Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Plant Cell ; 35(1): 409-434, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36222567

ABSTRACT

Fluctuations in nitrogen (N) availability influence protein and starch levels in maize (Zea mays) seeds, yet the underlying mechanism is not well understood. Here, we report that N limitation impacted the expression of many key genes in N and carbon (C) metabolism in the developing endosperm of maize. Notably, the promoter regions of those genes were enriched for P-box sequences, the binding motif of the transcription factor prolamin-box binding factor 1 (PBF1). Loss of PBF1 altered accumulation of starch and proteins in endosperm. Under different N conditions, PBF1 protein levels remained stable but PBF1 bound different sets of target genes, especially genes related to the biosynthesis and accumulation of N and C storage products. Upon N-starvation, the absence of PBF1 from the promoters of some zein genes coincided with their reduced expression, suggesting that PBF1 promotes zein accumulation in the endosperm. In addition, PBF1 repressed the expression of sugary1 (Su1) and starch branching enzyme 2b (Sbe2b) under normal N supply, suggesting that, under N-deficiency, PBF1 redirects the flow of C skeletons for zein toward the formation of C compounds. Overall, our study demonstrates that PBF1 modulates C and N metabolism during endosperm development in an N-dependent manner.


Subject(s)
Endosperm , Zein , Endosperm/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Zea mays/metabolism , Plant Proteins/metabolism , Prolamins/genetics , Zein/genetics , Zein/metabolism , Nitrogen/metabolism , Starch/metabolism , Gene Expression Regulation, Plant
2.
Planta ; 260(1): 19, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839605

ABSTRACT

MAIN CONCLUSION: A mutation was first found to cause the great generation of glutelin precursors (proglutelins) in rice (Oryza sativa L.) endosperm, and thus referred to as GPGG1. The GPGG1 was involved in synthesis and compartmentation of storage proteins. The PPR-like gene in GPGG1-mapped region was determined as its candidate gene. In the wild type rice, glutelins and prolamins are synthesized on respective subdomains of rough endoplasmic reticulum (ER) and intracellularly compartmentalized into different storage protein bodies. In this study, a storage protein mutant was obtained and characterized by the great generation of proglutelins combining with the lacking of 13 kD prolamins. A dominant genic-mutation, referred to as GPGG1, was clarified to result in the proteinous alteration. Novel saccular composite-ER was shown to act in the synthesis of proglutelins and 14 kD prolamins in the mutant. Additionally, a series of organelles including newly occurring several compartments were shown to function in the transfer, trans-plasmalemmal transport, delivery, deposition and degradation of storage proteins in the mutant. The GPGG1 gene was mapped to a 67.256 kb region of chromosome 12, the pentatricopeptide repeat (PPR)-like gene in this region was detected to contain mutational sites.


Subject(s)
Endosperm , Glutens , Mutation , Oryza , Oryza/genetics , Oryza/metabolism , Endosperm/genetics , Endosperm/metabolism , Glutens/genetics , Glutens/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Prolamins/genetics , Prolamins/metabolism , Seed Storage Proteins/genetics , Seed Storage Proteins/metabolism , Endoplasmic Reticulum/metabolism , Chromosome Mapping , Genome, Plant/genetics
3.
Int J Mol Sci ; 25(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38928285

ABSTRACT

Rice prolamins are categorized into three groups by molecular size (10, 13, or 16 kDa), while the 13 kDa prolamins are assigned to four subgroups (Pro13a-I, Pro13a-II, Pro13b-I, and Pro13b-II) based on cysteine residue content. Since lowering prolamin content in rice is essential to minimize indigestion and allergy risks, we generated four knockout lines using CRISPR-Cas9, which selectively reduced the expression of a specific subgroup of the 13 kDa prolamins. These four mutant rice lines also showed the compensatory expression of glutelins and non-targeted prolamins and were accompanied by low grain weight, altered starch content, and atypically-shaped starch granules and protein bodies. Transcriptome analysis identified 746 differentially expressed genes associated with 13 kDa prolamins during development. Correlation analysis revealed negative associations between genes in Pro13a-I and those in Pro13a-II and Pro13b-I/II subgroups. Furthermore, alterations in the transcription levels of 9 ER stress and 17 transcription factor genes were also observed in mutant rice lines with suppressed expression of 13 kDa prolamin. Our results provide profound insight into the functional role of 13 kDa rice prolamins in the regulatory mechanisms underlying rice seed development, suggesting their promising potential application to improve nutritional and immunological value.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Gene Expression Regulation, Plant , Oryza , Prolamins , Starch , Oryza/genetics , Oryza/metabolism , Prolamins/metabolism , Prolamins/genetics , Starch/metabolism , Gene Editing/methods , Seed Storage Proteins/genetics , Seed Storage Proteins/metabolism , Seeds/genetics , Seeds/metabolism , Glutens/genetics , Glutens/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Profiling
4.
Transgenic Res ; 31(1): 43-58, 2022 02.
Article in English | MEDLINE | ID: mdl-34427836

ABSTRACT

Wheat seed storage proteins (prolamins) are important for the grain quality because they provide a characteristic texture to wheat flour products. In wheat endosperm cells, prolamins are transported from the Endoplasmic reticulum to Protein storage vacuoles through two distinct pathways-a conventional pathway passing through the Golgi apparatus and an unconventional Golgi-bypassing pathway during which prolamins accumulate in the ER lumen, forming Protein bodies. Unfortunately, transport studies conducted previously achieved limited success because of the seed-specificity of the latter pathway and the multigene architecture of prolamins. To overcome this difficulty, we expressed either of the two families of wheat prolamins, namely α-gliadin or High-molecular-weight subunit of glutenin, in soybean seed, which naturally lacks prolamin-like proteins. SDS-PAGE analysis indicated the successful expression of recombinant wheat prolamins in transgenic soybean seeds. Their accumulation states were quite different-α-gliadin accumulated with partial fragmentation whereas the HMW-glutenin subunit formed disulfide-crosslinked polymers without fragmentation. Immunoelectron microscopy of seed sections revealed that α-gliadin was transported to PSVs whereas HMW-glutenin was deposited in novel ER-derived compartments distinct from PSVs. Observation of a developmental stage of seed cells showed the involvement of post-Golgi Prevacuolar compartments in the transport of α-gliadin. In a similar stage of cells, deposits of HMW-glutenin surrounded by membranes studded with ribosomes were observed confirming the accumulation of this prolamin as ER-derived PBs. Subcellular fractionation analysis supported the electron microscopy observations. Our results should help in better understanding of molecular events during the transport of prolamins in wheat.


Subject(s)
Gliadin , Glycine max , Flour , Gliadin/genetics , Gliadin/metabolism , Glutens/genetics , Glutens/metabolism , Prolamins/genetics , Prolamins/metabolism , Seeds/genetics , Seeds/metabolism , Glycine max/genetics , Glycine max/metabolism , Triticum/genetics , Triticum/metabolism
5.
BMC Genomics ; 22(1): 864, 2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34852761

ABSTRACT

BACKGROUND: Prolamins, unique to Gramineae (grasses), play a key role in the human diet. Thinopyrum elongatum (syn. Agropyron elongatum or Lophopyrum elongatum), a grass of the Triticeae family with a diploid E genome (2n = 2x = 14), is genetically well-characterized, but little is known about its prolamin genes and the relationships with homologous loci in the Triticeae species. RESULTS: In this study, a total of 19 α-gliadin, 9 γ-gliadin, 19 ω-gliadin, 2 high-molecular-weight glutenin subunit (HMW-GS), and 5 low-molecular-weight glutenin subunit (LMW-GS) genes were identified in the Th. elongatum genome. Micro-synteny and phylogenetic analysis revealed dynamic changes of prolamin gene regions and genetic affinities among Th. elongatum, Triticum aestivum, T. urartu and Aegilops tauschii. The Th. elongatum genome, like the B subgenome of T. aestivum, only contained celiac disease epitope DQ8-glia-α1/DQ8.5-glia-α1, which provided a theoretical basis for the low gluten toxicity wheat breeding. The transcriptome data of Th. elongatum exhibited differential expression in quantity and pattern in the same subfamily or different subfamilies. Dough rheological properties of T. aestivum-Th. elongatum disomic substitution (DS) line 1E(1D) showed higher peak height values than that of their parents, and DS6E(6D) exhibited fewer α-gliadins, which indicates the potential usage for wheat quality breeding. CONCLUSIONS: Overall, this study provided a comprehensive overview of the prolamin gene family in Th. elongatum, and suggested a promising use of this species in the generation of improved wheat breeds intended for the human diet.


Subject(s)
Plant Breeding , Poaceae , Prolamins , Phylogeny , Poaceae/genetics , Prolamins/genetics , Triticum/genetics
6.
Plant Cell ; 30(10): 2529-2552, 2018 10.
Article in English | MEDLINE | ID: mdl-30190374

ABSTRACT

In developing rice (Oryza sativa) endosperm, mRNAs of the major storage proteins, glutelin and prolamine, are transported and anchored to distinct subdomains of the cortical endoplasmic reticulum. RNA binding protein RBP-P binds to both glutelin and prolamine mRNAs, suggesting a role in some aspect of their RNA metabolism. Here, we show that rice lines expressing mutant RBP-P mislocalize both glutelin and prolamine mRNAs. Different mutant RBP-P proteins exhibited varying degrees of reduced RNA binding and/or protein-protein interaction properties, which may account for the mislocalization of storage protein RNAs. In addition, partial loss of RBP-P function conferred a broad phenotypic variation ranging from dwarfism, chlorophyll deficiency, and sterility to late flowering and low spikelet fertility. Transcriptome analysis highlighted the essential role of RBP-P in regulating storage protein genes and several essential biological processes during grain development. Overall, our data demonstrate the significant roles of RBP-P in glutelin and prolamine mRNA localization and in the regulation of genes important for plant growth and development through its RNA binding activity and cooperative regulation with interacting proteins.


Subject(s)
Endosperm/metabolism , Glutens/genetics , Oryza/metabolism , Prolamins/genetics , RNA-Binding Proteins/metabolism , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Endosperm/genetics , Gene Expression Regulation, Plant , Glutens/metabolism , Mutation , Oryza/genetics , Oryza/growth & development , Prolamins/metabolism , Protein Domains , Protein Multimerization , RNA, Messenger/metabolism , RNA, Plant/metabolism , RNA-Binding Proteins/genetics
7.
Proc Natl Acad Sci U S A ; 115(52): 13312-13317, 2018 12 26.
Article in English | MEDLINE | ID: mdl-30530679

ABSTRACT

Fifteen full-length wheat grain avenin-like protein coding genes (TaALP) were identified on chromosome arms 7AS, 4AL, and 7DS of bread wheat with each containing five genes. Besides the a- and b-type ALPs, a c type was identified in the current paper. Both a and b types have two subunits, named x and y types. The five genes on each of the three chromosome arms consisted of two x-type genes, two y-type genes, and one c-type gene. The a-type genes were typically of 520 bp in length, whereas the b types were of 850 bp in length, and the c type was of 470 bp in length. The ALP gene transcript levels were significantly up-regulated in Blumeria graminis f. sp. tritici (Bgt)-infected wheat grain caryopsis at early grain filling. Wild emmer wheat [(WEW), Triticum dicoccoides] populations were focused on in our paper to identify allelic variations of ALP genes and to study the influence of natural selection on certain alleles. Consequently, 25 alleles were identified for TdALP-bx-7AS, 13 alleles were identified for TdALP-ax-7AS, 7 alleles were identified for TdALP-ay-7AS, and 4 alleles were identified for TdALP-ax-4AL Correlation studies on TdALP gene diversity and ecological stresses suggested that environmental factors contribute to the ALP polymorphism formation in WEW. Many allelic variants of ALPs in the endosperm of WEW are not present in bread wheat and therefore could be utilized in breeding bread wheat varieties for better quality and elite plant defense characteristics.


Subject(s)
Prolamins/genetics , Triticum/genetics , Alleles , Biological Evolution , Chromosome Mapping , Chromosomes, Plant , Gene Expression Regulation, Plant/genetics , Genes, Plant , Genetic Variation/genetics , Plant Breeding , Plant Diseases/genetics , Poaceae/genetics , Prolamins/metabolism , Selection, Genetic/genetics
8.
Plant Physiol ; 179(4): 1692-1703, 2019 04.
Article in English | MEDLINE | ID: mdl-30696748

ABSTRACT

Celiac disease is the most common food-induced enteropathy in humans, with a prevalence of approximately 1% worldwide. It is induced by digestion-resistant, proline- and glutamine-rich seed storage proteins, collectively referred to as gluten, found in wheat (Triticum aestivum). Related prolamins are present in barley (Hordeum vulgare) and rye (Secale cereale). The incidence of both celiac disease and a related condition called nonceliac gluten sensitivity is increasing. This has prompted efforts to identify methods of lowering gluten in wheat, one of the most important cereal crops. Here, we used bulked segregant RNA sequencing and map-based cloning to identify the genetic lesion underlying a recessive, low-prolamin mutation (lys3a) in diploid barley. We confirmed the mutant identity by complementing the lys3a mutant with a transgenic copy of the wild-type barley gene and then used targeting-induced local lesions in genomes to identify induced single-nucleotide polymorphisms in the three homeologs of the corresponding wheat gene. Combining inactivating mutations in the three subgenomes of hexaploid bread wheat in a single wheat line lowered gliadin and low-molecular-weight glutenin accumulation by 50% to 60% and increased free and protein-bound lysine by 33%.


Subject(s)
Glutens/genetics , Hordeum/genetics , Triticum/genetics , Cloning, Molecular , DNA Mutational Analysis , Diploidy , Mutation, Missense , Plants, Genetically Modified , Prolamins/genetics , Sequence Analysis, RNA
9.
Plant J ; 92(4): 571-583, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28857322

ABSTRACT

Among the wheat prolamins important for its end-use traits, α-gliadins are the most abundant, and are also a major cause of food-related allergies and intolerances. Previous studies of various wheat species estimated that between 25 and 150 α-gliadin genes reside in the Gli-2 locus regions. To better understand the evolution of this complex gene family, the DNA sequence of a 1.75-Mb genomic region spanning the Gli-2 locus was analyzed in the diploid grass, Aegilops tauschii, the ancestral source of D genome in hexaploid bread wheat. Comparison with orthologous regions from rice, sorghum, and Brachypodium revealed rapid and dynamic changes only occurring to the Ae. tauschii Gli-2 region, including insertions of high numbers of non-syntenic genes and a high rate of tandem gene duplications, the latter of which have given rise to 12 copies of α-gliadin genes clustered within a 550-kb region. Among them, five copies have undergone pseudogenization by various mutation events. Insights into the evolutionary relationship of the duplicated α-gliadin genes were obtained from their genomic organization, transcription patterns, transposable element insertions and phylogenetic analyses. An ancestral glutamate-like receptor (GLR) gene encoding putative amino acid sensor in all four grass species has duplicated only in Ae. tauschii and generated three more copies that are interspersed with the α-gliadin genes. Phylogenetic inference and different gene expression patterns support functional divergence of the Ae. tauschii GLR copies after duplication. Our results suggest that the duplicates of α-gliadin and GLR genes have likely taken different evolutionary paths; conservation for the former and neofunctionalization for the latter.


Subject(s)
Genome, Plant/genetics , Gliadin/genetics , Multigene Family/genetics , Poaceae/genetics , Triticum/genetics , Amino Acid Sequence , Evolution, Molecular , Gene Duplication , Genetic Loci , Genomics , Molecular Sequence Data , Phylogeny , Prolamins/genetics , Promoter Regions, Genetic/genetics , Sequence Analysis, DNA , Synteny
10.
Genetica ; 146(1): 45-51, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29030762

ABSTRACT

Avenin-like storage proteins influence the rheological properties and processing quality in common wheat, and the discovery of new alleles will benefit wheat quality improvement. In this study, 13 avenin-like b alleles (TaALPb7D-A-M) were discovered in 108 Aegilops tauschii Coss. accessions. Ten alleles were reported for the first time, while the remaining three alleles were the same as alleles in other species. A total of 15 nucleotide changes were detected in the 13 alleles, resulting in only 11 amino acid changes because of synonymous mutations. Alleles TaALPb7D-E, TaALPb7D-G, and TaALPb7D-J encoded the same protein. These polymorphic sites existed in the N-terminus, Repetitive region (Left), Repetitive region (Right) and C-terminus domains, with no polymorphisms in the signal peptide sequence nor in those encoding the 18 conserved cysteine residues. Phylogenetic analysis divided the TaALPb7Ds into four clades. The Ae. tauschii alleles were distributed in all four clades, while the alleles derived from common wheat, TaALPb7D-G and TaALPb7D-C, belonged to clade III and IV, respectively. Alleles TaALPb7D-G and TaALPb7D-C were the most widely distributed, being present in nine and six countries, respectively. Iran and Turkey exhibited the highest genetic diversity with respect to TaALPb7D alleles, accessions from these countries carrying seven and six alleles, respectively, which implied that these countries were the centers of origin of the avenin-like b gene. The new alleles discovered and the phylogenetic analysis of avenin-like b genes will provide breeding materials and a theoretical basis for wheat quality improvement.


Subject(s)
Genetic Variation , Poaceae/genetics , Prolamins/genetics , Alleles , Genes, Plant , Phylogeny , Polymorphism, Single Nucleotide , Prolamins/classification
11.
Genetica ; 146(3): 255-264, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29748764

ABSTRACT

Nine novel high-molecular-weight prolamins (HMW-prolamins) were isolated from Leymus multicaulis and L. chinensis. Based on the structure of the repetitive domains, all nine genes were classified as D-hordeins but not high-molecular-weight glutenin subunits (HMW-GSs) that have been previously isolated in Leymus spp. Four genes, Lmul 1.2, 2.4, 2.7, and Lchi 2.5 were verified by bacterial expression, whereas the other five sequences (1.3 types) were classified as pseudogenes. The four Leymus D-hordein proteins had longer N-termini than those of Hordeum spp. [116/118 vs. 110 amino acid (AA) residues], whereas three (Lmul 1.2, 2.4, and 2.7) contained shorter N-termini than those of the Ps. juncea (116 vs. 118 AA residues). Furthermore, Lmul 1.2 was identified as the smallest D-hordein, and Lmul 1.2 and 2.7 had an additional cysteines. Phylogenetic analysis supported that the nine D-hordeins of Leymus formed two independent clades, with all the 1.3 types clustered with Ps. juncea Ns 1.3, whereas the others were clustered together with the D-hordeins from Hordeum and Ps. juncea and the HMW-GSs from Leymus. Within the clade of four D-hordein genes and HMW-GSs, the HMW-GSs of Leymus formed a separated branch that served as an intermediate between the D-hordeins of Ps. juncea and Leymus. These novel D-hordeins may be potentially utilized in the improvement of food processing properties particularly those relating to extra cysteine residues. The findings of the present study also provide basic information for understanding the HMW-prolamins among Triticeae species, as well as expand the sources of D-hordeins from Hordeum to Leymus.


Subject(s)
Molecular Weight , Plant Proteins/chemistry , Poaceae/chemistry , Prolamins/chemistry , Amino Acid Sequence , Gene Expression , Genes, Plant , Genome, Plant , Open Reading Frames , Phylogeny , Plant Proteins/genetics , Poaceae/genetics , Prolamins/genetics , Recombinant Proteins , Sequence Analysis, DNA
12.
Plant Cell Rep ; 37(2): 209-223, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29075848

ABSTRACT

KEY MESSAGE: Bioactive peptide was produced by fusion to rice prolamins in transgenic rice seeds. Their accumulation levels were affected by their deposition sites and by compensatory rebalancing between prolamins within PB-Is. Peptide immunotherapy using analogue peptide ligands (APLs) is one of promising treatments against autoimmune diseases. Use of seed storage protein as a fusion carrier is reasonable strategy for production of such small size bioactive peptides. In this study, to examine the efficacy of various rice prolamins deposited in ER-derived protein bodies (PB-Is), the APL12 from the Glucose-6-phosphate isomerase (GPI325-339) was expressed by fusion to four types of representative prolamins under the control of the individual native promoters. When the 14 and 16 kDa Cys-rich prolamins, which were localized in middle layer of PB-Is, were used for production of the APL12, they highly accumulated in transgenic rice seeds (~ 200 µg/grain). By contrast, fusion to the 10 and 13 kDa prolamins, which were localized in the core and outermost layer of PB-Is, resulted in lower levels of accumulation (~ 40 µg/grain). These results suggest that accumulation levels were highly affected by their deposition sites. Next, when different prolamin/APL12 fusion proteins were co-expressed to increase accumulation levels, they could not be increased so much as their expected additive levels. High accumulation of one type prolamin/APL12 led to reduction of other type(s) prolamin/APL12 to maintain the limited amounts of prolamins that can be deposited in PB-Is. Moreover, suppression of endogenous seed proteins by RNA interference also did not significantly enhance the accumulation levels of prolamin/APL12. These findings suggest that there may be compensatory rebalancing mechanism that controls the accumulation levels of prolamins deposited within PB-Is.


Subject(s)
Oryza/metabolism , Peptides/metabolism , Plant Proteins/metabolism , Recombinant Fusion Proteins/metabolism , Endosperm/genetics , Endosperm/metabolism , Gene Expression Regulation, Plant , Immunoblotting , Microscopy, Confocal , Oryza/genetics , Peptides/genetics , Plant Proteins/genetics , Plants, Genetically Modified , Prolamins/genetics , Prolamins/metabolism , Recombinant Fusion Proteins/genetics , Seeds/genetics , Seeds/metabolism
13.
New Phytol ; 210(4): 1259-68, 2016 06.
Article in English | MEDLINE | ID: mdl-26831622

ABSTRACT

In some eukaryotes, endoplasmic reticulum (ER) stress induces regulated inositol-requiring enzyme 1 (IRE1)-dependent decay (RIDD) of mRNAs. Recently, the expression levels of the mRNAs encoding some secretory proteins were reported to be downregulated by RIDD in the vegetative tissues of plants. However, the characteristics of plant RIDD have been insufficiently investigated due to difficulty of in planta analyses. Here, the RIDD susceptibilities of various mRNAs that are difficult to analyze in planta were examined using transient expression analyses of rice protoplasts. In this system, the mRNAs encoding three rice seed storage proteins (SSPs) - namely α-globulin, 16-kDa prolamin and 10-kDa prolamin - were downregulated in response to ER stress. The rapid ER stress-induced degradation of these mRNAs was repressed in cells in which the ribonuclease activity of IRE1 was specifically abolished by genome editing, suggesting that the mRNAs encoding certain SSPs are strong targets of RIDD. Furthermore, we investigated whether these RIDD targets are substrates of the IRE1 ribonuclease using a recombinant IRE1 protein, and identified candidate IRE1-mediated cleavage sites. Overall, the results demonstrate the existence of a post-transcriptional mechanism of regulation of SSPs, and illustrate the basic and multifaceted characteristics of RIDD in higher plants.


Subject(s)
Endoplasmic Reticulum Stress/physiology , Oryza/physiology , Ribonucleases/metabolism , Alpha-Globulins/genetics , Alpha-Globulins/metabolism , Gene Expression , Gene Expression Regulation, Plant , Oryza/enzymology , Oryza/genetics , Prolamins/genetics , Prolamins/metabolism , Protoplasts , RNA Processing, Post-Transcriptional , RNA Stability , RNA, Messenger/genetics , Ribonucleases/genetics , Seed Storage Proteins/genetics , Seed Storage Proteins/metabolism
14.
Transgenic Res ; 25(1): 19-31, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26507269

ABSTRACT

C-hordein in barley and ω-gliadins in wheat are members of the prolamins protein families. Prolamins are the major component of cereal storage proteins and composed of non-essential amino acids (AA) such as proline and glutamine therefore have low nutritional value. Using double stranded RNAi silencing technology directed towards C-hordein we obtained transgenic barley lines with up to 94.7% reduction in the levels of C-hordein protein relative to the parental line. The composition of the prolamin fraction of the barley parental line cv. Golden Promise was resolved using SDS-PAGE electrophoresis, the protein band were excised and the proteins identified by quadrupole-time-of-flight mass spectrometry. Subsequent SDS-PAGE separation and analysis of the prolamin fraction of the transgenic lines revealed a reduction in the amounts of C-hordeins and increases in the content of other hordein family members. Analysis of the AA composition of the transgenic lines showed that the level of essential amino acids increased with a concomitant reduction in proline and glutamine. Both the barley C-hordein and wheat ω-gliadin genes proved successful for RNAi-gene mediated suppression of barley C-hordein level. All transgenic lines that exhibited a reduction for C-hordein showed off-target effects: the lines exhibited increased level of B/γ-hordein while D-hordein level was reduced. Furthermore, the multicopy insertions correlated negatively with silencing.


Subject(s)
Amino Acids/chemistry , Glutens/genetics , Hordeum/chemistry , Hordeum/genetics , Seeds/chemistry , Amino Acids/genetics , Electrophoresis, Polyacrylamide Gel , Gliadin/genetics , Glutens/metabolism , Plants, Genetically Modified , Prolamins/analysis , Prolamins/genetics , Prolamins/metabolism , RNA Interference , Seeds/genetics , Tandem Mass Spectrometry/methods , Triticum/genetics
15.
Dev Genes Evol ; 225(1): 31-7, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25420747

ABSTRACT

Four low-molecular-weight-isoleucine (LMW-i)-type and one novel chimeric (between LMW-i and LMW-methionine (m) types) low-molecular-weight glutenin subunit (LMW-GS) genes were characterized from wild emmer wheat (Triticum dicoccoides), designated as emmer-1 to emmer-5. All five LMW-GS genes possessed the same primary structure shared by other published LMW-GSs. The three genes emmer-1, emmer-3, and emmer-5 are similar, with the exception that emmer-3 and emmer-5 lost a few repeat motifs compared to emmer-1. Gene duplication and insertions/deletions of repeat motifs mediated through unequal crossing over may be responsible for the generation of these three Glu-3 alleles. Although the first residue of mature peptide of emmer-4 is isoleucine, it is not typical LMW-i-type LMW-GS. Phylogenetic analysis indicated that emmer-4 is located in the LMW-m subgroup, suggesting a closer relationship with LMW-m-type gene Y14104 of T. durum. Sequence alignment indicated that the emmer-4 is likely a chimeric gene generated by illegitimate recombination between LMW-i and LMW-m type. Unequal crossing over and illegitimate recombination are effective mechanisms for enriching both copy numbers and variations of LMW-GSs.


Subject(s)
Glutens/genetics , Triticum/genetics , Amino Acid Sequence , Evolution, Molecular , Genes, Plant , Glutens/chemistry , Molecular Sequence Data , Molecular Weight , Phylogeny , Prolamins/chemistry , Prolamins/genetics , Sequence Alignment
16.
Biosci Biotechnol Biochem ; 79(11): 1771-8, 2015.
Article in English | MEDLINE | ID: mdl-26086399

ABSTRACT

This work revealed peanut seed prolamins likely displaying a defensive role besides the known nitrogen storage. Drought stress and proteomic approaches were used in varieties of peanuts to explore the prolamin member in association with a test against Aspergillus flavus spore germination. The stress effect was showed by aerial biomass, leaf content of malondialdehyde, and seed contamination by A. flavus. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis profiles were not informative for the antifungal polypeptides. From two-dimensional gel electrophoresis, the suspected polypeptides were those with pI 5.45-5.75 and sizes of 22.0-30.5 kDa specifically in Spanish-type peanuts. Regarding to the drought effect in most of these peanuts, the spot peak volume analysis deduced three novel prolamin-related antifungal polypeptides at pI 5.75-5.8 with 30.5, 27.5-28.5, and 22.0-22.5 kDa, which was confirmed after isoelectric purification at pH 5.60. The data could not yet conclude their correlation with resistance to drought and to seed infection by A. flavus.


Subject(s)
Arachis/genetics , Nitrogen/metabolism , Prolamins/metabolism , Stress, Physiological , Antifungal Agents , Arachis/chemistry , Aspergillus flavus/metabolism , Aspergillus flavus/pathogenicity , Droughts , Electrophoresis, Polyacrylamide Gel , Peptides , Prolamins/genetics , Proteomics , Seeds/chemistry
17.
Biosci Biotechnol Biochem ; 79(4): 566-73, 2015.
Article in English | MEDLINE | ID: mdl-25522807

ABSTRACT

Cereal prolamins, which are alcohol-soluble seed storage proteins, can induce ER-derived protein bodies (PBs) in heterologous tissue. Like maize and wheat prolamins, rice prolamins can form ER-derived PBs, but the region of mature polypeptides that is essential for PB formation has not been identified. In this study, we examined the formation mechanisms of ER-derived PB-like structures by expressing rice 13 kDa prolamin-deletion mutants fused to green fluorescent protein (GFP) in heterologous tissues such as yeast. The 13 kDa prolamin-GFP fusion protein was stably accumulated in transgenic yeast and formed an ER-derived PB-like structure. In contrast, rice α-globulin-GFP fusion protein was transported to vacuoles. In addition, the middle and COOH-terminal regions of 13 kDa prolamin formed ER-derived PB-like structures, whereas the NH2-terminal region of 13 kDa prolamin did not form such structures. These results suggest that the middle and COOH-terminal regions of 13 kDa prolamin can be retained and thus can induce ER-derived PB in yeast.


Subject(s)
Oryza/genetics , Prolamins/chemistry , Recombinant Fusion Proteins/chemistry , Seeds/genetics , Alpha-Globulins/chemistry , Alpha-Globulins/genetics , Alpha-Globulins/metabolism , Endoplasmic Reticulum/metabolism , Gene Expression , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Oryza/metabolism , Plasmids/chemistry , Plasmids/metabolism , Prolamins/genetics , Prolamins/metabolism , Protein Transport , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Seeds/metabolism , Vacuoles/metabolism
18.
Proc Natl Acad Sci U S A ; 109(50): 20543-8, 2012 Dec 11.
Article in English | MEDLINE | ID: mdl-23184965

ABSTRACT

Wheat supplies about 20% of the total food calories consumed worldwide and is a national staple in many countries. Besides being a key source of plant proteins, it is also a major cause of many diet-induced health issues, especially celiac disease. The only effective treatment for this disease is a total gluten-free diet. The present report describes an effort to develop a natural dietary therapy for this disorder by transcriptional suppression of wheat DEMETER (DME) homeologs using RNA interference. DME encodes a 5-methylcytosine DNA glycosylase responsible for transcriptional derepression of gliadins and low-molecular-weight glutenins (LMWgs) by active demethylation of their promoters in the wheat endosperm. Previous research has demonstrated these proteins to be the major source of immunogenic epitopes. In this research, barley and wheat DME genes were cloned and localized on the syntenous chromosomes. Nucleotide diversity among DME homeologs was studied and used for their virtual transcript profiling. Functional conservation of DME enzyme was confirmed by comparing the motif and domain structure within and across the plant kingdom. Presence and absence of CpG islands in prolamin gene sequences was studied as a hallmark of hypo- and hypermethylation, respectively. Finally the epigenetic influence of DME silencing on accumulation of LMWgs and gliadins was studied using 20 transformants expressing hairpin RNA in their endosperm. These transformants showed up to 85.6% suppression in DME transcript abundance and up to 76.4% reduction in the amount of immunogenic prolamins, demonstrating the possibility of developing wheat varieties compatible for the celiac patients.


Subject(s)
DNA Glycosylases/genetics , Genes, Plant , Hordeum/enzymology , Hordeum/genetics , Plant Proteins/genetics , Triticum/enzymology , Triticum/genetics , Amino Acid Sequence , Base Sequence , Celiac Disease/diet therapy , Chromosome Mapping , Cloning, Molecular , CpG Islands , DNA Glycosylases/chemistry , DNA Glycosylases/metabolism , DNA, Plant/genetics , Diet, Gluten-Free , Dietary Proteins/adverse effects , Genetic Variation , Humans , Models, Molecular , Molecular Sequence Data , Phylogeny , Plant Proteins/adverse effects , Plant Proteins/chemistry , Plant Proteins/metabolism , Prolamins/genetics , Prolamins/metabolism , RNA Interference , Sequence Homology, Amino Acid , Triticum/adverse effects
19.
BMC Genomics ; 15: 581, 2014 Jul 09.
Article in English | MEDLINE | ID: mdl-25007843

ABSTRACT

BACKGROUND: Tef (Eragrostis tef), an indigenous cereal critical to food security in the Horn of Africa, is rich in minerals and protein, resistant to many biotic and abiotic stresses and safe for diabetics as well as sufferers of immune reactions to wheat gluten. We present the genome of tef, the first species in the grass subfamily Chloridoideae and the first allotetraploid assembled de novo. We sequenced the tef genome for marker-assisted breeding, to shed light on the molecular mechanisms conferring tef's desirable nutritional and agronomic properties, and to make its genome publicly available as a community resource. RESULTS: The draft genome contains 672 Mbp representing 87% of the genome size estimated from flow cytometry. We also sequenced two transcriptomes, one from a normalized RNA library and another from unnormalized RNASeq data. The normalized RNA library revealed around 38000 transcripts that were then annotated by the SwissProt group. The CoGe comparative genomics platform was used to compare the tef genome to other genomes, notably sorghum. Scaffolds comprising approximately half of the genome size were ordered by syntenic alignment to sorghum producing tef pseudo-chromosomes, which were sorted into A and B genomes as well as compared to the genetic map of tef. The draft genome was used to identify novel SSR markers, investigate target genes for abiotic stress resistance studies, and understand the evolution of the prolamin family of proteins that are responsible for the immune response to gluten. CONCLUSIONS: It is highly plausible that breeding targets previously identified in other cereal crops will also be valuable breeding targets in tef. The draft genome and transcriptome will be of great use for identifying these targets for genetic improvement of this orphan crop that is vital for feeding 50 million people in the Horn of Africa.


Subject(s)
Eragrostis/genetics , Genome, Plant , Transcriptome , Chromosome Mapping , Eragrostis/classification , Gene Library , High-Throughput Nucleotide Sequencing , Microsatellite Repeats/genetics , Molecular Sequence Annotation , Phosphoric Monoester Hydrolases/classification , Phosphoric Monoester Hydrolases/genetics , Phylogeny , Plant Proteins/classification , Plant Proteins/genetics , Prolamins/classification , Prolamins/genetics , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Sequence Analysis, RNA
20.
Plant Cell ; 23(2): 769-84, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21343414

ABSTRACT

Zeins, the prolamin storage proteins found in maize (Zea mays), accumulate in accretions called protein bodies inside the endoplasmic reticulum (ER) of starchy endosperm cells. We found that genes encoding zeins, α-globulin, and legumin-1 are transcribed not only in the starchy endosperm but also in aleurone cells. Unlike the starchy endosperm, aleurone cells accumulate these storage proteins inside protein storage vacuoles (PSVs) instead of the ER. Aleurone PSVs contain zein-rich protein inclusions, a matrix, and a large system of intravacuolar membranes. After being assembled in the ER, zeins are delivered to the aleurone PSVs in atypical prevacuolar compartments that seem to arise at least partially by autophagy and consist of multilayered membranes and engulfed cytoplasmic material. The zein-containing prevacuolar compartments are neither surrounded by a double membrane nor decorated by AUTOPHAGY RELATED8 protein, suggesting that they are not typical autophagosomes. The PSV matrix contains glycoproteins that are trafficked through a Golgi-multivesicular body (MVB) pathway. MVBs likely fuse with the multilayered, autophagic compartments before merging with the PSV. The presence of similar PSVs also containing prolamins and large systems of intravacuolar membranes in wheat (Triticum aestivum) and barley (Hordeum vulgare) starchy endosperm suggests that this trafficking mechanism may be common among cereals.


Subject(s)
Endosperm/metabolism , Prolamins/metabolism , Vacuoles/metabolism , Zea mays/metabolism , Electron Microscope Tomography , Gene Expression Profiling , Gene Expression Regulation, Plant , Golgi Apparatus/metabolism , Microscopy, Confocal , Prolamins/genetics , Protein Transport , Seeds/metabolism , Zea mays/genetics , Zein/genetics , Zein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL