Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 188
Filter
Add more filters

Publication year range
1.
Bioorg Chem ; 150: 107585, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38917491

ABSTRACT

The overexpression of PDIA1 in cancer has spurred the quest for effective inhibitors. However, existing inhibitors often bind to only one active site, limiting their efficacy. In our study, we developed a PROTAC-mimetic probe dPA by combining PACMA31 (PA) analogs with cereblon-directed pomalidomide. Through protein profiling and analysis, we confirmed dPA's specific interaction with PDIA1's active site cysteines. We further synthesized PROTAC variants with a thiophene ring and various linkers to enhance degradation efficiency. Notably, H4, featuring a PEG linker, induced significant PDIA1 degradation and inhibited cancer cell proliferation similarly to PA. The biosafety profile of H4 is comparable to that of PA, highlighting its potential for further development in cancer therapy. Our findings highlight a novel strategy for PDIA1 inhibition via targeted degradation, offering promising prospects in cancer therapeutics. This approach may overcome limitations of conventional inhibitors, presenting new avenues for advancing anti-cancer interventions.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Molecular Probes/chemistry , Molecular Probes/pharmacology , Molecular Probes/chemical synthesis , Molecular Structure , Procollagen-Proline Dioxygenase , Protein Disulfide-Isomerases/antagonists & inhibitors , Protein Disulfide-Isomerases/metabolism , Structure-Activity Relationship , Peptides/chemistry , Peptides/pharmacology
2.
Bioorg Med Chem ; 83: 117239, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36940609

ABSTRACT

Chikungunya virus (CHIKV) is the etiological agent of chikungunya fever, a (re)emerging arbovirus infection, that causes severe and often persistent arthritis, as well as representing a serious health concern worldwide for which no antivirals are currently available. Despite efforts over the last decade to identify and optimize new inhibitors or to reposition existing drugs, no compound has progressed to clinical trials for CHIKV and current prophylaxis is based on vector control, which has shown limited success in containing the virus. Our efforts to rectify this situation were initiated by screening 36 compounds using a replicon system and ultimately identified the natural product derivative 3-methyltoxoflavin with activity against CHIKV using a cell-based assay (EC50 200 nM, SI = 17 in Huh-7 cells). We have additionally screened 3-methyltoxoflavin against a panel of 17 viruses and showed that it only additionally demonstrated inhibition of the yellow fever virus (EC50 370 nM, SI = 3.2 in Huh-7 cells). We have also showed that 3-methyltoxoflavin has excellent in vitro human and mouse microsomal metabolic stability, good solubility and high Caco-2 permeability and it is not likely to be a P-glycoprotein substrate. In summary, we demonstrate that 3-methyltoxoflavin has activity against CHIKV, good in vitro absorption, distribution, metabolism and excretion (ADME) properties as well as good calculated physicochemical properties and may represent a valuable starting point for future optimization to develop inhibitors for this and other related viruses.


Subject(s)
Chikungunya Fever , Chikungunya virus , Animals , Humans , Mice , Antiviral Agents/chemistry , Caco-2 Cells , Chikungunya Fever/drug therapy , Chikungunya virus/physiology , Protein Disulfide-Isomerases/antagonists & inhibitors , Virus Replication/drug effects , Flavins/chemistry , Flavins/pharmacology
3.
J Enzyme Inhib Med Chem ; 38(1): 2158187, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37070480

ABSTRACT

In this study, we report a series of newly synthesised sulphonamides of aziridine-2-carboxylic acid (Az-COOH) ester and amide analogues as potent protein disulphide isomerase (PDI, EC 5.3.4.1) inhibitors. The inhibitory activity on PDI was determined against recombinant human PDIA1 and PDIA3 proteins using an insulin reduction assay. These compounds in low micromolar to low nanomolar concentrations showed the effective in vitro inhibitory properties of PDIA1 with weaker effects on PDIA3. Complexes of 15N- and 15N,13C- uniformly labelled recombinant human PDIA1a with two PDIA1 inhibitors were produced and investigated by a protein nuclear magnetic resonance (NMR) spectroscopy. It was found that both C53 and C56 of the PDIA1 enzyme were involved in covalent binding. Finally, in a range of pharmacological studies, we demonstrated that investigated compounds displayed anti-cancer and anti-thrombotic activity. These findings demonstrate that sulphonamides of Az-COOH derivatives are promising candidates for the development of novel anti-cancer and anti-thrombotic agents.


Subject(s)
Aziridines , Protein Disulfide-Isomerases , Sulfonamides , Humans , Aziridines/pharmacology , Protein Disulfide-Isomerases/antagonists & inhibitors , Protein Disulfide-Isomerases/chemistry , Sulfonamides/pharmacology
4.
Chem Res Toxicol ; 35(2): 326-336, 2022 02 21.
Article in English | MEDLINE | ID: mdl-35084835

ABSTRACT

Protein disulfide isomerases (PDIs) function in forming the correct disulfide bonds in client proteins, thereby aiding the folding of proteins that enter the secretory pathway. Recently, several PDIs have been identified as targets of organic electrophiles, yet the client proteins of specific PDIs remain largely undefined. Here, we report that PDIs expressed in Saccharomyces cerevisiae are targets of divinyl sulfone (DVSF) and other thiol-reactive protein cross-linkers. Using DVSF, we identified the interaction partners that were cross-linked to Pdi1 and Eug1, finding that both proteins form cross-linked complexes with other PDIs, as well as vacuolar hydrolases, proteins involved in cell wall biosynthesis and maintenance, and many ER proteostasis factors involved ER stress signaling and ER-associated protein degradation (ERAD). The latter discovery prompted us to examine the effects of DVSF on ER quality control, where we found that DVSF inhibits the degradation of the ERAD substrate CPY*, in addition to covalently modifying Ire1 and blocking the activation of the unfolded protein response. Our results reveal that DVSF targets many proteins within the ER proteostasis network and suggest that these proteins may be suitable targets for covalent therapeutic development in the future.


Subject(s)
Cross-Linking Reagents/metabolism , Protein Disulfide-Isomerases/metabolism , Saccharomyces cerevisiae/enzymology , Sulfhydryl Compounds/metabolism , Cross-Linking Reagents/chemistry , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Molecular Structure , Protein Disulfide-Isomerases/antagonists & inhibitors , Protein Disulfide-Isomerases/chemistry , Proteolysis/drug effects , Proteostasis/drug effects , Sulfhydryl Compounds/chemistry , Sulfones/pharmacology
5.
J Comput Aided Mol Des ; 35(3): 297-314, 2021 03.
Article in English | MEDLINE | ID: mdl-33615401

ABSTRACT

Leishmaniasis is an infectious disease caused by parasites of the genus Leishmania and transmitted by the bite of a sand fly. To date, most available drugs for treatment are toxic and beyond the economic means of those affected by the disease. Protein disulfide isomerase (PDI) is a chaperone protein that plays a major role in the folding of newly synthesized proteins, specifically assisting in disulfide bond formation, breakage, or rearrangement in all non-native proteins. In previous work, we demonstrated that Leishmania major PDI (LmPDI) has an essential role in pathogen virulence. Furthermore, inhibition of LmPDI further blocked parasite infection in macrophages. In this study, we utilized a computer-aided approach to design a series of LmPDI inhibitors. Fragment-based virtual screening allowed for the understanding of the inhibitors' modes of action on LmPDI active sites. The generated compounds obtained after multiple rounds of virtual screening were synthesized and significantly inhibited target LmPDI reductase activity and were shown to decrease in vitro parasite growth in human monocyte-derived macrophages. This novel cheminformatics and synthetic approach led to the identification of a new series of compounds that might be optimized into novel drugs, likely more specific and less toxic for the treatment of leishmaniasis.


Subject(s)
Anti-Infective Agents/chemical synthesis , Enzyme Inhibitors/chemistry , Hexachlorophene/chemical synthesis , Leishmania major/enzymology , Leishmaniasis/drug therapy , Protein Disulfide-Isomerases/antagonists & inhibitors , Small Molecule Libraries/chemical synthesis , Anti-Infective Agents/pharmacology , Catalytic Domain , Computer-Aided Design , Drug Design , Enzyme Inhibitors/pharmacology , Hexachlorophene/pharmacology , Humans , Molecular Docking Simulation , Protein Binding , Protein Conformation , Small Molecule Libraries/pharmacology , Structure-Activity Relationship
6.
Bioorg Med Chem ; 45: 116315, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34364222

ABSTRACT

Bacterial thiol-disulfide oxidoreductase DsbA is essential for bacterial virulence factor assembly and has been identified as a viable antivirulence target. Herein, we report a structure-based elaboration of a benzofuran hit that bound to the active site groove of Escherichia coli DsbA. Substituted phenyl groups were installed at the 5- and 6-position of the benzofuran using Suzuki-Miyaura coupling. HSQC NMR titration experiments showed dissociation constants of this series in the high µM to low mM range and X-ray crystallography produced three co-structures, showing binding in the hydrophobic groove, comparable with that of the previously reported benzofurans. The 6-(m-methoxy)phenyl analogue (2b), which showed a promising binding pose, was chosen for elaboration from the C-2 position. The 2,6-disubstituted analogues bound to the hydrophobic region of the binding groove and the C-2 groups extended into the more polar, previously un-probed, region of the binding groove. Biochemical analysis of the 2,6-disubsituted analogues showed they inhibited DsbA oxidation activity in vitro. The results indicate the potential to develop the elaborated benzofuran series into a novel class of antivirulence compounds.


Subject(s)
Benzofurans/pharmacology , Drug Design , Enzyme Inhibitors/pharmacology , Escherichia coli Proteins/antagonists & inhibitors , Protein Disulfide-Isomerases/antagonists & inhibitors , Benzofurans/chemical synthesis , Benzofurans/chemistry , Crystallography, X-Ray , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Escherichia coli Proteins/metabolism , Models, Molecular , Molecular Structure , Protein Disulfide-Isomerases/metabolism , Structure-Activity Relationship
7.
J Cell Mol Med ; 24(24): 14257-14269, 2020 12.
Article in English | MEDLINE | ID: mdl-33128352

ABSTRACT

Protein disulphide isomerase (PDI) promotes platelet activation and constitutes a novel antithrombotic target. In this study, we reported that a PDI-binding plant polyphenol, tannic acid (TA), inhibits PDI activity, platelet activation and thrombus formation. Molecular docking using plant polyphenols from dietary sources with cardiovascular benefits revealed TA as the most potent binding molecule with PDI active centre. Surface plasmon resonance demonstrated that TA bound PDI with high affinity. Using Di-eosin-glutathione disulphide fluorescence assay and PDI assay kit, we showed that TA inhibited PDI activity. In isolated platelets, TA inhibited platelet aggregation stimulated by either GPVI or ITAM pathway agonists. Flow cytometry showed that TA inhibited thrombin- or CRP-stimulated platelet activation, as reflected by reduced granule secretion and integrin activation. TA also reduced platelet spreading on immobilized fibrinogen and platelet adhesion under flow conditions. In a laser-induced vascular injury mouse model, intraperitoneal injection of TA significantly decreased the size of cremaster arteriole thrombi. No prolongation of mouse jugular vein and tail-bleeding time was observed after TA administration. Therefore, we identified TA from natural polyphenols as a novel inhibitor of PDI function. TA inhibits platelet activation and thrombus formation, suggesting it as a potential antithrombotic agent.


Subject(s)
Enzyme Inhibitors/chemistry , Fibrinolytic Agents/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Platelet Aggregation Inhibitors/chemistry , Protein Disulfide-Isomerases/chemistry , Tannins/chemistry , Animals , Enzyme Inhibitors/pharmacology , Fibrinolytic Agents/pharmacology , Male , Mice , Molecular Conformation , P-Selectin/metabolism , Platelet Activation/drug effects , Platelet Adhesiveness/drug effects , Platelet Aggregation/drug effects , Platelet Aggregation Inhibitors/pharmacology , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Protein Disulfide-Isomerases/antagonists & inhibitors , Structure-Activity Relationship , Tannins/pharmacology
8.
J Biol Chem ; 294(22): 8991-9006, 2019 05 31.
Article in English | MEDLINE | ID: mdl-31000628

ABSTRACT

Sulfiredoxin (Srx) reduces hyperoxidized 2-cysteine-containing peroxiredoxins (Prxs) and protects cells against oxidative stress. Previous studies have shown that Srx is highly expressed in primary specimens of lung cancer patients and plays a pivotal role in lung tumorigenesis and cancer progression. However, the oncogenic mechanisms of Srx in cancer are incompletely understood. In this study, we found that Srx knockdown sensitizes lung cancer cells to endoplasmic reticulum (ER) stress-induced cell death. Through MS analysis, we determined that Srx forms a complex with the ER-resident protein thioredoxin domain-containing protein 5 (TXNDC5). Using reciprocal co-immunoprecipitation, immunofluorescence imaging, subcellular fractionation, and domain-mapping assays with site-specific mutagenesis and purified recombinant proteins, we further characterized the Srx-TXNDC5 interaction. In response to ER stress but not to oxidative stress, Srx exhibits an increased association with TXNDC5, facilitating the retention of Srx in the ER. Of note, TXNDC5 knockdown in lung cancer cells inhibited cell proliferation and repressed anchorage-independent colony formation and migration, but increased cell invasion and activation of mitogen-activated protein kinases. Using immunohistochemical staining, we demonstrate that TXNDC5 is highly expressed in patient-derived lung cancer specimens. Bioinformatics analysis of publicly available data sets revealed that those with high Srx levels have significantly shorter survival and that those with high TXNDC5 levels have longer survival. We conclude that the cellular levels of Srx and TXNDC5 may be useful as biomarkers to predict the survival of individuals with lung cancer.


Subject(s)
Endoplasmic Reticulum Stress , Oxidoreductases Acting on Sulfur Group Donors/metabolism , Protein Disulfide-Isomerases/metabolism , A549 Cells , Apoptosis/drug effects , Binding Sites , Cell Proliferation , Computational Biology/methods , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mass Spectrometry , Mitogen-Activated Protein Kinases/metabolism , Molecular Docking Simulation , Mutagenesis, Site-Directed , Oxidoreductases Acting on Sulfur Group Donors/antagonists & inhibitors , Oxidoreductases Acting on Sulfur Group Donors/genetics , Peptides/analysis , Peptides/chemistry , Protein Binding , Protein Disulfide-Isomerases/antagonists & inhibitors , Protein Disulfide-Isomerases/genetics , RNA Interference , RNA, Small Interfering/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Tunicamycin/pharmacology
9.
Hum Mol Genet ; 27(9): 1545-1555, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29462355

ABSTRACT

Huntington's disease (HD) is caused by a cytosine-adenine-guanine (CAG) trinucleotide repeat expansion in the huntingtin (HTT) gene encoding an elongated polyglutamine tract within the N-terminal of the huntingtin protein (Htt) and leads to Htt misfolding, aberrant protein aggregation, and progressive appearance of disease symptoms. Chronic activation of endoplasmic reticulum (ER) stress by mutant Htt (mHtt) results in cellular dysfunction and ultimately cell death. Protein disulfide isomerase (PDI) is a chaperone protein located in the ER. Our previous studies demonstrated that mHtt caused PDI to accumulate at mitochondria-associated ER membranes and triggered cell death, and that modulating PDI activity using small molecules protected cells again mHtt toxicity in cell and brain slice models of HD. In this study, we demonstrated that PDI is upregulated in the HD human brain, in cell and mouse models. Chronic administration of a reversible, brain penetrable small molecule PDI modulator, LOC14 (20 mg/kg/day), significantly improved motor function, attenuated brain atrophy and extended survival in the N171-82Q HD mice. Moreover, LOC14 preserved medium spiny neuronal marker dopamine- and cyclic-AMP-regulated phosphoprotein of molecular weight 32 000 (DARPP32) levels in the striatum of HD mice. Mechanistic study revealed that LOC14 suppressed mHtt-induced ER stress, indicated by repressing the abnormally upregulated ER stress proteins in HD models. These findings suggest that LOC14 is promising to be further optimized for clinical trials of HD, and modulation of signaling pathways coping with ER stress may constitute an attractive approach to reduce mHtt toxicity and identify new therapeutic targets for treatment of HD.


Subject(s)
Huntingtin Protein/metabolism , Huntington Disease/drug therapy , Huntington Disease/metabolism , Protein Disulfide-Isomerases/metabolism , Adenosine Triphosphate/metabolism , Animals , Atrophy/drug therapy , Atrophy/genetics , Atrophy/metabolism , Blotting, Western , Brain/drug effects , Brain/metabolism , Disease Models, Animal , Endoplasmic Reticulum Stress/genetics , Endoplasmic Reticulum Stress/physiology , Female , Huntington Disease/genetics , Magnetic Resonance Imaging , Male , Mice , Mutation/genetics , Protein Disulfide-Isomerases/antagonists & inhibitors , Protein Disulfide-Isomerases/genetics , Tandem Mass Spectrometry
10.
Hum Mol Genet ; 27(8): 1311-1331, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29409023

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder and mutations in superoxide dismutase 1 (SOD1) account for 20% of familial ALS cases. The aetiology of ALS remains unclear, but protein misfolding, endoplasmic reticulum (ER) stress and neuronal apoptosis are implicated. We previously established that protein disulphide isomerase (PDIA1) is protective against ER stress and apoptosis in neuronal cells expressing mutant SOD1, and recently mutations in PDIA1 and related PDI family member endoplasmic reticulum protein 57 (ERp57/PDIA3), were associated with ALS. Here, we examined whether ERp57 is also protective against mutant SOD1 or whether distinct specificity exists amongst individual PDI family members. Neuronal cells co-expressing SOD1 and ERp57 were examined for inclusion formation, ER stress, ubiquitin proteasome system (UPS) dysfunction and apoptosis. Over-expression of ERp57 inhibited inclusion formation, ER stress, UPS dysfunction and apoptosis, whereas silencing of ERp57 expression enhanced mutant SOD1 inclusion formation, ER stress and toxicity, indicating a protective role for ERp57 against SOD1 misfolding. ERp57 also inhibited the formation of mutant SOD1 inclusions and apoptosis in primary cortical neurons, thus confirming results obtained from cell lines. ERp57 partially co-localized with TAR DNA-binding protein-43 (TDP-43)-positive inclusions in spinal cords from sporadic ALS patients, thus linking ERp57 to protein misfolding in human sporadic disease. Our results therefore imply that ERp57 has a protective role against pathological events induced by mutant SOD1 and they link ERp57 to the misfolding of TDP-43. This study therefore has implications for the design of novel therapeutics based on the activities of the PDI family of proteins.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , DNA-Binding Proteins/genetics , Endoplasmic Reticulum Stress/genetics , Neurons/metabolism , Protein Disulfide-Isomerases/genetics , Superoxide Dismutase-1/genetics , Aged , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Apoptosis , Cell Line , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Embryo, Mammalian , Female , Gene Expression Regulation , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Mutation , Neurons/pathology , Primary Cell Culture , Protein Disulfide-Isomerases/antagonists & inhibitors , Protein Disulfide-Isomerases/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Spinal Cord/metabolism , Spinal Cord/pathology , Superoxide Dismutase-1/metabolism
11.
Biochem Biophys Res Commun ; 525(4): 1068-1073, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32184018

ABSTRACT

Subtilase cytotoxin (SubAB) is a member of bacterial AB5 toxin produced by certain enterohemorrhagic E. coli strains which cleaves host chaperone BiP in endoplasmic reticulum (ER), leading to ER stress-mediated cytotoxicity. Previous study suggested that protein disulfide isomerase (PDI), an enzyme which catalyzes the formation and breakage of disulfide bonds in proteins, regulates AB5 toxin such as cholera toxin by unfolding of A subunit, leading to its translocation into cytosol to induce disease. Although SubAB targets ER and has similar A subunit to that of other AB5 toxins, it is unclear whether PDI can modulate the SubAB function. Here we determined the role of PDI on SubAB-induced BiP cleavage, ER stress response and cytotoxicity in HeLa cells. We found that PDI knockdown significantly suppressed SubAB-induced BiP cleavage and eIF2α phosphorylation. The accumulation of SubAB in ER was perturbed upon PDI knockdown. Finally, cell viability assay showed that PDI knockdown and PDI inhibitor canceled the SubAB-induced cytotoxicity. Present results suggested that SubAB, after cellular uptake, translocates into ER and interacts with BiP that might be modulated by PDI. Identification of pivotal role of host proteins on bacterial toxin to elicit its pathogenesis is necessary basis for development of potential chemotherapy and new diagnostic strategy for control of toxin-producing bacterial infections.


Subject(s)
Endoplasmic Reticulum Stress/drug effects , Escherichia coli Proteins/toxicity , Protein Disulfide-Isomerases/metabolism , Subtilisins/toxicity , Cell Death/genetics , Cell Survival/drug effects , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/genetics , Eukaryotic Initiation Factor-2/metabolism , Gene Knockdown Techniques , HeLa Cells , Heat-Shock Proteins/metabolism , Host Microbial Interactions/genetics , Humans , MAP Kinase Kinase 4/metabolism , Phosphorylation , Protein Disulfide-Isomerases/antagonists & inhibitors , Protein Disulfide-Isomerases/genetics , RNA, Small Interfering
12.
Chem Res Toxicol ; 33(8): 2099-2107, 2020 08 17.
Article in English | MEDLINE | ID: mdl-32662633

ABSTRACT

Hallmarks of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease include oxidative stress, accumulation of unfolded proteins, and neuronal cell death. One key player in maintaining redox homeostasis and oxidative protein folding is the protein disulfide isomerase (PDI). PDI has been the focus of drug discovery studies in neurodegenerative diseases, which have reported, paradoxically, that PDI inhibition is neuroprotective in cellular disease models. This study investigated the molecular implications of PDI inhibition by examining the effect of the PDI inhibitors securinine and 16F16 on the gene expression profile of SH-SY5Y neuroblastoma cells. Microarray analysis identified 36 genes that were differentially expressed in both inhibitor treatments. Computational approaches revealed that these differentially expressed genes are involved in apoptosis and cell death and that they are part of a protein-protein interaction network. Among the 36 identified genes, NAD(P)H quinone dehydrogenase 1 (NQO1) displayed the highest average expression change. As a central player in the cellular oxidative stress response, NQO1 was the focus of further investigation. Immunoblotting confirmed the increased expression level of NQO1, and activity assays demonstrated substantial increases in NQO1 activity in SH-SY5Y cells after treatment with PDI inhibitors. In summary, this study suggests a novel link between PDI inhibition and NQO1 activity, providing insights into the dynamic interplay between protein folding, oxidative stress, and cell death in neurodegenerative diseases, which can be exploited for drug development in the future.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , NAD(P)H Dehydrogenase (Quinone)/metabolism , Neuroblastoma/drug therapy , Protein Disulfide-Isomerases/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Survival/drug effects , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Molecular Structure , NAD(P)H Dehydrogenase (Quinone)/genetics , Neuroblastoma/metabolism , Protein Disulfide-Isomerases/metabolism , Tumor Cells, Cultured , Up-Regulation/drug effects
13.
Circ Res ; 122(8): 1052-1068, 2018 04 13.
Article in English | MEDLINE | ID: mdl-29535165

ABSTRACT

RATIONALE: Cardiac fibrosis plays a critical role in the pathogenesis of heart failure. Excessive accumulation of extracellular matrix (ECM) resulting from cardiac fibrosis impairs cardiac contractile function and increases arrhythmogenicity. Current treatment options for cardiac fibrosis, however, are limited, and there is a clear need to identify novel mediators of cardiac fibrosis to facilitate the development of better therapeutics. Exploiting coexpression gene network analysis on RNA sequencing data from failing human heart, we identified TXNDC5 (thioredoxin domain containing 5), a cardiac fibroblast (CF)-enriched endoplasmic reticulum protein, as a potential novel mediator of cardiac fibrosis, and we completed experiments to test this hypothesis directly. OBJECTIVE: The objective of this study was to determine the functional role of TXNDC5 in the pathogenesis of cardiac fibrosis. METHODS AND RESULTS: RNA sequencing and Western blot analyses revealed that TXNDC5 mRNA and protein were highly upregulated in failing human left ventricles and in hypertrophied/failing mouse left ventricle. In addition, cardiac TXNDC5 mRNA expression levels were positively correlated with those of transcripts encoding transforming growth factor ß1 and ECM proteins in vivo. TXNDC5 mRNA and protein were increased in human CF (hCF) under transforming growth factor ß1 stimulation in vitro. Knockdown of TXNDC5 attenuated transforming growth factor ß1-induced hCF activation and ECM protein upregulation independent of SMAD3 (SMAD family member 3), whereas increasing expression of TXNDC5 triggered hCF activation and proliferation and increased ECM protein production. Further experiments showed that TXNDC5, a protein disulfide isomerase, facilitated ECM protein folding and that depletion of TXNDC5 led to ECM protein misfolding and degradation in CF. In addition, TXNDC5 promotes hCF activation and proliferation by enhancing c-Jun N-terminal kinase activity via increased reactive oxygen species, derived from NAD(P)H oxidase 4. Transforming growth factor ß1-induced TXNDC5 upregulation in hCF was dependent on endoplasmic reticulum stress and activating transcription factor 6-mediated transcriptional control. Targeted disruption of Txndc5 in mice (Txndc5-/-) revealed protective effects against isoproterenol-induced cardiac hypertrophy, reduced fibrosis (by ≈70%), and markedly improved left ventricle function; post-isoproterenol left ventricular ejection fraction was 59.1±1.5 versus 40.1±2.5 (P<0.001) in Txndc5-/- versus wild-type mice, respectively. CONCLUSIONS: The endoplasmic reticulum protein TXNDC5 promotes cardiac fibrosis by facilitating ECM protein folding and CF activation via redox-sensitive c-Jun N-terminal kinase signaling. Loss of TXNDC5 protects against ß agonist-induced cardiac fibrosis and contractile dysfunction. Targeting TXNDC5, therefore, could be a powerful new therapeutic approach to mitigate excessive cardiac fibrosis, thereby improving cardiac function and outcomes in patients with heart failure.


Subject(s)
Cardiomyopathy, Hypertrophic/metabolism , Extracellular Matrix Proteins/metabolism , Fibroblasts/metabolism , Heart Failure/metabolism , Myocardium/pathology , Protein Disulfide-Isomerases/physiology , Protein Folding , Thioredoxins/physiology , Activating Transcription Factor 6/biosynthesis , Activating Transcription Factor 6/genetics , Animals , Cardiomyopathy, Hypertrophic/pathology , Cells, Cultured , Fibroblasts/pathology , Fibrosis/metabolism , Gene Expression Regulation , Heart Failure/chemically induced , Heart Failure/pathology , Humans , Isoproterenol/toxicity , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocardium/metabolism , NADPH Oxidase 4/biosynthesis , NADPH Oxidase 4/genetics , NIH 3T3 Cells , Oxidation-Reduction , Protein Disulfide-Isomerases/antagonists & inhibitors , Protein Disulfide-Isomerases/genetics , RNA Interference , RNA, Small Interfering/pharmacology , Thioredoxins/antagonists & inhibitors , Thioredoxins/genetics
14.
Bioorg Med Chem Lett ; 30(3): 126898, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31874828

ABSTRACT

Protein disulfide isomerase (PDI), a chaperone protein mostly in endoplasmic reticulum, catalyzes disulfide bond breakage, formation, and rearrangement to promote protein folding. PDI is regarded as a new target for treatment of several disorders. Here, based on the combination principle, we report a new PDI reversible modulator 16F16A-NO by replacing the reactive group in a known PDI inhibitor 16F16 with nitric oxide (NO) donor. Using molecular docking experiment, 16F16A-NO could embed into the active cavity of PDI. From newly developed fluorescent assay, 16F16A-NO showed rapid NO release. Furthermore, it is capable to moderately inhibit activity of PDI and S-nitrosylate the protein, indicating by insulin aggregation assay and biotin-switch technique. Finally, it displayed a dose-dependent antiproliferative activity against SH-SY5Y and HeLa tumor cells. Our designed hybrid compound 16F16A-NO showed a reasonable activity and might offer a promising avenue to develop novel PDI inhibitors for disease treatments.


Subject(s)
Drug Design , Enzyme Inhibitors/chemical synthesis , Nitric Oxide Donors/chemistry , Nitric Oxide/metabolism , Protein Disulfide-Isomerases/antagonists & inhibitors , Binding Sites , Catalytic Domain , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Humans , Molecular Docking Simulation , Nitric Oxide Donors/metabolism , Nitric Oxide Donors/pharmacology , Protein Disulfide-Isomerases/metabolism
15.
Chemotherapy ; 65(5-6): 125-133, 2020.
Article in English | MEDLINE | ID: mdl-33238278

ABSTRACT

BACKGROUND: Protein disulfide isomerase 4 (PDIA4) has been reported to be closely associated with chemoresistance in several types of malignancies. But the pathogenic mechanisms of PDIA4 involved in docetaxel (DTX) resistance in prostate cancer (PCa) are still unknown. Hence, this study was conducted to evaluate the potential effect of PDIA4 on chemoresistance to DTX in PCa cells and to investigate the underlying mechanisms. METHODS: Two types of DTX-resistant PCa cells, that is, DTX-resistant PC-3 cells (PC-3/DTXR) and C4-2B cells (C4-2B/DTXR) were developed, as well as the parental PC-3 and C4-2B cells were obtained to investigate these issues. Short hairpin RNAs targeting human PDIA4 to knockdown the expression of PDIA4 or PDIA4-expressing adenoviral vectors to overexpress the PDIA4 were transfected into PCa cells to study the underlying mechanisms of PDIA4 involving in PCa DTX resistance. RESULTS: Results showed that PDIA4 exhibited a dramatic overexpression in PC-3/DTXR and C4-2B/DTXR cells. Down-regulation of PDIA4 by infecting PC-3/DTXR and C4-2B/DTXR cells with shPDIA4 lentivirus stimulated cell death by prompting apoptosis. Up-regulation of PDIA4 by infecting PC-3 and C4-2B cells with PDIA4-expressing adenovirus showed severer resistance to DTX. In addition, PDIA4 up-regulation induced phosphorylated protein kinase B (Akt) expression, while PDIA4 knockdown significantly inhibited the expression in PCa cells. CONCLUSIONS: Our study indicates that PDIA4 is a negative regulator of PCa cell apoptosis and plays a critical role in PCa DTX resistance by activating the Akt-signaling pathway. Thereby, it implies that targeting PDIA4 could be a potential adjuvant therapeutic approach against DTX resistance in PCa.


Subject(s)
Docetaxel/pharmacology , Drug Resistance, Neoplasm/drug effects , Prostatic Neoplasms/pathology , Protein Disulfide-Isomerases/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival , Humans , Male , Phosphorylation/drug effects , Prostatic Neoplasms/metabolism , Protein Disulfide-Isomerases/antagonists & inhibitors , Protein Disulfide-Isomerases/genetics , Proto-Oncogene Proteins c-akt/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Signal Transduction/drug effects
16.
Angew Chem Int Ed Engl ; 59(45): 20147-20153, 2020 11 02.
Article in English | MEDLINE | ID: mdl-33448534

ABSTRACT

Gallium(III)-based drugs have gained momentum in cancer therapy due to their iron-dependent anticancer activity. Judicious choice of ligands is critical for improved oral bioavailability, antitumor efficacy, and distinct mechanisms from simple GaIII salts. We describe GaIII complexes with planar tetradentate salen ligands [salen=2,3-bis[(4-dialkylamino-2-hydroxybenzylidene)amino]but-2-enedinitrile)] and labile axial solvent ligands, which display tumor growth inhibition in vitro and in vivo comparable to cisplatin. Confocal fluorescence microscopy, western blotting, mRNA profiling, chemical proteomics, and surface plasmon resonance (SPR) studies provide compelling evidence that PDIA3, a member of the protein disulfide isomerase (PDI) family involved in endoplasmic reticulum (ER) stress, is a direct target of Ga-1. This work offers a new route to designing and synthesizing Ga-based drugs, and also reveals that PDIA3 is an important anticancer target.


Subject(s)
Antineoplastic Agents/therapeutic use , Coordination Complexes/therapeutic use , Enzyme Inhibitors/therapeutic use , Neoplasms/drug therapy , Protein Disulfide-Isomerases/antagonists & inhibitors , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Coordination Complexes/chemical synthesis , Coordination Complexes/pharmacology , Endoplasmic Reticulum Stress/drug effects , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Gallium/chemistry , Human Umbilical Vein Endothelial Cells , Humans , Mice , Xenograft Model Antitumor Assays
17.
J Biol Chem ; 293(8): 2640-2649, 2018 02 23.
Article in English | MEDLINE | ID: mdl-29305423

ABSTRACT

Transglutaminase 2 (TG2) is a ubiquitously expressed, intracellular as well as extracellular protein with multiple modes of post-translational regulation, including an allosteric disulfide bond between Cys-370-Cys-371 that renders the enzyme inactive in the extracellular matrix. Although recent studies have established that extracellular TG2 is switched "on" by the redox cofactor protein thioredoxin-1 (TRX), it is unclear how TG2 is switched "off." Here, we demonstrate that TG2 oxidation by small-molecule biological oxidants, including glutathione, cystine, and hydrogen peroxide, is unlikely to be the inactivation mechanism. Instead, endoplasmic reticulum (ER)-resident protein 57 (ERp57), a protein in the ER that promotes folding of nascent proteins and is also present in the extracellular environment, has the cellular and biochemical characteristics for inactivating TG2. We found that ERp57 colocalizes with extracellular TG2 in cultured human umbilical vein endothelial cells (HUVECs). ERp57 oxidized TG2 with a rate constant that was 400-2000-fold higher than those of the aforementioned small molecule oxidants. Moreover, its specificity for TG2 was also markedly higher than those of other secreted redox proteins, including protein disulfide isomerase (PDI), ERp72, TRX, and quiescin sulfhydryl oxidase 1 (QSOX1). Lastly, siRNA-mediated ERp57 knockdown in HUVECs increased TG2-catalyzed transamidation in the extracellular environment. We conclude that, to the best of our knowledge, the disulfide bond switch in human TG2 represents the first example of a post-translational redox regulatory mechanism that is reversibly and allosterically modulated by two distinct proteins (ERp57 and TRX).


Subject(s)
Extracellular Matrix/enzymology , GTP-Binding Proteins/antagonists & inhibitors , Protein Disulfide-Isomerases/metabolism , Protein Processing, Post-Translational , Transglutaminases/antagonists & inhibitors , Allosteric Regulation/drug effects , Biocatalysis/drug effects , Cells, Cultured , Cystine/metabolism , Enzymes, Immobilized/antagonists & inhibitors , Enzymes, Immobilized/metabolism , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , GTP-Binding Proteins/chemistry , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Glutathione/metabolism , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/enzymology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Hydrogen Peroxide/pharmacology , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Oxidants/metabolism , Oxidants/pharmacology , Oxidation-Reduction , Oxidoreductases Acting on Sulfur Group Donors/chemistry , Oxidoreductases Acting on Sulfur Group Donors/genetics , Oxidoreductases Acting on Sulfur Group Donors/metabolism , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Disulfide-Isomerases/antagonists & inhibitors , Protein Disulfide-Isomerases/genetics , Protein Glutamine gamma Glutamyltransferase 2 , Protein Processing, Post-Translational/drug effects , Protein Transport/drug effects , RNA Interference , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Thioredoxins/genetics , Thioredoxins/metabolism , Transglutaminases/chemistry , Transglutaminases/genetics , Transglutaminases/metabolism
18.
Molecules ; 24(20)2019 Oct 18.
Article in English | MEDLINE | ID: mdl-31635355

ABSTRACT

A fragment-based drug discovery approach was taken to target the thiol-disulfide oxidoreductase enzyme DsbA from Escherichia coli (EcDsbA). This enzyme is critical for the correct folding of virulence factors in many pathogenic Gram-negative bacteria, and small molecule inhibitors can potentially be developed as anti-virulence compounds. Biophysical screening of a library of fragments identified several classes of fragments with affinity to EcDsbA. One hit with high mM affinity, 2-(6-bromobenzofuran-3-yl)acetic acid (6), was chemically elaborated at several positions around the scaffold. X-ray crystal structures of the elaborated analogues showed binding in the hydrophobic binding groove adjacent to the catalytic disulfide bond of EcDsbA. Binding affinity was calculated based on NMR studies and compounds 25 and 28 were identified as the highest affinity binders with dissociation constants (KD) of 326 ± 25 and 341 ± 57 µM respectively. This work suggests the potential to develop benzofuran fragments into a novel class of EcDsbA inhibitors.


Subject(s)
Benzofurans/pharmacology , Enzyme Inhibitors/pharmacology , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli/enzymology , Protein Disulfide-Isomerases/antagonists & inhibitors , Benzofurans/chemical synthesis , Benzofurans/chemistry , Binding Sites , Crystallography, X-Ray , Drug Discovery , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Escherichia coli/drug effects , Escherichia coli Proteins/chemistry , Models, Molecular , Molecular Structure , Protein Conformation , Protein Disulfide-Isomerases/chemistry , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
19.
Biochemistry ; 57(13): 2035-2043, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29521097

ABSTRACT

Protein disulfide isomerase A1 (PDIA1) is an endoplasmic reticulum (ER)-localized thiol-disulfide oxidoreductase that is an important folding catalyst for secretory pathway proteins. PDIA1 contains two active-site domains (a and a'), each containing a Cys-Gly-His-Cys (CGHC) active-site motif. The two active-site domains share 37% sequence identity and function independently to perform disulfide-bond reduction, oxidation, and isomerization. Numerous inhibitors for PDIA1 have been reported, yet the selectivity of these inhibitors toward the a and a' sites is poorly characterized. Here, we identify a potent and selective PDIA1 inhibitor, KSC-34, with 30-fold selectivity for the a site over the a' site. KSC-34 displays time-dependent inhibition of PDIA1 reductase activity in vitro with a kinact/ KI of 9.66 × 103 M-1 s-1 and is selective for PDIA1 over other members of the PDI family, and other cellular cysteine-containing proteins. We provide the first cellular characterization of an a-site selective PDIA1 inhibitor and demonstrate that KSC-34 has minimal sustained effects on the cellular unfolded protein response, indicating that a-site inhibition does not induce global protein folding-associated ER stress. KSC-34 treatment significantly decreases the rate of secretion of a destabilized, amyloidogenic antibody light chain, thereby minimizing pathogenic amyloidogenic extracellular proteins that rely on high PDIA1 activity for proper folding and secretion. Given the poor understanding of the contribution of each PDIA1 active site to the (patho)physiological functions of PDIA1, site selective inhibitors like KSC-34 provide useful tools for delineating the pathological role and therapeutic potential of PDIA1.


Subject(s)
Enzyme Inhibitors/chemistry , Procollagen-Proline Dioxygenase/antagonists & inhibitors , Procollagen-Proline Dioxygenase/chemistry , Protein Disulfide-Isomerases/antagonists & inhibitors , Protein Disulfide-Isomerases/chemistry , Protein Folding , Catalytic Domain , Humans , Procollagen-Proline Dioxygenase/genetics , Protein Disulfide-Isomerases/genetics
20.
Haematologica ; 103(11): 1843-1852, 2018 11.
Article in English | MEDLINE | ID: mdl-30002127

ABSTRACT

A cute myeloid leukemia is a malignant disease of immature myeloid cells. Despite significant therapeutic effects of differentiation-inducing agents in some acute myeloid leukemia subtypes, the disease remains incurable in a large fraction of patients. Here we show that SK053, a thioredoxin inhibitor, induces differentiation and cell death of acute myeloid leukemia cells. Considering that thioredoxin knock-down with short hairpin RNA failed to exert antiproliferative effects in one of the acute myeloid leukemia cell lines, we used a biotin affinity probe-labeling approach to identify potential molecular targets for the effects of SK053. Mass spectrometry of proteins precipitated from acute myeloid leukemia cells incubated with biotinylated SK053 used as a bait revealed protein disulfide isomerase as a potential binding partner for the compound. Biochemical, enzymatic and functional assays using fluorescence lifetime imaging confirmed that SK053 binds to and inhibits the activity of protein disulfide isomerase. Protein disulfide isomerase knockdown with short hairpin RNA was associated with inhibition of cell growth, increased CCAAT enhancer-binding protein α levels, and induction of differentiation of HL-60 cells. Molecular dynamics simulation followed by the covalent docking indicated that SK053 binds to the fourth thioredoxin-like domain of protein disulfide isomerase. Differentiation of myeloid precursor cells requires the activity of CCAAT enhancer-binding protein α, the function of which is impaired in acute myeloid leukemia cells through various mechanisms, including translational block by protein disulfide isomerase. SK053 increased the levels of CCAAT enhancer-binding protein α and upregulated mRNA levels for differentiation-associated genes. Finally, SK053 decreased the survival of blasts and increased the percentage of cells expressing the maturation-associated CD11b marker in primary cells isolated from bone marrow or peripheral blood of patients with acute myeloid leukemia. Collectively, these results provide a proof-of-concept that protein disulfide isomerase inhibition has potential as a therapeutic strategy for the treatment of acute myeloid leukemia and for the development of small-molecule inhibitors of protein disulfide isomerase.


Subject(s)
Cell Differentiation/drug effects , Dipeptides/pharmacology , Enzyme Inhibitors/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Methacrylates/pharmacology , Neoplasm Proteins/antagonists & inhibitors , Protein Disulfide-Isomerases/antagonists & inhibitors , Female , HL-60 Cells , Humans , Leukemia, Myeloid, Acute/enzymology , Leukemia, Myeloid, Acute/pathology , Male , Neoplasm Proteins/metabolism , Protein Disulfide-Isomerases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL