Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 596
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 17(11): 1252-1262, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27595231

ABSTRACT

The mammalian cytoplasmic multi-tRNA synthetase complex (MSC) is a depot system that regulates non-translational cellular functions. Here we found that the MSC component glutamyl-prolyl-tRNA synthetase (EPRS) switched its function following viral infection and exhibited potent antiviral activity. Infection-specific phosphorylation of EPRS at Ser990 induced its dissociation from the MSC, after which it was guided to the antiviral signaling pathway, where it interacted with PCBP2, a negative regulator of mitochondrial antiviral signaling protein (MAVS) that is critical for antiviral immunity. This interaction blocked PCBP2-mediated ubiquitination of MAVS and ultimately suppressed viral replication. EPRS-haploid (Eprs+/-) mice showed enhanced viremia and inflammation and delayed viral clearance. This stimulus-inducible activation of MAVS by EPRS suggests an unexpected role for the MSC as a regulator of immune responses to viral infection.


Subject(s)
Amino Acyl-tRNA Synthetases/metabolism , Disease Resistance/immunology , Host-Pathogen Interactions/immunology , Virus Diseases/immunology , Virus Diseases/metabolism , Amino Acyl-tRNA Synthetases/chemistry , Amino Acyl-tRNA Synthetases/genetics , Animals , Antiviral Agents/pharmacology , Disease Models, Animal , Immunity, Innate , Mice , Mice, Knockout , Peptides/pharmacology , Phosphorylation , Protein Binding , RNA Virus Infections/immunology , RNA Virus Infections/metabolism , RNA Virus Infections/virology , RNA Viruses/drug effects , RNA Viruses/immunology , RNA-Binding Proteins/metabolism , Signal Transduction , Ubiquitination , Virus Diseases/virology , Virus Replication
2.
J Biol Chem ; 300(8): 107514, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945449

ABSTRACT

The development of safe and effective broad-spectrum antivirals that target the replication machinery of respiratory viruses is of high priority in pandemic preparedness programs. Here, we studied the mechanism of action of a newly discovered nucleotide analog against diverse RNA-dependent RNA polymerases (RdRps) of prototypic respiratory viruses. GS-646939 is the active 5'-triphosphate metabolite of a 4'-cyano modified C-adenosine analog phosphoramidate prodrug GS-7682. Enzyme kinetics show that the RdRps of human rhinovirus type 16 (HRV-16) and enterovirus 71 incorporate GS-646939 with unprecedented selectivity; GS-646939 is incorporated 20-50-fold more efficiently than its natural ATP counterpart. The RdRp complex of respiratory syncytial virus and human metapneumovirus incorporate GS-646939 and ATP with similar efficiency. In contrast, influenza B RdRp shows a clear preference for ATP and human mitochondrial RNA polymerase does not show significant incorporation of GS-646939. Once incorporated into the nascent RNA strand, GS-646939 acts as a chain terminator although higher NTP concentrations can partially overcome inhibition for some polymerases. Modeling and biochemical data suggest that the 4'-modification inhibits RdRp translocation. Comparative studies with GS-443902, the active triphosphate form of the 1'-cyano modified prodrugs remdesivir and obeldesivir, reveal not only different mechanisms of inhibition, but also differences in the spectrum of inhibition of viral polymerases. In conclusion, 1'-cyano and 4'-cyano modifications of nucleotide analogs provide complementary strategies to target the polymerase of several families of respiratory RNA viruses.


Subject(s)
Antiviral Agents , RNA-Dependent RNA Polymerase , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , RNA-Dependent RNA Polymerase/antagonists & inhibitors , RNA-Dependent RNA Polymerase/metabolism , RNA-Dependent RNA Polymerase/chemistry , RNA Viruses/drug effects , RNA Viruses/enzymology , Metapneumovirus/drug effects , Nucleotides/chemistry , Nucleotides/pharmacology , Nucleotides/metabolism
3.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Article in English | MEDLINE | ID: mdl-34168080

ABSTRACT

Type I interferons (IFNs) are innate immune cytokines required to establish cellular host defense. Precise control of IFN gene expression is crucial to maintaining immune homeostasis. Here, we demonstrated that cellular nucleic acid-binding protein (CNBP) was required for the production of type I IFNs in response to RNA virus infection. CNBP deficiency markedly impaired IFN production in macrophages and dendritic cells that were infected with a panel of RNA viruses or stimulated with synthetic double-stranded RNA. Furthermore, CNBP-deficient mice were more susceptible to influenza virus infection than were wild-type mice. Mechanistically, CNBP was phosphorylated and translocated to the nucleus, where it directly binds to the promoter of IFNb in response to RNA virus infection. Furthermore, CNBP controlled the recruitment of IFN regulatory factor (IRF) 3 and IRF7 to IFN promoters for the maximal induction of IFNb gene expression. These studies reveal a previously unrecognized role for CNBP as a transcriptional regulator of type I IFN genes engaged downstream of RNA virus-mediated innate immune signaling, which provides an additional layer of control for IRF3- and IRF7-dependent type I IFN gene expression and the antiviral innate immune response.


Subject(s)
Immunity , Interferon Type I/metabolism , RNA Virus Infections/immunology , RNA Virus Infections/virology , RNA Viruses/immunology , RNA-Binding Proteins/metabolism , A549 Cells , Animals , HEK293 Cells , Humans , Immunity/drug effects , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-7/metabolism , Mice, Inbred C57BL , Poly I-C/pharmacology , Promoter Regions, Genetic , Protein Binding/drug effects , RNA Viruses/drug effects , RNA, Viral/metabolism , Signal Transduction/drug effects , Virus Replication/drug effects
4.
J Biol Chem ; 298(2): 101529, 2022 02.
Article in English | MEDLINE | ID: mdl-34953856

ABSTRACT

Remdesivir (RDV) is a direct-acting antiviral agent that is approved in several countries for the treatment of coronavirus disease 2019 caused by the severe acute respiratory syndrome coronavirus 2. RDV exhibits broad-spectrum antiviral activity against positive-sense RNA viruses, for example, severe acute respiratory syndrome coronavirus and hepatitis C virus, and nonsegmented negative-sense RNA viruses, for example, Nipah virus, whereas segmented negative-sense RNA viruses such as influenza virus or Crimean-Congo hemorrhagic fever virus are not sensitive to the drug. The reasons for this apparent efficacy pattern are unknown. Here, we expressed and purified representative RNA-dependent RNA polymerases and studied three biochemical parameters that have been associated with the inhibitory effects of RDV-triphosphate (TP): (i) selective incorporation of the nucleotide substrate RDV-TP, (ii) the effect of the incorporated RDV-monophosphate (MP) on primer extension, and (iii) the effect of RDV-MP in the template during incorporation of the complementary UTP. We found a strong correlation between antiviral effects and efficient incorporation of RDV-TP. Inhibition in primer extension reactions was heterogeneous and usually inefficient at higher NTP concentrations. In contrast, template-dependent inhibition of UTP incorporation opposite the embedded RDV-MP was seen with all polymerases. Molecular modeling suggests a steric conflict between the 1'-cyano group of the inhibitor and residues of the structurally conserved RNA-dependent RNA polymerase motif F. We conclude that future efforts in the development of nucleotide analogs with a broader spectrum of antiviral activities should focus on improving rates of incorporation while capitalizing on the inhibitory effects of a bulky 1'-modification.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Models, Molecular , RNA Viruses/enzymology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/pharmacology , Alanine/chemistry , Alanine/pharmacology , Antiviral Agents/pharmacology , Hepacivirus/drug effects , Hepacivirus/enzymology , Negative-Sense RNA Viruses/drug effects , Negative-Sense RNA Viruses/enzymology , Nipah Virus/drug effects , Nipah Virus/enzymology , Positive-Strand RNA Viruses/drug effects , Positive-Strand RNA Viruses/enzymology , RNA Viruses/drug effects , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Virus Replication/drug effects
5.
PLoS Pathog ; 17(10): e1009726, 2021 10.
Article in English | MEDLINE | ID: mdl-34695163

ABSTRACT

The zinc finger antiviral protein (ZAP) is a broad inhibitor of virus replication. Its best-characterized function is to bind CpG dinucleotides present in viral RNAs and, through the recruitment of TRIM25, KHNYN and other cofactors, target them for degradation or prevent their translation. The long and short isoforms of ZAP (ZAP-L and ZAP-S) have different intracellular localization and it is unclear how this regulates their antiviral activity against viruses with different sites of replication. Using ZAP-sensitive and ZAP-insensitive human immunodeficiency virus type I (HIV-1), which transcribe the viral RNA in the nucleus and assemble virions at the plasma membrane, we show that the catalytically inactive poly-ADP-ribose polymerase (PARP) domain in ZAP-L is essential for CpG-specific viral restriction. Mutation of a crucial cysteine in the C-terminal CaaX box that mediates S-farnesylation and, to a lesser extent, the residues in place of the catalytic site triad within the PARP domain, disrupted the activity of ZAP-L. Addition of the CaaX box to ZAP-S partly restored antiviral activity, explaining why ZAP-S lacks antiviral activity for CpG-enriched HIV-1 despite conservation of the RNA-binding domain. Confocal microscopy confirmed the CaaX motif mediated localization of ZAP-L to vesicular structures and enhanced physical association with intracellular membranes. Importantly, the PARP domain and CaaX box together jointly modulate the interaction between ZAP-L and its cofactors TRIM25 and KHNYN, implying that its proper subcellular localisation is required to establish an antiviral complex. The essential contribution of the PARP domain and CaaX box to ZAP-L antiviral activity was further confirmed by inhibition of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication, which replicates in double-membrane vesicles derived from the endoplasmic reticulum. Thus, compartmentalization of ZAP-L on intracellular membranes provides an essential effector function in ZAP-L-mediated antiviral activity against divergent viruses with different subcellular replication sites.


Subject(s)
Prenylation/physiology , RNA Viruses/drug effects , RNA-Binding Proteins/pharmacology , Virus Replication/physiology , CpG Islands/physiology , HEK293 Cells , HIV-1/physiology , HeLa Cells , Humans , RNA Viruses/physiology , RNA, Viral/chemistry , RNA, Viral/metabolism , RNA-Binding Motifs/physiology , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , SARS-CoV-2/physiology , Transfection , Virus Replication/drug effects
6.
Immunity ; 38(1): 92-105, 2013 Jan 24.
Article in English | MEDLINE | ID: mdl-23273844

ABSTRACT

Interferons (IFN) are essential antiviral cytokines that establish the cellular antiviral state through upregulation of hundreds of interferon-stimulated genes (ISGs), most of which have uncharacterized functions and mechanisms. We identified cholesterol-25-hydroxylase (CH25H) as a broadly antiviral ISG. CH25H converts cholesterol to a soluble antiviral factor, 25-hydroxycholesterol (25HC). 25HC treatment in cultured cells broadly inhibited growth of enveloped viruses including VSV, HSV, HIV, and MHV68 and acutely pathogenic EBOV, RVFV, RSSEV, and Nipah viruses under BSL4 conditions. It suppressed viral growth by blocking membrane fusion between virus and cell. In animal models, Ch25h-deficient mice were more susceptible to MHV68 lytic infection. Moreover, administration of 25HC in humanized mice suppressed HIV replication and reversed T cell depletion. Thus, our studies demonstrate a unique mechanism by which IFN achieves its antiviral state through the production of a natural oxysterol to inhibit viral entry and implicate membrane-modifying oxysterols as potential antiviral therapeutics.


Subject(s)
Antiviral Agents/pharmacology , Hydroxycholesterols/metabolism , Interferons/pharmacology , Steroid Hydroxylases/metabolism , Virus Internalization/drug effects , Animals , Cell Line , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Membrane/virology , DNA Viruses/drug effects , Female , Gene Expression Regulation/drug effects , Humans , Hydroxycholesterols/pharmacology , Membrane Fusion/drug effects , Mice , Mice, Knockout , RNA Viruses/drug effects , Steroid Hydroxylases/genetics , Viral Proteins/metabolism
7.
Int J Mol Sci ; 23(2)2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35055066

ABSTRACT

Viral infections represent a serious threat to the world population and are becoming more frequent. The search and identification of broad-spectrum antiviral molecules is necessary to ensure new therapeutic options, since there is a limited availability of effective antiviral drugs able to eradicate viral infections, and consequently due to the increase of strains that are resistant to the most used drugs. Recently, several studies on antimicrobial peptides identified them as promising antiviral agents. In detail, amphibian skin secretions serve as a rich source of natural antimicrobial peptides. Their antibacterial and antifungal activities have been widely reported, but their exploitation as potential antiviral agents have yet to be fully investigated. In the present study, the antiviral activity of the peptide derived from the secretion of Rana tagoi, named AR-23, was evaluated against both DNA and RNA viruses, with or without envelope. Different assays were performed to identify in which step of the infectious cycle the peptide could act. AR-23 exhibited a greater inhibitory activity in the early stages of infection against both DNA (HSV-1) and RNA (MeV, HPIV-2, HCoV-229E, and SARS-CoV-2) enveloped viruses and, on the contrary, it was inactive against naked viruses (PV-1). Altogether, the results indicated AR-23 as a peptide with potential therapeutic effects against a wide variety of human viruses.


Subject(s)
Amphibian Proteins/pharmacology , Antimicrobial Peptides/pharmacology , Antiviral Agents/pharmacology , Ranidae/metabolism , Animals , Antimicrobial Cationic Peptides/pharmacology , Cell Survival/drug effects , Chlorocebus aethiops , DNA Viruses/drug effects , RNA Viruses/drug effects , SARS-CoV-2/drug effects , Vero Cells , Viral Envelope/drug effects , Viral Plaque Assay , Virus Diseases/drug therapy
8.
Int J Mol Sci ; 23(4)2022 Feb 13.
Article in English | MEDLINE | ID: mdl-35216177

ABSTRACT

The COVID-19 pandemic has evidenced the urgent need for the discovery of broad-spectrum antiviral therapies that could be deployed in the case of future emergence of novel viral threats, as well as to back up current therapeutic options in the case of drug resistance development. Most current antivirals are directed to inhibit specific viruses since these therapeutic molecules are designed to act on a specific viral target with the objective of interfering with a precise step in the replication cycle. Therefore, antimicrobial peptides (AMPs) have been identified as promising antiviral agents that could help to overcome this limitation and provide compounds able to act on more than a single viral family. We evaluated the antiviral activity of an amphibian peptide known for its strong antimicrobial activity against both Gram-positive and Gram-negative bacteria, namely Temporin L (TL). Previous studies have revealed that TL is endowed with widespread antimicrobial activity and possesses marked haemolytic activity. Therefore, we analyzed TL and a previously identified TL derivative (Pro3, DLeu9 TL, where glutamine at position 3 is replaced with proline, and the D-Leucine enantiomer is present at position 9) as well as its analogs, for their activity against a wide panel of viruses comprising enveloped, naked, DNA and RNA viruses. We report significant inhibition activity against herpesviruses, paramyxoviruses, influenza virus and coronaviruses, including SARS-CoV-2. Moreover, we further modified our best candidate by lipidation and demonstrated a highly reduced cytotoxicity with improved antiviral effect. Our results show a potent and selective antiviral activity of TL peptides, indicating that the novel lipidated temporin-based antiviral agents could prove to be useful additions to current drugs in combatting rising drug resistance and epidemic/pandemic emergencies.


Subject(s)
Amphibian Proteins/pharmacology , Amphibians/metabolism , Antimicrobial Cationic Peptides/pharmacology , Antiviral Agents/chemistry , DNA Viruses/drug effects , RNA Viruses/drug effects , Amino Acid Sequence , Amphibian Proteins/chemistry , Amphibian Proteins/metabolism , Animals , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/metabolism , Antiviral Agents/pharmacology , Cell Survival/drug effects , Chlorocebus aethiops , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , Lipids/chemistry , SARS-CoV-2/drug effects , Vero Cells
9.
Virol J ; 18(1): 83, 2021 04 21.
Article in English | MEDLINE | ID: mdl-33882983

ABSTRACT

BACKGROUND: Sacbrood is an infectious disease of the honey bee caused by Scbrood virus (SBV) which belongs to the family Iflaviridae and is especially lethal for Asian honeybee Apis cerana. Chinese Sacbrood virus (CSBV) is a geographic strain of SBV. Currently, there is a lack of an effective antiviral agent for controlling CSBV infection in honey bees. METHODS: Here, we explored the antiviral effect of a Chinese medicinal herb Radix isatidis on CSBV infection in A. cerana by inoculating the 3rd instar larvae with purified CSBV and treating the infected bee larvae with R. isatidis extract at the same time. The growth, development, and survival of larvae between the control and treatment groups were compared. The CSBV copy number at the 4th instar, 5th instar, and 6th instar larvae was measured by the absolute quantification PCR method. RESULTS: Bioassays revealed that R. isatidis extract significantly inhibited the replication of CSBV, mitigated the impacts of CSBV on larval growth and development, reduced the mortality of CSBV-infected A. cerana larvae, and modulated the expression of immune transcripts in infected bees. CONCLUSION: Although the mechanism underlying the inhibition of CSBV replication by the medicine plant will require further investigation, this study demonstrated the antiviral activity of R. isatidis extract and provides a potential strategy for controlling SBV infection in honey bees.


Subject(s)
Antiviral Agents , Bees/virology , Plant Extracts , Plants, Medicinal , RNA Viruses/drug effects , Animals , Antiviral Agents/pharmacology , Larva , Plant Extracts/pharmacology , Plants, Medicinal/chemistry
10.
J Nat Prod ; 84(1): 161-182, 2021 01 22.
Article in English | MEDLINE | ID: mdl-33352046

ABSTRACT

Three families of RNA viruses, the Coronaviridae, Flaviviridae, and Filoviridae, collectively have great potential to cause epidemic disease in human populations. The current SARS-CoV-2 (Coronaviridae) responsible for the COVID-19 pandemic underscores the lack of effective medications currently available to treat these classes of viral pathogens. Similarly, the Flaviviridae, which includes such viruses as Dengue, West Nile, and Zika, and the Filoviridae, with the Ebola-type viruses, as examples, all lack effective therapeutics. In this review, we present fundamental information concerning the biology of these three virus families, including their genomic makeup, mode of infection of human cells, and key proteins that may offer targeted therapies. Further, we present the natural products and their derivatives that have documented activities to these viral and host proteins, offering hope for future mechanism-based antiviral therapeutics. By arranging these potential protein targets and their natural product inhibitors by target type across these three families of virus, new insights are developed, and crossover treatment strategies are suggested. Hence, natural products, as is the case for other therapeutic areas, continue to be a promising source of structurally diverse new anti-RNA virus therapeutics.


Subject(s)
Antiviral Agents/therapeutic use , Biological Products/therapeutic use , COVID-19 Drug Treatment , RNA Virus Infections/drug therapy , Animals , Drug Development , Genome, Viral , Humans , RNA Viruses/drug effects , RNA Viruses/enzymology , RNA Viruses/physiology , Virus Replication
11.
Int J Mol Sci ; 22(8)2021 Apr 17.
Article in English | MEDLINE | ID: mdl-33920628

ABSTRACT

Viral infections cause a host of fatal diseases and seriously affect every form of life from bacteria to humans. Although most viral infections can receive appropriate treatment thereby limiting damage to life and livelihood with modern medicine and early diagnosis, new types of viral infections are continuously emerging that need to be properly and timely treated. As time is the most important factor in the progress of many deadly viral diseases, early detection becomes of paramount importance for effective treatment. Aptamers are small oligonucleotide molecules made by the systematic evolution of ligands by exponential enrichment (SELEX). Aptamers are characterized by being able to specifically bind to a target, much like antibodies. However, unlike antibodies, aptamers are easily synthesized, modified, and are able to target a wider range of substances, including proteins and carbohydrates. With these advantages in mind, many studies on aptamer-based viral diagnosis and treatments are currently in progress. The use of aptamers for viral diagnosis requires a system that recognizes the binding of viral molecules to aptamers in samples of blood, serum, plasma, or in virus-infected cells. From a therapeutic perspective, aptamers target viral particles or host cell receptors to prevent the interaction between the virus and host cells or target intracellular viral proteins to interrupt the life cycle of the virus within infected cells. In this paper, we review recent attempts to use aptamers for the diagnosis and treatment of various viral infections.


Subject(s)
Antiviral Agents/therapeutic use , Aptamers, Nucleotide/therapeutic use , Virus Diseases/diagnosis , Virus Diseases/drug therapy , Animals , DNA Viruses/drug effects , Humans , RNA Viruses/drug effects , Viral Proteins/drug effects , Virion/drug effects
12.
J Virol ; 93(22)2019 11 15.
Article in English | MEDLINE | ID: mdl-31462558

ABSTRACT

Enteric viruses exploit bacterial components, including lipopolysaccharides (LPS) and peptidoglycan (PG), to facilitate infection in humans. Because of their origin in the bat enteric system, we wondered if severe acute respiratory syndrome coronavirus (SARS-CoV) or Middle East respiratory syndrome CoV (MERS-CoV) also use bacterial components to modulate infectivity. To test this question, we incubated CoVs with LPS and PG and evaluated infectivity, finding no change following LPS treatment. However, PG from Bacillus subtilis reduced infection >10,000-fold, while PG from other bacterial species failed to recapitulate this. Treatment with an alcohol solvent transferred inhibitory activity to the wash, and mass spectrometry revealed surfactin, a cyclic lipopeptide antibiotic, as the inhibitory compound. This antibiotic had robust dose- and temperature-dependent inhibition of CoV infectivity. Mechanistic studies indicated that surfactin disrupts CoV virion integrity, and surfactin treatment of the virus inoculum ablated infection in vivo Finally, similar cyclic lipopeptides had no effect on CoV infectivity, and the inhibitory effect of surfactin extended broadly to enveloped viruses, including influenza, Ebola, Zika, Nipah, chikungunya, Una, Mayaro, Dugbe, and Crimean-Congo hemorrhagic fever viruses. Overall, our results indicate that peptidoglycan-associated surfactin has broad viricidal activity and suggest that bacteria by-products may negatively modulate virus infection.IMPORTANCE In this article, we consider a role for bacteria in shaping coronavirus infection. Taking cues from studies of enteric viruses, we initially investigated how bacterial surface components might improve CoV infection. Instead, we found that peptidoglycan-associated surfactin is a potent viricidal compound that disrupts virion integrity with broad activity against enveloped viruses. Our results indicate that interactions with commensal bacterial may improve or disrupt viral infections, highlighting the importance of understanding these microbial interactions and their implications for viral pathogenesis and treatment.


Subject(s)
Lipopeptides/pharmacology , Peptides, Cyclic/pharmacology , Peptidoglycan/metabolism , RNA Viruses/drug effects , Animals , Cell Line , Chlorocebus aethiops , Coronavirus Infections/virology , Flaviviridae/drug effects , Lipopeptides/immunology , Lipopeptides/metabolism , Middle East Respiratory Syndrome Coronavirus/metabolism , Peptides, Cyclic/immunology , Peptides, Cyclic/metabolism , Peptidoglycan/genetics , Severe acute respiratory syndrome-related coronavirus/metabolism , Severe Acute Respiratory Syndrome/virology , Vero Cells , Virus Diseases/metabolism
13.
Virol J ; 17(1): 136, 2020 09 09.
Article in English | MEDLINE | ID: mdl-32907596

ABSTRACT

BACKGROUND: Coronaviruses (CoVs) were long thought to only cause mild respiratory and gastrointestinal symptoms in humans but outbreaks of Middle East Respiratory Syndrome (MERS)-CoV, Severe Acute Respiratory Syndrome (SARS)-CoV-1, and the recently identified SARS-CoV-2 have cemented their zoonotic potential and their capacity to cause serious morbidity and mortality, with case fatality rates ranging from 4 to 35%. Currently, no specific prophylaxis or treatment is available for CoV infections. Therefore we investigated the virucidal and antiviral potential of Echinacea purpurea (Echinaforce®) against human coronavirus (HCoV) 229E, highly pathogenic MERS- and SARS-CoVs, as well as the newly identified SARS-CoV-2, in vitro. METHODS: To evaluate the antiviral potential of the extract, we pre-treated virus particles and cells and evaluated remaining infectivity by limited dilution. Furthermore, we exposed cells to the extract after infection to further evaluate its potential as a prophylaxis and treatment against coronaviruses. We also determined the protective effect of Echinaforce® in re-constituted nasal epithelium. RESULTS: In the current study, we found that HCoV-229E was irreversibly inactivated when exposed to Echinaforce® at 3.2 µg/ml IC50. Pre-treatment of cell lines, however, did not inhibit infection with HCoV-229E and post-infection treatment had only a marginal effect on virus propagation at 50 µg/ml. However, we did observe a protective effect in an organotypic respiratory cell culture system by exposing pre-treated respiratory epithelium to droplets of HCoV-229E, imitating a natural infection. The observed virucidal activity of Echinaforce® was not restricted to common cold coronaviruses, as both SARS-CoV-1 and MERS-CoVs were inactivated at comparable concentrations. Finally, the causative agent of COVID-19, SARS-CoV-2 was also inactivated upon treatment with 50µg/ml Echinaforce®. CONCLUSIONS: These results show that Echinaforce® is virucidal against HCoV-229E, upon direct contact and in an organotypic cell culture model. Furthermore, MERS-CoV and both SARS-CoV-1 and SARS-CoV-2 were inactivated at similar concentrations of the extract. Therefore we hypothesize that Echinacea purpurea preparations, such as Echinaforce®, could be effective as prophylactic treatment for all CoVs due to their structural similarities.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus 229E, Human/drug effects , Coronavirus Infections/drug therapy , Coronavirus/drug effects , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Animals , COVID-19 , Cell Line , Chlorocebus aethiops , Common Cold/drug therapy , Common Cold/virology , Coronavirus Infections/virology , Humans , Middle East Respiratory Syndrome Coronavirus/drug effects , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , RNA Viruses/drug effects , Randomized Controlled Trials as Topic , SARS-CoV-2 , Severe Acute Respiratory Syndrome/drug therapy , Severe Acute Respiratory Syndrome/virology , Vero Cells
14.
Bioorg Chem ; 94: 103466, 2020 01.
Article in English | MEDLINE | ID: mdl-31826808

ABSTRACT

In this study, a series of uridine (U) and 2'-deoxyuridine (dU) conjugates containing an isomeric ortho-, meta- or para-carborane cluster (C2B10H12) attached at C-5 through an ethynyl linker were synthesized. The effect of carborane cluster isomerism on the conjugate syn/anti conformation, molar extinction coefficient, lipophilicity, susceptibility to phosphorylation (by TK1, TK2 and dCK), cytotoxicity and antiviral activity was evaluated. A strong effect of the boron cluster modification on the syn/anti equilibrium of the modified nucleosides was observed. An increase in lipophilicity compared with unmodified U and dU, especially for conjugates bearing a para-carborane cluster, was detected. Furthermore a pronounced and differential influence of the boron cluster modification on the electronic properties of the nucleobase chromophore was observed. The obtained conjugates have low or medium toxicity toward several cell lines, are phosphorylated fairly well by TK1 and are poor or not substrates for dCK. Furthermore, the conjugates preferentially inhibit HCMV replication with an SI index as high as 22 for the ortho-carborane derivative of U and more than 180 for the para-carborane derivative of dU.


Subject(s)
Antiviral Agents/pharmacology , Boranes/pharmacology , DNA Viruses/drug effects , RNA Viruses/drug effects , Uridine/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Boranes/chemical synthesis , Boranes/chemistry , Cell Line , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship , Uridine/analogs & derivatives , Uridine/chemistry
15.
Mar Drugs ; 18(4)2020 Apr 22.
Article in English | MEDLINE | ID: mdl-32331442

ABSTRACT

The enzymatic depolymerization of fucoidans from brown algae allowed the production of their standardized derivatives with different biological activities. This work aimed to compare the antiviral activities of native (FeF) and modified with enzyme (FeHMP) fucoidans from F. evanescens. The cytotoxicity and antiviral activities of the FeF and FeHMP against herpes viruses (HSV-1, HSV-2), enterovirus (ECHO-1), and human immunodeficiency virus (HIV-1) in Vero and human MT-4 cell lines were examined by methylthiazolyltetrazolium bromide (MTT) and cytopathic effect (CPE) reduction assays, respectively. The efficacy of fucoidans in vivo was evaluated in the outbred mice model of vaginitis caused by HSV-2. We have shown that both FeF and FeHMP significantly inhibited virus-induced CPE in vitro and were more effective against HSV. FeF exhibited antiviral activity against HSV-2 with a selective index (SI) > 40, and FeHMP with SI ˃ 20, when they were added before virus infection or at the early stages of the HSV-2 lifecycle. Furthermore, in vivo studies showed that after intraperitoneal administration (10 mg/kg), both FeF and FeHMP protected mice from lethal intravaginal HSV-2 infection to approximately the same degree (44-56%). Thus, FeF and FeHMP have comparable potency against several DNA and RNA viruses, allowing us to consider the studied fucoidans as promising broad-spectrum antivirals.


Subject(s)
Antiviral Agents/pharmacology , Fucus/chemistry , Polysaccharides/pharmacology , Viruses/drug effects , Animals , Antiviral Agents/isolation & purification , Chlorocebus aethiops , DNA Viruses/drug effects , Disease Models, Animal , Female , Humans , Mice , Polysaccharides/isolation & purification , RNA Viruses/drug effects , Vaginitis/drug therapy , Vaginitis/virology , Vero Cells
16.
Molecules ; 25(23)2020 Dec 03.
Article in English | MEDLINE | ID: mdl-33287144

ABSTRACT

The RNA-dependent RNA polymerase (RdRp) is an essential enzyme for the viral replication process, catalyzing the viral RNA synthesis using a metal ion-dependent mechanism. In recent years, RdRp has emerged as an optimal target for the development of antiviral drugs, as demonstrated by recent approvals of sofosbuvir and remdesivir against Hepatitis C virus (HCV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), respectively. In this work, we overview the main sequence and structural features of the RdRp of emerging RNA viruses such as Coronaviruses, Flaviviruses, and HCV, as well as inhibition strategies implemented so far. While analyzing the structural information available on the RdRp of emerging RNA viruses, we provide examples of success stories such as for HCV and SARS-CoV-2. In contrast, Flaviviruses' story has raised attention about how the lack of structural details on catalytically-competent or ligand-bound RdRp strongly hampers the application of structure-based drug design, either in repurposing and conventional approaches.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , RNA Viruses/enzymology , RNA-Dependent RNA Polymerase/chemistry , Amides/chemistry , Amides/pharmacology , Coronavirus/drug effects , Coronavirus/enzymology , Coronavirus/genetics , Drug Design , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Flavivirus/drug effects , Flavivirus/enzymology , Flavivirus/genetics , Hepacivirus/drug effects , Hepacivirus/enzymology , Hepacivirus/genetics , Humans , Pyrazines/chemistry , Pyrazines/pharmacology , RNA Virus Infections/epidemiology , RNA Viruses/drug effects , RNA-Dependent RNA Polymerase/antagonists & inhibitors , RNA-Dependent RNA Polymerase/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
17.
J Infect Dis ; 218(11): 1753-1758, 2018 10 20.
Article in English | MEDLINE | ID: mdl-30085019

ABSTRACT

A safe and highly efficient antiviral is needed for the prophylaxis and/or treatment of viral diarrhea. We here demonstrate the in vitro antiviral activity of four 2'-C-methyl nucleoside analogues against noro-, rota-, and sapoviruses. The most potent nucleoside analogue, 7-deaza-2'-C-methyladenosine, inhibits replication of these viruses with a 50% effective concentration < 5 µM. Mechanistically, we demonstrate that the 2'-C-methyl nucleoside analogues act by inhibiting transcription of the rotavirus genome. This provides the first evidence that a single viral-diarrhea-targeted treatment can be developed through a viral-polymerase-targeting small molecule.


Subject(s)
Antiviral Agents/pharmacology , Diarrhea/virology , Nucleosides/pharmacology , RNA Viruses , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Animals , Cell Line , Chlorocebus aethiops , Humans , Microbial Sensitivity Tests , RNA Virus Infections/virology , RNA Viruses/drug effects , RNA Viruses/enzymology , Viral Proteins/antagonists & inhibitors
18.
Bioorg Med Chem ; 26(12): 3596-3609, 2018 07 23.
Article in English | MEDLINE | ID: mdl-29880251

ABSTRACT

The importance of phosphonoamidate prodrugs (ProTides) of acyclic nucleoside phosphonate (ANPs) is highlighted by the approval of Tenofovir Alafenamide Fumarate for the treatment of HIV and HBV infections. In the present paper we are reporting an expedient, one-pot, two-steps synthesis of allyl phosphonoamidates and diamidates that offers a time saving strategy when compared to literature methods. The use of these substrates in the cross metathesis reactions with alkenyl functionalised thymine and uracil nucleobases is reported. ANPs prodrugs synthesized via this methodology were evaluated for their antiviral activities against DNA and RNA viruses. It is anticipated that the use of 5,6,7,8-tetrahydro-1-napthyl as aryloxy moiety is capable to confer antiviral activity among a series of otherwise inactive uracil ProTides.


Subject(s)
Antiviral Agents/chemical synthesis , Organophosphonates/chemistry , Prodrugs/chemical synthesis , Antiviral Agents/blood , Antiviral Agents/pharmacology , Cell Line , DNA Viruses/drug effects , Drug Stability , Humans , Nucleosides/chemistry , Organophosphonates/blood , Organophosphonates/pharmacology , Prodrugs/chemistry , Prodrugs/pharmacology , RNA Viruses/drug effects , Structure-Activity Relationship
19.
Bioorg Med Chem ; 26(12): 3065-3075, 2018 07 23.
Article in English | MEDLINE | ID: mdl-29853341

ABSTRACT

Isoxazole compounds exhibit a wide spectrum of targets and broad biological activities. Developing compounds with heterocycle rings has been one of the trends. The integration of isoxazole ring can offer improved physical-chemical properties. Because of the unique profiles, isoxazole ring becomes a popular moiety in compounds design. In this review article, the major focus has been paid to the applications of isoxazole compounds in treating multiple diseases, including anticancer, antimicrobial, anti-inflammatory, etc. Strategies for compounds design for preclinical, clinical, and FDA approved drugs were discussed. Also, the emphasis has been addressed to the future perspectives and trend for the application.


Subject(s)
Chemistry, Pharmaceutical , Isoxazoles/chemistry , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Bacteria/drug effects , Cell Survival/drug effects , Fungi/drug effects , Humans , Isoxazoles/pharmacology , Isoxazoles/therapeutic use , Neoplasms/drug therapy , RNA Viruses/drug effects
20.
Pestic Biochem Physiol ; 144: 10-18, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29463403

ABSTRACT

Pathogens and pesticides are likely to co-occur in honeybee hives, but much remains to be investigated regarding their potential interactions. Here, we first investigated the metabolisation kinetics of thiamethoxam in chronically fed honeybees. We show that thiamethoxam, at a dose of 0.25ng/bee/day, is quickly and effectively metabolised into clothianidin, throughout a 20day exposure period. Using a similar chronic exposure to pesticide, we then studied, in a separate experiment, the impact of thiamethoxam and Chronic bee paralysis virus (CBPV) co-exposure in honeybees. The honeybees were exposed to the virus by contact, mimicking the natural transmission route in the hive. We demonstrate that a high dose of thiamethoxam (5.0ng/bee/day) can cause a synergistic increase in mortality in co-exposed honeybees after 8 to 10days of exposure, with no increase in viral loads. At a lower dose (2.5ng/bee/day), there was no synergistic increase of mortality, but viral loads were significantly higher in naturally dead honeybees, compared with sacrificed honeybees exposed to the same conditions. These results show that the interactions between pathogens and pesticides in honeybees can be complex: increasing pesticide doses may not necessarily be linked to a rise in viral loads, suggesting that honeybee tolerance to the viral infection might change with pesticide exposure.


Subject(s)
Bees/virology , Neonicotinoids/metabolism , Nitro Compounds/metabolism , Oxazines/metabolism , Pesticides/metabolism , RNA Viruses/drug effects , Thiazoles/metabolism , Animals , Bees/physiology , Dose-Response Relationship, Drug , Feeding Behavior/drug effects , Guanidines/metabolism , Neonicotinoids/pharmacology , Nitro Compounds/pharmacology , Oxazines/pharmacology , Pesticides/pharmacology , Rectum/metabolism , Thiamethoxam , Thiazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL