral cavity was associated with the severity and recovery of SARS-CoV-2 infection. CONCLUSIONS: SARS-CoV-2 infection was related to the down-regulation of α-diversity in the human gut and respiratory microbiota. The respiratory microbiota had the potential to predict the prognosis of individuals infected with SARS-CoV-2. Prevotella and Streptococcus might be key microbiota in SARS-CoV-2 infection.


Subject(s)
COVID-19 , Microbiota , Humans , SARS-CoV-2 , Cross-Sectional Studies , Dysbiosis , RNA, Ribosomal, 16S , Prognosis , Prevotella
20.
BMC Infect Dis ; 23(1): 633, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37759232

ABSTRACT

BACKGROUND: Brain abscesses caused by Prevotella oris are rarely reported. Here, we described a case of a brain infection caused by Prevotella oris that was detected by metagenomic next-generation sequencing (mNGS). CASE PRESENTATION: A 63-year-old man with no medical history reported headache in the right frontotemporal region, fever, and intermittent diplopia. Magnetic resonance imaging (MRI) revealed abnormal signals and enhancement changes in the superior sellar region. mNGS testing showed that cerebrospinal fluid collected from the spine was positive for Prevotella oris. After receiving a combined treatment of antibiotic therapy, the patient recovered well. CONCLUSION: We reviewed the relevant literature and summarized the characteristics and prognosis of this type of bacterial infection to provide ideas for clinicians to diagnose and treat this disease.


Subject(s)
Brain Abscess , Male , Humans , Middle Aged , Brain Abscess/diagnosis , Brain Abscess/drug therapy , Prevotella/genetics , Brain/diagnostic imaging , Combined Modality Therapy
SELECTION OF CITATIONS
SEARCH DETAIL