Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.684
Filter
Add more filters

Publication year range
1.
Cell ; 182(5): 1140-1155.e18, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32814015

ABSTRACT

The endosomal sorting complex required for transport-III (ESCRT-III) catalyzes membrane fission from within membrane necks, a process that is essential for many cellular functions, from cell division to lysosome degradation and autophagy. How it breaks membranes, though, remains unknown. Here, we characterize a sequential polymerization of ESCRT-III subunits that, driven by a recruitment cascade and by continuous subunit-turnover powered by the ATPase Vps4, induces membrane deformation and fission. During this process, the exchange of Vps24 for Did2 induces a tilt in the polymer-membrane interface, which triggers transition from flat spiral polymers to helical filament to drive the formation of membrane protrusions, and ends with the formation of a highly constricted Did2-Ist1 co-polymer that we show is competent to promote fission when bound on the inside of membrane necks. Overall, our results suggest a mechanism of stepwise changes in ESCRT-III filament structure and mechanical properties via exchange of the filament subunits to catalyze ESCRT-III activity.


Subject(s)
Cell Membrane/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Membrane Fusion/physiology , Adenosine Triphosphatases/metabolism , Cell Line, Tumor , Endosomes/metabolism , HeLa Cells , Humans , Polymerization , Protein Transport/physiology
2.
Cell ; 181(3): 653-664.e19, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32359438

ABSTRACT

Gram-negative bacteria are surrounded by an outer membrane composed of phospholipids and lipopolysaccharide, which acts as a barrier and contributes to antibiotic resistance. The systems that mediate phospholipid trafficking across the periplasm, such as MCE (Mammalian Cell Entry) transporters, have not been well characterized. Our ~3.5 Å cryo-EM structure of the E. coli MCE protein LetB reveals an ~0.6 megadalton complex that consists of seven stacked rings, with a central hydrophobic tunnel sufficiently long to span the periplasm. Lipids bind inside the tunnel, suggesting that it functions as a pathway for lipid transport. Cryo-EM structures in the open and closed states reveal a dynamic tunnel lining, with implications for gating or substrate translocation. Our results support a model in which LetB establishes a physical link between the two membranes and creates a hydrophobic pathway for the translocation of lipids across the periplasm.


Subject(s)
Bacterial Proteins/metabolism , Lipopolysaccharides/metabolism , Membrane Transport Proteins/metabolism , Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/physiology , Biological Transport , Cell Membrane/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Membrane Proteins/metabolism , Phospholipids/metabolism , Protein Transport/physiology
3.
Cell ; 180(6): 1144-1159.e20, 2020 03 19.
Article in English | MEDLINE | ID: mdl-32169217

ABSTRACT

In eukaryotic cells, organelle biogenesis is pivotal for cellular function and cell survival. Chloroplasts are unique organelles with a complex internal membrane network. The mechanisms of the migration of imported nuclear-encoded chloroplast proteins across the crowded stroma to thylakoid membranes are less understood. Here, we identified two Arabidopsis ankyrin-repeat proteins, STT1 and STT2, that specifically mediate sorting of chloroplast twin arginine translocation (cpTat) pathway proteins to thylakoid membranes. STT1 and STT2 form a unique hetero-dimer through interaction of their C-terminal ankyrin domains. Binding of cpTat substrate by N-terminal intrinsically disordered regions of STT complex induces liquid-liquid phase separation. The multivalent nature of STT oligomer is critical for phase separation. STT-Hcf106 interactions reverse phase separation and facilitate cargo targeting and translocation across thylakoid membranes. Thus, the formation of phase-separated droplets emerges as a novel mechanism of intra-chloroplast cargo sorting. Our findings highlight a conserved mechanism of phase separation in regulating organelle biogenesis.


Subject(s)
Arabidopsis/metabolism , Protein Transport/physiology , Twin-Arginine-Translocation System/metabolism , Chloroplast Proteins/metabolism , Chloroplasts/metabolism , Intracellular Membranes/metabolism , Membrane Proteins/metabolism , Organelle Biogenesis , Organelles/metabolism , Phase Transition , Plant Proteins/metabolism , Thylakoids/metabolism , Twin-Arginine-Translocation System/physiology
4.
Cell ; 181(3): 637-652.e15, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32272059

ABSTRACT

Many cytosolic proteins lacking a signal peptide, called leaderless cargoes, are secreted through unconventional secretion. Vesicle trafficking is a major pathway involved. It is unclear how leaderless cargoes enter into the vesicle. Here, we find a translocation pathway regulating vesicle entry and secretion of leaderless cargoes. We identify TMED10 as a protein channel for the vesicle entry and secretion of many leaderless cargoes. The interaction of TMED10 C-terminal region with a motif in the cargo accounts for the selective release of the cargoes. In an in vitro reconstitution assay, TMED10 directly mediates the membrane translocation of leaderless cargoes into the liposome, which is dependent on protein unfolding and enhanced by HSP90s. In the cell, TMED10 localizes on the endoplasmic reticulum (ER)-Golgi intermediate compartment and directs the entry of cargoes into this compartment. Furthermore, cargo induces the formation of TMED10 homo-oligomers which may act as a protein channel for cargo translocation.


Subject(s)
Protein Translocation Systems/metabolism , Vesicular Transport Proteins/metabolism , Animals , Biological Transport , Cell Line , Cell Line, Tumor , Cell Membrane/metabolism , Cytosol/metabolism , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Humans , Mice , Mice, Inbred C57BL , Protein Sorting Signals , Protein Translocation Systems/physiology , Protein Transport/physiology , Proteins/metabolism , Secretory Pathway , Vesicular Transport Proteins/physiology
5.
Cell ; 177(4): 881-895.e17, 2019 05 02.
Article in English | MEDLINE | ID: mdl-31051106

ABSTRACT

Non-alcoholic fatty liver is the most common liver disease worldwide. Here, we show that the mitochondrial protein mitofusin 2 (Mfn2) protects against liver disease. Reduced Mfn2 expression was detected in liver biopsies from patients with non-alcoholic steatohepatitis (NASH). Moreover, reduced Mfn2 levels were detected in mouse models of steatosis or NASH, and its re-expression in a NASH mouse model ameliorated the disease. Liver-specific ablation of Mfn2 in mice provoked inflammation, triglyceride accumulation, fibrosis, and liver cancer. We demonstrate that Mfn2 binds phosphatidylserine (PS) and can specifically extract PS into membrane domains, favoring PS transfer to mitochondria and mitochondrial phosphatidylethanolamine (PE) synthesis. Consequently, hepatic Mfn2 deficiency reduces PS transfer and phospholipid synthesis, leading to endoplasmic reticulum (ER) stress and the development of a NASH-like phenotype and liver cancer. Ablation of Mfn2 in liver reveals that disruption of ER-mitochondrial PS transfer is a new mechanism involved in the development of liver disease.


Subject(s)
GTP Phosphohydrolases/metabolism , Mitochondrial Proteins/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Phosphatidylserines/metabolism , Animals , Disease Models, Animal , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/physiology , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Inflammation/metabolism , Liver/pathology , Liver Diseases/etiology , Liver Diseases/metabolism , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Primary Cell Culture , Protein Transport/physiology , Signal Transduction , Triglycerides/metabolism
6.
Cell ; 174(3): 659-671.e14, 2018 07 26.
Article in English | MEDLINE | ID: mdl-30053425

ABSTRACT

The HIV accessory protein Nef counteracts immune defenses by subverting coated vesicle pathways. The 3.7 Å cryo-EM structure of a closed trimer of the clathrin adaptor AP-1, the small GTPase Arf1, HIV-1 Nef, and the cytosolic tail of the restriction factor tetherin suggested a mechanism for inactivating tetherin by Golgi retention. The 4.3 Å structure of a mutant Nef-induced dimer of AP-1 showed how the closed trimer is regulated by the dileucine loop of Nef. HDX-MS and mutational analysis were used to show how cargo dynamics leads to alternative Arf1 trimerization, directing Nef targets to be either retained at the trans-Golgi or sorted to lysosomes. Phosphorylation of the NL4-3 M-Nef was shown to regulate AP-1 trimerization, explaining how O-Nefs lacking this phosphosite counteract tetherin but most M-Nefs do not. These observations show how the higher-order organization of a vesicular coat can be allosterically modulated to direct cargoes to distinct fates.


Subject(s)
Transcription Factor AP-1/ultrastructure , nef Gene Products, Human Immunodeficiency Virus/metabolism , nef Gene Products, Human Immunodeficiency Virus/ultrastructure , ADP-Ribosylation Factor 1/metabolism , ADP-Ribosylation Factor 1/ultrastructure , Adaptor Proteins, Vesicular Transport , Bone Marrow Stromal Antigen 2/metabolism , Bone Marrow Stromal Antigen 2/ultrastructure , Clathrin , Golgi Apparatus , HEK293 Cells , HIV-1 , Humans , Protein Transport/physiology , Transcription Factor AP-1/metabolism , Transcription Factor AP-1/physiology , nef Gene Products, Human Immunodeficiency Virus/physiology
7.
Cell ; 175(1): 254-265.e14, 2018 09 20.
Article in English | MEDLINE | ID: mdl-30220460

ABSTRACT

Endoplasmic reticulum (ER) membrane contact sites (MCSs) mark positions where endosomes undergo fission for cargo sorting. To define the role of ER at this unique MCS, we targeted a promiscuous biotin ligase to cargo-sorting domains on endosome buds. This strategy identified the ER membrane protein TMCC1, a member of a conserved protein family. TMCC1 concentrates at the ER-endosome MCSs that are spatially and temporally linked to endosome fission. When TMCC1 is depleted, endosome morphology is normal, buds still form, but ER-associated bud fission and subsequent cargo sorting to the Golgi are impaired. We find that the endosome-localized actin regulator Coronin 1C is required for ER-associated fission of actin-dependent cargo-sorting domains. Coronin 1C is recruited to endosome buds independently of TMCC1, while TMCC1/ER recruitment requires Coronin 1C. This link between TMCC1 and Coronin 1C suggests that the timing of TMCC1-dependent ER recruitment is tightly regulated to occur after cargo has been properly sequestered into the bud.


Subject(s)
Endoplasmic Reticulum/metabolism , Endosomes/metabolism , Membrane Proteins/metabolism , Animals , COS Cells , Calcium Channels , Chlorocebus aethiops , Endoplasmic Reticulum/physiology , Endosomes/physiology , Golgi Apparatus/metabolism , HeLa Cells , Humans , Microfilament Proteins/physiology , Microtubules/metabolism , Protein Transport/physiology
8.
Cell ; 175(6): 1507-1519.e16, 2018 11 29.
Article in English | MEDLINE | ID: mdl-30415835

ABSTRACT

Mammals encode ∼5,000 integral membrane proteins that need to be inserted in a defined topology at the endoplasmic reticulum (ER) membrane by mechanisms that are incompletely understood. Here, we found that efficient biogenesis of ß1-adrenergic receptor (ß1AR) and other G protein-coupled receptors (GPCRs) requires the conserved ER membrane protein complex (EMC). Reconstitution studies of ß1AR biogenesis narrowed the EMC requirement to the co-translational insertion of the first transmembrane domain (TMD). Without EMC, a proportion of TMD1 inserted in an inverted orientation or failed altogether. Purified EMC and SRP receptor were sufficient for correctly oriented TMD1 insertion, while the Sec61 translocon was necessary for insertion of the next TMD. Enforcing TMD1 topology with an N-terminal signal peptide bypassed the EMC requirement for insertion in vitro and restored efficient biogenesis of multiple GPCRs in EMC-knockout cells. Thus, EMC inserts TMDs co-translationally and cooperates with the Sec61 translocon to ensure accurate topogenesis of many membrane proteins.


Subject(s)
Endoplasmic Reticulum/metabolism , Intracellular Membranes/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Peptide/metabolism , SEC Translocation Channels/metabolism , Animals , Cell Line, Tumor , Endoplasmic Reticulum/genetics , Female , Humans , Protein Domains , Protein Transport/physiology , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Peptide/genetics , SEC Translocation Channels/genetics , Turkeys
9.
Annu Rev Cell Dev Biol ; 35: 543-566, 2019 10 06.
Article in English | MEDLINE | ID: mdl-31283381

ABSTRACT

Regulated synthesis and movement of proteins between cellular organelles are central to diverse forms of biological adaptation and plasticity. In neurons, the repertoire of channel, receptor, and adhesion proteins displayed on the cell surface directly impacts cellular development, morphology, excitability, and synapse function. The immensity of the neuronal surface membrane and its division into distinct functional domains present a challenging landscape over which proteins must navigate to reach their appropriate functional domains. This problem becomes more complex considering that neuronal protein synthesis is continuously refined in space and time by neural activity. Here we review our current understanding of how integral membrane and secreted proteins important for neuronal function travel from their sites of synthesis to their functional destinations. We discuss how unique adaptations to the function and distribution of neuronal secretory organelles may facilitate local protein trafficking at remote sites in neuronal dendrites to support diverse forms of synaptic plasticity.


Subject(s)
Golgi Apparatus/metabolism , Neuronal Plasticity/physiology , Neurons/cytology , Neurons/metabolism , Protein Transport/physiology , Animals , Cell Compartmentation/physiology , Cell Membrane/metabolism , Dendrites/metabolism , Dendrites/physiology , Endoplasmic Reticulum/metabolism , Endosomes/metabolism , Membrane Proteins/biosynthesis , Membrane Proteins/metabolism , Neurons/physiology , Synapses/metabolism , Synapses/physiology
10.
Nat Immunol ; 21(8): 868-879, 2020 08.
Article in English | MEDLINE | ID: mdl-32690950

ABSTRACT

STING is essential for control of infections and for tumor immunosurveillance, but it can also drive pathological inflammation. STING resides on the endoplasmic reticulum (ER) and traffics following stimulation to the ERGIC/Golgi, where signaling occurs. Although STING ER exit is the rate-limiting step in STING signaling, the mechanism that drives this process is not understood. Here we identify STEEP as a positive regulator of STING signaling. STEEP was associated with STING and promoted trafficking from the ER. This was mediated through stimulation of phosphatidylinositol-3-phosphate (PtdIns(3)P) production and ER membrane curvature formation, thus inducing COPII-mediated ER-to-Golgi trafficking of STING. Depletion of STEEP impaired STING-driven gene expression in response to virus infection in brain tissue and in cells from patients with STING-associated diseases. Interestingly, STING gain-of-function mutants from patients interacted strongly with STEEP, leading to increased ER PtdIns(3)P levels and membrane curvature. Thus, STEEP enables STING signaling by promoting ER exit.


Subject(s)
Endoplasmic Reticulum/metabolism , Gene Expression Regulation/physiology , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Signal Transduction/physiology , Animals , Endoplasmic Reticulum/immunology , Humans , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/metabolism , Membrane Proteins/immunology , Mice , Nerve Tissue Proteins/immunology , Nuclear Proteins , Protein Transport/physiology
11.
Nat Rev Mol Cell Biol ; 20(5): 285-302, 2019 05.
Article in English | MEDLINE | ID: mdl-30659282

ABSTRACT

Protein subcellular localization is tightly controlled and intimately linked to protein function in health and disease. Capturing the spatial proteome - that is, the localizations of proteins and their dynamics at the subcellular level - is therefore essential for a complete understanding of cell biology. Owing to substantial advances in microscopy, mass spectrometry and machine learning applications for data analysis, the field is now mature for proteome-wide investigations of spatial cellular regulation. Studies of the human proteome have begun to reveal a complex architecture, including single-cell variations, dynamic protein translocations, changing interaction networks and proteins localizing to multiple compartments. Furthermore, several studies have successfully harnessed the power of comparative spatial proteomics as a discovery tool to unravel disease mechanisms. We are at the beginning of an era in which spatial proteomics finally integrates with cell biology and medical research, thereby paving the way for unbiased systems-level insights into cellular processes. Here, we discuss current methods for spatial proteomics using imaging or mass spectrometry and specifically highlight global comparative applications. The aim of this Review is to survey the state of the field and also to encourage more cell biologists to apply spatial proteomics approaches.


Subject(s)
Mass Spectrometry , Proteome/metabolism , Proteomics , Animals , Humans , Protein Transport/physiology , Proteome/genetics
12.
Nat Rev Mol Cell Biol ; 20(5): 267-284, 2019 05.
Article in English | MEDLINE | ID: mdl-30626975

ABSTRACT

Mitochondria are essential for the viability of eukaryotic cells as they perform crucial functions in bioenergetics, metabolism and signalling and have been associated with numerous diseases. Recent functional and proteomic studies have revealed the remarkable complexity of mitochondrial protein organization. Protein machineries with diverse functions such as protein translocation, respiration, metabolite transport, protein quality control and the control of membrane architecture interact with each other in dynamic networks. In this Review, we discuss the emerging role of the mitochondrial protein import machinery as a key organizer of these mitochondrial protein networks. The preprotein translocases that reside on the mitochondrial membranes not only function during organelle biogenesis to deliver newly synthesized proteins to their final mitochondrial destination but also cooperate with numerous other mitochondrial protein complexes that perform a wide range of functions. Moreover, these protein networks form membrane contact sites, for example, with the endoplasmic reticulum, that are key for integration of mitochondria with cellular function, and defects in protein import can lead to diseases.


Subject(s)
Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/biosynthesis , Signal Transduction/physiology , Animals , Endoplasmic Reticulum/genetics , Humans , Mitochondria/genetics , Mitochondrial Proteins/genetics , Protein Transport/physiology
13.
Nat Rev Mol Cell Biol ; 20(7): 389-405, 2019 07.
Article in English | MEDLINE | ID: mdl-30948801

ABSTRACT

The primary cilium is a hair-like surface-exposed organelle of the eukaryotic cell that decodes a variety of signals - such as odorants, light and Hedgehog morphogens - by altering the local concentrations and activities of signalling proteins. Signalling within the cilium is conveyed through a diverse array of second messengers, including conventional signalling molecules (such as cAMP) and some unusual intermediates (such as sterols). Diffusion barriers at the ciliary base establish the unique composition of this signalling compartment, and cilia adapt their proteome to signalling demands through regulated protein trafficking. Much progress has been made on the molecular understanding of regulated ciliary trafficking, which encompasses not only exchanges between the cilium and the rest of the cell but also the shedding of signalling factors into extracellular vesicles.


Subject(s)
Cell Movement/physiology , Cilia/metabolism , Proteome/metabolism , Second Messenger Systems/physiology , Animals , Cilia/genetics , Cyclic AMP/genetics , Cyclic AMP/metabolism , Humans , Protein Transport/physiology , Proteome/genetics
14.
Nat Rev Mol Cell Biol ; 19(11): 679-696, 2018 11.
Article in English | MEDLINE | ID: mdl-30194414

ABSTRACT

Newly endocytosed integral cell surface proteins are typically either directed for degradation or subjected to recycling back to the plasma membrane. The sorting of integral cell surface proteins, including signalling receptors, nutrient transporters, ion channels, adhesion molecules and polarity markers, within the endolysosomal network for recycling is increasingly recognized as an essential feature in regulating the complexities of physiology at the cell, tissue and organism levels. Historically, endocytic recycling has been regarded as a relatively passive process, where the majority of internalized integral proteins are recycled via a nonspecific sequence-independent 'bulk membrane flow' pathway. Recent work has increasingly challenged this view. The discovery of sequence-specific sorting motifs and the identification of cargo adaptors and associated coat complexes have begun to uncover the highly orchestrated nature of endosomal cargo recycling, thereby providing new insight into the function and (patho)physiology of this process.


Subject(s)
Endocytosis/physiology , Protein Transport/physiology , Animals , Cell Membrane/metabolism , Cell Membrane/physiology , Endosomes/metabolism , Endosomes/physiology , Humans , Membrane Proteins/metabolism
15.
Nat Rev Mol Cell Biol ; 18(6): 375-388, 2017 06.
Article in English | MEDLINE | ID: mdl-28293032

ABSTRACT

Planar cell polarity (PCP) is an essential feature of animal tissues, whereby distinct polarity is established within the plane of a cell sheet. Tissue-wide establishment of PCP is driven by multiple global cues, including gradients of gene expression, gradients of secreted WNT ligands and anisotropic tissue strain. These cues guide the dynamic, subcellular enrichment of PCP proteins, which can self-assemble into mutually exclusive complexes at opposite sides of a cell. Endocytosis, endosomal trafficking and degradation dynamics of PCP components further regulate planar tissue patterning. This polarization propagates throughout the whole tissue, providing a polarity axis that governs collective morphogenetic events such as the orientation of subcellular structures and cell rearrangements. Reflecting the necessity of polarized cellular behaviours for proper development and function of diverse organs, defects in PCP have been implicated in human pathologies, most notably in severe birth defects.


Subject(s)
Cell Polarity/physiology , Animals , Cell Polarity/genetics , Humans , Morphogenesis/genetics , Morphogenesis/physiology , Protein Transport/genetics , Protein Transport/physiology , Signal Transduction/genetics , Signal Transduction/physiology
16.
Annu Rev Cell Dev Biol ; 31: 575-91, 2015.
Article in English | MEDLINE | ID: mdl-26359775

ABSTRACT

One of the major challenges in biology is to explain how complex tissues and organs arise from the collective action of individual polarized cells. The best-studied model of this process is the cross talk between individual epithelial cells during their polarization to form the multicellular epithelial lumen during tissue morphogenesis. Multiple mechanisms of apical lumen formation have been proposed. Some epithelial lumens form from preexisting polarized epithelial structures. However, de novo lumen formation from nonpolarized cells has recently emerged as an important driver of epithelial tissue morphogenesis, especially during the formation of small epithelial tubule networks. In this review, we discuss the latest findings regarding the mechanisms and regulation of de novo lumen formation in vitro and in vivo.


Subject(s)
Cell Polarity/physiology , Epithelial Cells/physiology , Morphogenesis/physiology , Protein Transport/physiology , Animals , Humans
17.
Annu Rev Cell Dev Biol ; 31: 109-24, 2015.
Article in English | MEDLINE | ID: mdl-26422332

ABSTRACT

COPII vesicles mediate export of secretory cargo from the endoplasmic reticulum (ER). However, a standard COPII vesicle with a diameter of 60-90 nm is too small to export collagens that are composed of rigid triple helices of up to 400 nm in length. How do cells pack and secrete such bulky molecules? This issue is fundamentally important, as collagens constitute approximately 25% of our dry body weight and are essential for almost all cell-cell interactions. Recently, a potential mechanism for the biogenesis of mega-transport carriers was identified, involving packing collagens and increasing the size of COPII coats. Packing is mediated by TANGO1, which binds procollagen VII in the lumen and interacts with the COPII proteins Sec23/Sec24 on the cytoplasmic side of the ER. Cullin3, an E3 ligase, and its specific adaptor protein, KLHL12, ubiquitinate Sec31, which could increase the size of COPII coats. Recruitment of these proteins and their specific interactors into COPII-mediated vesicle biogenesis may be all that is needed for the export of bulky collagens from the ER. Nonetheless, we present an alternative pathway in which TANGO1 and COPII cooperate to export collagens without generating a mega-transport carrier.


Subject(s)
Collagen/metabolism , Animals , COP-Coated Vesicles/metabolism , Endoplasmic Reticulum/metabolism , Humans , Protein Transport/physiology , Vesicular Transport Proteins/metabolism
18.
Mol Cell ; 81(18): 3866-3876.e2, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34352204

ABSTRACT

The emerging role of mitochondria as signaling organelles raises the question of whether individual mitochondria can initiate heterotypic communication with neighboring organelles. Using fluorescent probes targeted to the endoplasmic-reticulum-mitochondrial interface, we demonstrate that single mitochondria generate oxidative bursts, rapid redox oscillations, confined to the nanoscale environment of the interorganellar contact sites. Using probes fused to inositol 1,4,5-trisphosphate receptors (IP3Rs), we show that Ca2+ channels directly sense oxidative bursts and respond with Ca2+ transients adjacent to active mitochondria. Application of specific mitochondrial stressors or apoptotic stimuli dramatically increases the frequency and amplitude of the oxidative bursts by enhancing transient permeability transition pore openings. Conversely, blocking interface Ca2+ transport via elimination of IP3Rs or mitochondrial calcium uniporter channels suppresses ER-mitochondrial Ca2+ feedback and cell death. Thus, single mitochondria initiate local retrograde signaling by miniature oxidative bursts and, upon metabolic or apoptotic stress, may also amplify signals to the rest of the cell.


Subject(s)
Mitochondria/metabolism , Protein Transport/physiology , Respiratory Burst/physiology , Calcium/metabolism , Calcium Channels , Calcium Signaling/physiology , Cell Membrane Permeability/physiology , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/physiology , HEK293 Cells , Hep G2 Cells , Humans , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Mitochondrial Membranes/metabolism , Oxidation-Reduction , Respiratory Burst/genetics , Single-Cell Analysis/methods
19.
Annu Rev Cell Dev Biol ; 30: 207-33, 2014.
Article in English | MEDLINE | ID: mdl-25288113

ABSTRACT

Development in multicellular organisms requires the coordinated production of a large number of specialized cell types through sophisticated signaling mechanisms. Non-cell-autonomous signals are one of the key mechanisms by which organisms coordinate development. In plants, intercellular movement of transcription factors and other mobile signals, such as hormones and peptides, is essential for normal development. Through a combination of different approaches, a large number of non-cell-autonomous signals that control plant development have been identified. We review some of the transcriptional regulators that traffic between cells, as well as how changes in symplasmic continuity affect and are affected by development. We also review current models for how mobile signals move via plasmodesmata and how movement is inhibited. Finally, we consider challenges in and new tools for studying protein movement.


Subject(s)
Cell Communication/physiology , Plant Development/physiology , Plant Proteins/metabolism , Plasmodesmata/physiology , Protein Transport/physiology , Cell Wall/ultrastructure , Chloroplasts/physiology , Florigen , Glucans/physiology , Intracellular Signaling Peptides and Proteins/metabolism , Plasmodesmata/ultrastructure , RNA, Plant/physiology , Signal Transduction , Transcription Factors/metabolism , Trichomes/metabolism
20.
Annu Rev Cell Dev Biol ; 30: 169-206, 2014.
Article in English | MEDLINE | ID: mdl-25150009

ABSTRACT

The trans-Golgi network (TGN) is an important cargo sorting station within the cell where newly synthesized proteins are packaged into distinct transport carriers that are targeted to various destinations. To maintain the fidelity of protein transport, elaborate protein sorting machinery is employed to mediate sorting of specific cargo proteins into distinct transport carriers. Protein sorting requires assembly of the cytosolic sorting machinery onto the TGN membrane and capture of cargo proteins. We review the cytosolic and transmembrane sorting machinery that function at the TGN and describe molecular interactions and regulatory mechanisms that enable accurate protein sorting. In addition, we highlight the importance of TGN sorting in physiology and disease.


Subject(s)
Protein Transport/physiology , trans-Golgi Network/physiology , ADP-Ribosylation Factor 1/physiology , Adaptor Proteins, Vesicular Transport/physiology , Amino Acid Motifs , Animals , Carrier Proteins/physiology , Cell Polarity , Cytosol/physiology , Humans , Membrane Lipids/physiology , Membrane Transport Proteins/physiology , Models, Biological , Models, Molecular , Phospholipids/physiology , Protein Conformation , Protein Sorting Signals/physiology , Protein Transport/immunology , Structure-Activity Relationship , Transport Vesicles/physiology , Vesicular Transport Proteins/physiology , trans-Golgi Network/immunology
SELECTION OF CITATIONS
SEARCH DETAIL