Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.651
Filter
Add more filters

Publication year range
1.
Nature ; 629(8010): 184-192, 2024 May.
Article in English | MEDLINE | ID: mdl-38600378

ABSTRACT

Glucocorticoids represent the mainstay of therapy for a broad spectrum of immune-mediated inflammatory diseases. However, the molecular mechanisms underlying their anti-inflammatory mode of action have remained incompletely understood1. Here we show that the anti-inflammatory properties of glucocorticoids involve reprogramming of the mitochondrial metabolism of macrophages, resulting in increased and sustained production of the anti-inflammatory metabolite itaconate and consequent inhibition of the inflammatory response. The glucocorticoid receptor interacts with parts of the pyruvate dehydrogenase complex whereby glucocorticoids provoke an increase in activity and enable an accelerated and paradoxical flux of the tricarboxylic acid (TCA) cycle in otherwise pro-inflammatory macrophages. This glucocorticoid-mediated rewiring of mitochondrial metabolism potentiates TCA-cycle-dependent production of itaconate throughout the inflammatory response, thereby interfering with the production of pro-inflammatory cytokines. By contrast, artificial blocking of the TCA cycle or genetic deficiency in aconitate decarboxylase 1, the rate-limiting enzyme of itaconate synthesis, interferes with the anti-inflammatory effects of glucocorticoids and, accordingly, abrogates their beneficial effects during a diverse range of preclinical models of immune-mediated inflammatory diseases. Our findings provide important insights into the anti-inflammatory properties of glucocorticoids and have substantial implications for the design of new classes of anti-inflammatory drugs.


Subject(s)
Anti-Inflammatory Agents , Glucocorticoids , Inflammation , Macrophages , Mitochondria , Succinates , Animals , Female , Humans , Male , Mice , Anti-Inflammatory Agents/pharmacology , Carboxy-Lyases/metabolism , Carboxy-Lyases/antagonists & inhibitors , Citric Acid Cycle/drug effects , Citric Acid Cycle/genetics , Cytokines/immunology , Cytokines/metabolism , Glucocorticoids/pharmacology , Glucocorticoids/metabolism , Hydro-Lyases/deficiency , Hydro-Lyases/genetics , Inflammation/drug therapy , Inflammation/metabolism , Macrophages/cytology , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondria/drug effects , Pyruvate Dehydrogenase Complex/metabolism , Receptors, Glucocorticoid/metabolism , Succinates/metabolism , Enzyme Activation/drug effects
2.
Mol Cell ; 82(5): 886-888, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35245454

ABSTRACT

Zervopoulos et al. (2022) propose a non-canonical nuclear import pathway for the functional mitochondrial pyruvate dehydrogenase complex (PDC), facilitated by dynamic MFN2-mediated tethering of mitochondria to the nuclear envelope upon exposure to proliferative stimuli.


Subject(s)
Mitochondria , Pyruvate Dehydrogenase Complex , Cell Nucleus/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Pyruvate Dehydrogenase Complex/genetics , Pyruvate Dehydrogenase Complex/metabolism
3.
Mol Cell ; 82(5): 1066-1077.e7, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35245450

ABSTRACT

The mitochondrial pyruvate dehydrogenase complex (PDC) translocates into the nucleus, facilitating histone acetylation by producing acetyl-CoA. We describe a noncanonical pathway for nuclear PDC (nPDC) import that does not involve nuclear pore complexes (NPCs). Mitochondria cluster around the nucleus in response to proliferative stimuli and tether onto the nuclear envelope (NE) via mitofusin-2 (MFN2)-enriched contact points. A decrease in nuclear MFN2 levels decreases mitochondria tethering and nPDC levels. Mitochondrial PDC crosses the NE and interacts with lamin A, forming a ring below the NE before crossing through the lamin layer into the nucleoplasm, in areas away from NPCs. Effective blockage of NPC trafficking does not decrease nPDC levels. The PDC-lamin interaction is maintained during cell division, when lamin depolymerizes and disassembles before reforming daughter nuclear envelopes, providing another pathway for nPDC entry during mitosis. Our work provides a different angle to understanding mitochondria-to-nucleus communication and nuclear metabolism.


Subject(s)
Cell Nucleus , Pyruvate Dehydrogenase Complex , Acetyl Coenzyme A/metabolism , Cell Nucleus/genetics , Cell Nucleus/metabolism , Lamins/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Nuclear Envelope/metabolism , Pyruvate Dehydrogenase Complex/genetics , Pyruvate Dehydrogenase Complex/metabolism
4.
Cell ; 158(1): 9-10, 2014 Jul 03.
Article in English | MEDLINE | ID: mdl-24995972

ABSTRACT

The pyruvate dehydrogenase complex (PDC) catalyzes the conversion of pyruvate into acetyl-CoA, a critical step in metabolism. Sutendra et al. now demonstrate that PDC can translocate from the mitochondria to the nucleus to provide acetyl-CoA necessary for histone acetylation, suggesting a new pathway for mitochondrial-nuclear communication.


Subject(s)
Acetyl Coenzyme A/biosynthesis , Cell Nucleus/metabolism , Pyruvate Dehydrogenase Complex/metabolism , Humans
5.
Cell ; 158(1): 84-97, 2014 Jul 03.
Article in English | MEDLINE | ID: mdl-24995980

ABSTRACT

DNA transcription, replication, and repair are regulated by histone acetylation, a process that requires the generation of acetyl-coenzyme A (CoA). Here, we show that all the subunits of the mitochondrial pyruvate dehydrogenase complex (PDC) are also present and functional in the nucleus of mammalian cells. We found that knockdown of nuclear PDC in isolated functional nuclei decreased the de novo synthesis of acetyl-CoA and acetylation of core histones. Nuclear PDC levels increased in a cell-cycle-dependent manner and in response to serum, epidermal growth factor, or mitochondrial stress; this was accompanied by a corresponding decrease in mitochondrial PDC levels, suggesting a translocation from the mitochondria to the nucleus. Inhibition of nuclear PDC decreased acetylation of specific lysine residues on histones important for G1-S phase progression and expression of S phase markers. Dynamic translocation of mitochondrial PDC to the nucleus provides a pathway for nuclear acetyl-CoA synthesis required for histone acetylation and epigenetic regulation.


Subject(s)
Acetyl Coenzyme A/biosynthesis , Cell Nucleus/metabolism , Pyruvate Dehydrogenase Complex/metabolism , Cell Cycle , Cell Line, Tumor , Cell Nucleus/enzymology , Epigenesis, Genetic , Histones/metabolism , Humans , Mitochondria/enzymology , Mitochondria/metabolism , Protein Transport
6.
Cell ; 159(7): 1615-25, 2014 Dec 18.
Article in English | MEDLINE | ID: mdl-25525879

ABSTRACT

Sirtuins (SIRTs) are critical enzymes that govern genome regulation, metabolism, and aging. Despite conserved deacetylase domains, mitochondrial SIRT4 and SIRT5 have little to no deacetylase activity, and a robust catalytic activity for SIRT4 has been elusive. Here, we establish SIRT4 as a cellular lipoamidase that regulates the pyruvate dehydrogenase complex (PDH). Importantly, SIRT4 catalytic efficiency for lipoyl- and biotinyl-lysine modifications is superior to its deacetylation activity. PDH, which converts pyruvate to acetyl-CoA, has been known to be primarily regulated by phosphorylation of its E1 component. We determine that SIRT4 enzymatically hydrolyzes the lipoamide cofactors from the E2 component dihydrolipoyllysine acetyltransferase (DLAT), diminishing PDH activity. We demonstrate SIRT4-mediated regulation of DLAT lipoyl levels and PDH activity in cells and in vivo, in mouse liver. Furthermore, metabolic flux switching via glutamine stimulation induces SIRT4 lipoamidase activity to inhibit PDH, highlighting SIRT4 as a guardian of cellular metabolism.


Subject(s)
Mitochondrial Proteins/metabolism , Pyruvate Dehydrogenase Complex/metabolism , Sirtuins/metabolism , Amidohydrolases/metabolism , Animals , Gene Knockdown Techniques , Glutamine/metabolism , Humans , Liver/metabolism , Mice , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Rats , Sirtuins/genetics , Thioctic Acid/analogs & derivatives , Thioctic Acid/metabolism
7.
Mol Cell ; 81(4): 642-644, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33606971

ABSTRACT

Luengo et al. (2020) demonstrate that pyruvate dehydrogenase (PDH) overactivation blunts NAD+ regeneration by overcharging the mitochondrial membrane potential and driving ATP synthesis beyond demand. Under these conditions, some cells prioritize aerobic glycolysis to meet the need for oxidized cofactors in biosynthetic metabolism.


Subject(s)
NAD , Pyruvate Dehydrogenase Complex , Adenosine Triphosphate , Glucose , Glycolysis , NAD/metabolism , Pyruvate Dehydrogenase Complex/metabolism , Seasons
8.
Cell ; 153(7): 1429-30, 2013 Jun 20.
Article in English | MEDLINE | ID: mdl-23791173

ABSTRACT

Regulation of pyruvate fate is an important determinant of anabolic versus catabolic metabolism. A new report in the journal Nature by Kaplon et al. suggests that driving pyruvate oxidation can thwart tumor growth in BRAF-driven melanoma by inducing oncogene-induced senescence, a finding that might be exploited therapeutically.


Subject(s)
Cellular Senescence/genetics , Mitochondria/enzymology , Oncogenes/genetics , Pyruvate Dehydrogenase Complex/metabolism , Animals , Humans
9.
Mol Cell ; 80(2): 263-278.e7, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33022274

ABSTRACT

Cancer metastasis accounts for the major cause of cancer-related deaths. How disseminated cancer cells cope with hostile microenvironments in secondary site for full-blown metastasis is largely unknown. Here, we show that AMPK (AMP-activated protein kinase), activated in mouse metastasis models, drives pyruvate dehydrogenase complex (PDHc) activation to maintain TCA cycle (tricarboxylic acid cycle) and promotes cancer metastasis by adapting cancer cells to metabolic and oxidative stresses. This AMPK-PDHc axis is activated in advanced breast cancer and predicts poor metastasis-free survival. Mechanistically, AMPK localizes in the mitochondrial matrix and phosphorylates the catalytic alpha subunit of PDHc (PDHA) on two residues S295 and S314, which activates the enzymatic activity of PDHc and alleviates an inhibitory phosphorylation by PDHKs, respectively. Importantly, these phosphorylation events mediate PDHc function in cancer metastasis. Our study reveals that AMPK-mediated PDHA phosphorylation drives PDHc activation and TCA cycle to empower cancer cells adaptation to metastatic microenvironments for metastasis.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Breast Neoplasms/enzymology , Breast Neoplasms/pathology , Citric Acid Cycle , Pyruvate Dehydrogenase Complex/metabolism , Animals , Catalytic Domain , Cell Line, Tumor , Cell Survival , Enzyme Activation , Female , Humans , Mice, Inbred BALB C , Mice, Nude , Neoplasm Metastasis , Phosphorylation , Phosphoserine/metabolism , Signal Transduction , Stress, Physiological , Survival Analysis
10.
Proc Natl Acad Sci U S A ; 121(36): e2321939121, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39186649

ABSTRACT

Developing an effective Staphylococcus aureus (S. aureus) vaccine has been a challenging endeavor, as demonstrated by numerous failed clinical trials over the years. In this study, we formulated a vaccine containing a highly conserved moonlighting protein, the pyruvate dehydrogenase complex E2 subunit (PDHC), and showed that it induced strong protective immunity against epidemiologically relevant staphylococcal strains in various murine disease models. While antibody responses contributed to bacterial control, they were not essential for protective immunity in the bloodstream infection model. Conversely, vaccine-induced systemic immunity relied on γδ T cells. It has been suggested that prior S. aureus exposure may contribute to the reduction of vaccine efficacy. However, PDHC-induced protective immunity still facilitated bacterial clearance in mice previously exposed to S. aureus. Collectively, our findings indicate that PDHC is a promising serotype-independent vaccine candidate effective against both methicillin-sensitive and methicillin-resistant S. aureus isolates.


Subject(s)
Staphylococcal Infections , Staphylococcal Vaccines , Staphylococcus aureus , Animals , Staphylococcal Infections/prevention & control , Staphylococcal Infections/immunology , Staphylococcal Infections/microbiology , Mice , Staphylococcus aureus/immunology , Staphylococcus aureus/enzymology , Staphylococcal Vaccines/immunology , Pyruvate Dehydrogenase Complex/metabolism , Pyruvate Dehydrogenase Complex/immunology , Female , Antibodies, Bacterial/immunology , Disease Models, Animal , Humans , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Mice, Inbred C57BL , Methicillin-Resistant Staphylococcus aureus/immunology , Pyruvate Dehydrogenase (Lipoamide)/immunology , Pyruvate Dehydrogenase (Lipoamide)/metabolism , Pyruvate Dehydrogenase (Lipoamide)/genetics
11.
J Biol Chem ; 300(7): 107412, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38796064

ABSTRACT

The heart alters the rate and relative oxidation of fatty acids and glucose based on availability and energetic demand. Insulin plays a crucial role in this process diminishing fatty acid and increasing glucose oxidation when glucose availability increases. Loss of insulin sensitivity and metabolic flexibility can result in cardiovascular disease. It is therefore important to identify mechanisms by which insulin regulates substrate utilization in the heart. Mitochondrial pyruvate dehydrogenase (PDH) is the key regulatory site for the oxidation of glucose for ATP production. Nevertheless, the impact of insulin on PDH activity has not been fully delineated, particularly in the heart. We sought in vivo evidence that insulin stimulates cardiac PDH and that this process is driven by the inhibition of fatty acid oxidation. Mice injected with insulin exhibited dephosphorylation and activation of cardiac PDH. This was accompanied by an increase in the content of malonyl-CoA, an inhibitor of carnitine palmitoyltransferase 1 (CPT1), and, thus, mitochondrial import of fatty acids. Administration of the CPT1 inhibitor oxfenicine was sufficient to activate PDH. Malonyl-CoA is produced by acetyl-CoA carboxylase (ACC). Pharmacologic inhibition or knockout of cardiac ACC diminished insulin-dependent production of malonyl-CoA and activation of PDH. Finally, circulating insulin and cardiac glucose utilization exhibit daily rhythms reflective of nutritional status. We demonstrate that time-of-day-dependent changes in PDH activity are mediated, in part, by ACC-dependent production of malonyl-CoA. Thus, by inhibiting fatty acid oxidation, insulin reciprocally activates PDH. These studies identify potential molecular targets to promote cardiac glucose oxidation and treat heart disease.


Subject(s)
Fatty Acids , Insulin , Myocardium , Oxidation-Reduction , Pyruvate Dehydrogenase Complex , Animals , Insulin/metabolism , Pyruvate Dehydrogenase Complex/metabolism , Mice , Myocardium/metabolism , Myocardium/enzymology , Fatty Acids/metabolism , Acetyl-CoA Carboxylase/metabolism , Acetyl-CoA Carboxylase/genetics , Carnitine O-Palmitoyltransferase/metabolism , Carnitine O-Palmitoyltransferase/genetics , Malonyl Coenzyme A/metabolism , Male , Mice, Knockout , Glucose/metabolism , Mice, Inbred C57BL
12.
Nat Chem Biol ; 19(3): 265-274, 2023 03.
Article in English | MEDLINE | ID: mdl-36266351

ABSTRACT

Pyruvate dehydrogenase complex (PDHC) and oxoglutarate dehydrogenase complex (OGDC), which belong to the mitochondrial α-ketoacid dehydrogenase family, play crucial roles in cellular metabolism. These multi-subunit enzyme complexes use lipoic arms covalently attached to their E2 subunits to transfer an acyl group to coenzyme A (CoA). Here, we report a novel mechanism capable of substantially inhibiting PDHC and OGDC: reactive nitrogen species (RNS) can covalently modify the thiols on their lipoic arms, generating a series of adducts that block catalytic activity. S-Nitroso-CoA, a product between RNS and the E2 subunit's natural substrate, CoA, can efficiently deliver these modifications onto the lipoic arm. We found RNS-mediated inhibition of PDHC and OGDC occurs during classical macrophage activation, driving significant rewiring of cellular metabolism over time. This work provides a new mechanistic link between RNS and mitochondrial metabolism with potential relevance for numerous physiological and pathological conditions in which RNS accumulate.


Subject(s)
Arm , Nitric Oxide , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide) , Pyruvate Dehydrogenase Complex/metabolism , Multienzyme Complexes
13.
Nature ; 566(7743): 279-283, 2019 02.
Article in English | MEDLINE | ID: mdl-30700909

ABSTRACT

Adaptation to the environment and extraction of energy are essential for survival. Some species have found niches and specialized in using a particular source of energy, whereas others-including humans and several other mammals-have developed a high degree of flexibility1. A lot is known about the general metabolic fates of different substrates but we still lack a detailed mechanistic understanding of how cells adapt in their use of basic nutrients2. Here we show that the closely related fasting/starvation-induced forkhead transcription factors FOXK1 and FOXK2 induce aerobic glycolysis by upregulating the enzymatic machinery required for this (for example, hexokinase-2, phosphofructokinase, pyruvate kinase, and lactate dehydrogenase), while at the same time suppressing further oxidation of pyruvate in the mitochondria by increasing the activity of pyruvate dehydrogenase kinases 1 and 4. Together with suppression of the catalytic subunit of pyruvate dehydrogenase phosphatase 1 this leads to increased phosphorylation of the E1α regulatory subunit of the pyruvate dehydrogenase complex, which in turn inhibits further oxidation of pyruvate in the mitochondria-instead, pyruvate is reduced to lactate. Suppression of FOXK1 and FOXK2 induce the opposite phenotype. Both in vitro and in vivo experiments, including studies of primary human cells, show how FOXK1 and/or FOXK2 are likely to act as important regulators that reprogram cellular metabolism to induce aerobic glycolysis.


Subject(s)
Aerobiosis , Forkhead Transcription Factors/metabolism , Glycolysis , 3T3 Cells , Animals , Cells, Cultured , Female , Forkhead Transcription Factors/deficiency , Forkhead Transcription Factors/genetics , Humans , Lactic Acid/biosynthesis , Lactic Acid/metabolism , Male , Mice , Mice, Inbred C57BL , Mitochondria/enzymology , Mitochondria/metabolism , Muscle Fibers, Skeletal/metabolism , Oxidation-Reduction , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Pyruvate Dehydrogenase (Lipoamide)-Phosphatase/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Pyruvate Dehydrogenase Complex/chemistry , Pyruvate Dehydrogenase Complex/metabolism , Pyruvic Acid/metabolism
14.
Cell Mol Life Sci ; 81(1): 340, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39120696

ABSTRACT

Copper is a trace element essential for numerous biological activities, whereas the mitochondria serve as both major sites of intracellular copper utilization and copper reservoir. Here, we investigated the impact of mitochondrial copper overload on the tricarboxylic acid cycle, renal senescence and fibrosis. We found that copper ion levels are significantly elevated in the mitochondria in fibrotic kidney tissues, which are accompanied by reduced pyruvate dehydrogenase (PDH) activity, mitochondrial dysfunction, cellular senescence and renal fibrosis. Conversely, lowering mitochondrial copper levels effectively restore PDH enzyme activity, improve mitochondrial function, mitigate cellular senescence and renal fibrosis. Mechanically, we found that mitochondrial copper could bind directly to lipoylated dihydrolipoamide acetyltransferase (DLAT), the E2 component of the PDH complex, thereby changing the interaction between the subunits of lipoylated DLAT, inducing lipoylated DLAT protein dimerization, and ultimately inhibiting PDH enzyme activity. Collectively, our study indicates that mitochondrial copper overload could inhibit PDH activity, subsequently leading to mitochondrial dysfunction, cellular senescence and renal fibrosis. Reducing mitochondrial copper overload might therefore serve as a strategy to rescue renal fibrosis.


Subject(s)
Cellular Senescence , Copper , Fibrosis , Kidney , Mitochondria , Pyruvate Dehydrogenase Complex , Copper/metabolism , Mitochondria/metabolism , Fibrosis/metabolism , Animals , Pyruvate Dehydrogenase Complex/metabolism , Kidney/metabolism , Kidney/pathology , Dihydrolipoyllysine-Residue Acetyltransferase/metabolism , Male , Mice , Mice, Inbred C57BL , Humans , Kidney Diseases/metabolism , Kidney Diseases/pathology , Citric Acid Cycle
15.
J Proteome Res ; 23(8): 3682-3695, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39037832

ABSTRACT

Dental caries is a chronic oral infectious disease, and Streptococcus mutans (S. mutans) plays an important role in the formation of dental caries. Trans-cinnamaldehyde (CA) exhibits broad-spectrum antibacterial activity; however, its target and mechanism of action of CA on S. mutans needs to be further explored. In this study, it was verified that CA could inhibit the growth and biofilm formation of S. mutans. Further proteomic analysis identified 33, 55, and 78 differentially expressed proteins (DEPs) in S. mutans treated with CA for 1, 2, and 4 h, respectively. Bioinformatics analysis showed that CA interfered with carbohydrate metabolism, glycolysis, pyruvate metabolism, and the TCA cycle, as well as amino acid metabolism of S. mutans. Protein interactions suggested that pyruvate dehydrogenase (PDH) plays an important role in the antibacterial effect of CA. Moreover, the upstream and downstream pathways related to PDH were verified by various assays, and the results proved that CA not only suppressed the glucose and sucrose consumption and inhibited glucosyltransferase (GTF) and lactate dehydrogenase (LDH) activities but also decreased the ATP production. Interestingly, the protein interaction, qRT-PCR, and molecular docking analysis showed that PDH might be the target of CA to fight S. mutans. In summary, the study shows that CA interferes with the carbohydrate metabolism of bacteria by inhibiting glycolysis and the tricarboxylic acid (TCA) cycle via binding to PDH, which verifies that PDH is a potential target for the development of new drugs against S. mutans.


Subject(s)
Acrolein , Carbohydrate Metabolism , Molecular Docking Simulation , Pyruvate Dehydrogenase Complex , Streptococcus mutans , Streptococcus mutans/drug effects , Streptococcus mutans/genetics , Streptococcus mutans/enzymology , Acrolein/pharmacology , Acrolein/analogs & derivatives , Acrolein/metabolism , Carbohydrate Metabolism/drug effects , Pyruvate Dehydrogenase Complex/metabolism , Pyruvate Dehydrogenase Complex/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Glycolysis/drug effects , Biofilms/drug effects , Biofilms/growth & development , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/antagonists & inhibitors , Proteomics/methods , Dental Caries/microbiology , Citric Acid Cycle/drug effects , Adenosine Triphosphate/metabolism
16.
J Biol Chem ; 299(12): 105375, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37865313

ABSTRACT

Pyruvate dehydrogenase (PDH) is the rate-limiting enzyme for glucose oxidation that links glycolysis-derived pyruvate with the tricarboxylic acid (TCA) cycle. Although skeletal muscle is a significant site for glucose oxidation and is closely linked with metabolic flexibility, the importance of muscle PDH during rest and exercise has yet to be fully elucidated. Here, we demonstrate that mice with muscle-specific deletion of PDH exhibit rapid weight loss and suffer from severe lactic acidosis, ultimately leading to early mortality under low-fat diet provision. Furthermore, loss of muscle PDH induces adaptive anaplerotic compensation by increasing pyruvate-alanine cycling and glutaminolysis. Interestingly, high-fat diet supplementation effectively abolishes early mortality and rescues the overt metabolic phenotype induced by muscle PDH deficiency. Despite increased reliance on fatty acid oxidation during high-fat diet provision, loss of muscle PDH worsens exercise performance and induces lactic acidosis. These observations illustrate the importance of muscle PDH in maintaining metabolic flexibility and preventing the development of metabolic disorders.


Subject(s)
Acidosis, Lactic , Alanine , Muscle, Skeletal , Pyruvate Dehydrogenase Complex , Pyruvic Acid , Animals , Mice , Acidosis, Lactic/physiopathology , Glucose/metabolism , Muscle, Skeletal/metabolism , Pyruvate Dehydrogenase Complex/genetics , Pyruvate Dehydrogenase Complex/metabolism , Pyruvic Acid/metabolism , Glutamine/metabolism , Alanine/metabolism , Gene Deletion , Diet , Mortality, Premature
17.
J Biol Chem ; 299(12): 105399, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37898400

ABSTRACT

Pyruvate dehydrogenase (PDH) and α-ketoglutarate dehydrogenase (KGDH) are vital entry points for monosaccharides and amino acids into the Krebs cycle and thus integral for mitochondrial bioenergetics. Both complexes produce mitochondrial hydrogen peroxide (mH2O2) and are deactivated by electrophiles. Here, we provide an update on the role of PDH and KGDH in mitochondrial redox balance and their function in facilitating metabolic reprogramming for the propagation of oxidative eustress signals in hepatocytes and how defects in these pathways can cause liver diseases. PDH and KGDH are known to account for ∼45% of the total mH2O2 formed by mitochondria and display rates of production several-fold higher than the canonical source complex I. This mH2O2 can also be formed by reverse electron transfer (RET) in vivo, which has been linked to metabolic dysfunctions that occur in pathogenesis. However, the controlled emission of mH2O2 from PDH and KGDH has been proposed to be fundamental for oxidative eustress signal propagation in several cellular contexts. Modification of PDH and KGDH with protein S-glutathionylation (PSSG) and S-nitrosylation (PSNO) adducts serves as a feedback inhibitor for mH2O2 production in response to glutathione (GSH) pool oxidation. PSSG and PSNO adduct formation also reprogram the Krebs cycle to generate metabolites vital for interorganelle and intercellular signaling. Defects in the redox modification of PDH and KGDH cause the over generation of mH2O2, resulting in oxidative distress and metabolic dysfunction-associated fatty liver disease (MAFLD). In aggregate, PDH and KGDH are essential platforms for emitting and receiving oxidative eustress signals.


Subject(s)
Hepatocytes , Hydrogen Peroxide , Ketoglutarate Dehydrogenase Complex , Mitochondria, Liver , Pyruvate Dehydrogenase Complex , Hydrogen Peroxide/metabolism , Ketoglutarate Dehydrogenase Complex/chemistry , Ketoglutarate Dehydrogenase Complex/metabolism , Oxidation-Reduction , Oxidative Stress , Pyruvate Dehydrogenase Complex/chemistry , Pyruvate Dehydrogenase Complex/metabolism , Humans , Hepatocytes/enzymology , Mitochondria, Liver/metabolism , Non-alcoholic Fatty Liver Disease/enzymology , Animals , Mice
18.
J Biol Chem ; 299(11): 105333, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37827290

ABSTRACT

Branched chain α-ketoacid dehydrogenase complex (BCKDC) is the rate-limiting enzyme in branched chain amino acid (BCAA) catabolism, a metabolic pathway with great importance for human health. BCKDC belongs to the mitochondrial α-ketoacid dehydrogenase complex family, which also includes pyruvate dehydrogenase complex and oxoglutarate dehydrogenase complex. Here, we revealed that BCKDC can be substantially inhibited by reactive nitrogen species (RNS) via a mechanism similar to what we recently discovered with pyruvate dehydrogenase complex and oxoglutarate dehydrogenase complex-RNS can cause inactivating covalent modifications of the lipoic arm on its E2 subunit. In addition, we showed that such reaction between RNS and the lipoic arm of the E2 subunit can further promote inhibition of the E3 subunits of α-ketoacid dehydrogenase complexes. We examined the impacts of this RNS-mediated BCKDC inhibition in muscle cells, an important site of BCAA metabolism, and demonstrated that the nitric oxide production induced by cytokine stimulation leads to a strong inhibition of BCKDC activity and BCAA oxidation in myotubes and myoblasts. More broadly, nitric oxide production reduced the level of functional lipoic arms across the multiple α-ketoacid dehydrogenases and led to intracellular accumulation of their substrates (α-ketoacids), decrease of their products (acyl-CoAs), and a lower cellular energy charge. In sum, this work revealed a new mechanism for BCKDC regulation, demonstrated that RNS can generally inhibit all α-ketoacid dehydrogenases, which has broad physiological implications across multiple cell types, and elucidated the mechanistic connection between RNS-driven inhibitory modifications on the E2 and E3 subunits of α-ketoacid dehydrogenases.


Subject(s)
3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide) , Muscle Cells , Nitric Oxide , Reactive Nitrogen Species , Humans , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/metabolism , Amino Acids, Branched-Chain/metabolism , Ketoglutarate Dehydrogenase Complex , Muscle Cells/metabolism , Pyruvate Dehydrogenase Complex , Reactive Nitrogen Species/metabolism
19.
Mol Psychiatry ; 28(10): 4138-4150, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37188779

ABSTRACT

Depression is a mental illness frequently accompanied by disordered energy metabolism. A dysregulated hypothalamus pituitary adrenal axis response with aberrant glucocorticoids (GCs) release is often observed in patients with depression. However, the associated etiology between GCs and brain energy metabolism remains poorly understood. Here, using metabolomic analysis, we showed that the tricarboxylic acid (TCA) cycle was inhibited in chronic social defeat stress (CSDS)-exposed mice and patients with first-episode depression. Decreased mitochondrial oxidative phosphorylation was concomitant with the impairment of the TCA cycle. In parallel, the activity of pyruvate dehydrogenase (PDH), the gatekeeper of mitochondrial TCA flux, was suppressed, which is associated with the CSDS-induced neuronal pyruvate dehydrogenase kinase 2 (PDK2) expression and consequently enhanced PDH phosphorylation. Considering the well-acknowledged role of GCs in energy metabolism, we further demonstrated that glucocorticoid receptors (GR) stimulated PDK2 expression by directly binding to its promoter region. Meanwhile, silencing PDK2 abrogated glucocorticoid-induced PDH inhibition, restored the neuronal oxidative phosphorylation, and improved the flux of isotope-labeled carbon (U-13C] glucose) into the TCA cycle. Additionally, in vivo, pharmacological inhibition and neuron-specific silencing of GR or PDK2 restored CSDS-induced PDH phosphorylation and exerted antidepressant activities against chronic stress exposure. Taken together, our findings reveal a novel mechanism of depression manifestation, whereby elevated GCs levels regulate PDK2 transcription via GR, thereby impairing brain energy metabolism and contributing to the onset of this condition.


Subject(s)
Energy Metabolism , Pyruvate Dehydrogenase Complex , Humans , Mice , Animals , Pyruvate Dehydrogenase Complex/metabolism , Citric Acid Cycle/physiology , Brain/metabolism , Phosphorylation
20.
J Exp Biol ; 227(16)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39054898

ABSTRACT

Adult, lab-reared, highland deer mice acclimate to hypoxia by increasing reliance on carbohydrates to fuel exercise. Yet neither the underlying mechanisms for this shift in fuel use nor the impact of lifetime hypoxia exposure experienced in high alpine conditions, are fully understood. Thus, we assessed the use of fuel during exercise in wild highland deer mice running in their native environment. We examined a key step in muscle carbohydrate oxidation - the regulation of pyruvate dehydrogenase (PDH) - during exercise at altitude in wild highlanders and in first generation (G1) lab-born and -raised highlanders acclimated to normoxia or hypoxia. PDH activity was also determined in the gastrocnemius of G1 highlanders using an in situ muscle preparation. We found that wild highlanders had a high reliance on carbohydrates while running in their native environment, consistent with data from hypoxia-acclimated G1 highlanders. PDH activity in the gastrocnemius was similar post exercise between G1 and wild highlanders. However, when the gastrocnemius was stimulated at a light work rate in situ, PDH activity was higher in hypoxia-acclimated G1 highlanders and was associated with lower intramuscular lactate levels. These findings were supported by lower PDH kinase 2 protein production in hypoxia-acclimated G1 mice. Our findings indicate that adult phenotypic plasticity in response to low oxygen is sufficient to increase carbohydrate reliance during exercise in highland deer mice. Additionally, variation in PDH regulation with hypoxia acclimation contributes to shifts in whole-animal patterns of fuel use and is likely to improve exercise performance via elevated energy yield per mole of O2. .


Subject(s)
Altitude , Muscle, Skeletal , Peromyscus , Physical Conditioning, Animal , Pyruvate Dehydrogenase Complex , Animals , Muscle, Skeletal/metabolism , Muscle, Skeletal/enzymology , Peromyscus/physiology , Pyruvate Dehydrogenase Complex/metabolism , Male , Acclimatization , Hypoxia/metabolism , Female
SELECTION OF CITATIONS
SEARCH DETAIL