Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 19.561
Filter
Add more filters

Publication year range
1.
Radiology ; 311(2): e231921, 2024 05.
Article in English | MEDLINE | ID: mdl-38805732

ABSTRACT

Background Many clinically relevant fractures are occult on conventional radiographs and therefore challenging to diagnose reliably. X-ray dark-field radiography is a developing method that uses x-ray scattering as an additional signal source. Purpose To investigate whether x-ray dark-field radiography enhances the depiction of radiographically occult fractures in an experimental model compared with attenuation-based radiography alone and whether the directional dependence of dark-field signal impacts observer ratings. Materials and Methods Four porcine loin ribs had nondisplaced fractures experimentally introduced. Microstructural changes were visually verified using high-spatial-resolution three-dimensional micro-CT. X-ray dark-field radiographs were obtained before and after fracture, with the before-fracture scans serving as control images. The presence of a fracture was scored by three observers using a six-point scale (6, surely; 5, very likely; 4, likely; 3, unlikely; 2, very unlikely; and 1, certainly not). Differences between scores based on attenuation radiographs alone (n = 96) and based on combined attenuation and dark-field radiographs (n = 96) were evaluated by using the DeLong method to compare areas under the receiver operating characteristic curve. The impact of the dark-field signal directional sensitivity on observer ratings was evaluated using the Wilcoxon test. The dark-field data were split into four groups (24 images per group) according to their sensitivity orientation and tested against each other. Musculoskeletal dark-field radiography was further demonstrated on human finger and foot specimens. Results The addition of dark-field radiographs was found to increase the area under the receiver operating characteristic curve to 1 compared with an area under the receiver operating characteristic curve of 0.87 (95% CI: 0.80, 0.94) using attenuation-based radiographs alone (P < .001). There were similar observer ratings for the four different dark-field sensitivity orientations (P = .16-.65 between the groups). Conclusion These results suggested that the inclusion of dark-field radiography has the potential to help enhance the detection of nondisplaced fractures compared with attenuation-based radiography alone. © RSNA, 2024 See also the editorial by Rubin in this issue.


Subject(s)
Feasibility Studies , Animals , Swine , X-Ray Microtomography/methods , Rib Fractures/diagnostic imaging , Fractures, Closed/diagnostic imaging , Radiographic Image Enhancement/methods
2.
Radiology ; 311(1): e231991, 2024 04.
Article in English | MEDLINE | ID: mdl-38687218

ABSTRACT

Background Digital breast tomosynthesis (DBT) is often inadequate for screening women with a personal history of breast cancer (PHBC). The ongoing prospective Tomosynthesis or Contrast-Enhanced Mammography, or TOCEM, trial includes three annual screenings with both DBT and contrast-enhanced mammography (CEM). Purpose To perform interim assessment of cancer yield, stage, and recall rate when CEM is added to DBT in women with PHBC. Materials and Methods From October 2019 to December 2022, two radiologists interpreted both examinations: Observer 1 reviewed DBT first and then CEM, and observer 2 reviewed CEM first and then DBT. Effects of adding CEM to DBT on incremental cancer detection rate (ICDR), cancer type and node status, recall rate, and other performance characteristics of the primary radiologist decisions were assessed. Results Among the participants (mean age at entry, 63.6 years ± 9.6 [SD]), 1273, 819, and 227 women with PHBC completed year 1, 2, and 3 screening, respectively. For observer 1, year 1 cancer yield was 20 of 1273 (15.7 per 1000 screenings) for DBT and 29 of 1273 (22.8 per 1000 screenings; ICDR, 7.1 per 1000 screenings [95% CI: 3.2, 13.4]) for DBT plus CEM (P < .001). Year 2 plus 3 cancer yield was four of 1046 (3.8 per 1000 screenings) for DBT and eight of 1046 (7.6 per 1000 screenings; ICDR, 3.8 per 1000 screenings [95% CI: 1.0, 7.6]) for DBT plus CEM (P = .001). Year 1 recall rate for observer 1 was 103 of 1273 (8.1%) for (incidence) DBT alone and 187 of 1273 (14.7%) for DBT plus CEM (difference = 84 of 1273, 6.6% [95% CI: 5.3, 8.1]; P < .001). Year 2 plus 3 recall rate was 40 of 1046 (3.8%) for DBT and 92 of 1046 (8.8%) for DBT plus CEM (difference = 52 of 1046, 5.0% [95% CI: 3.7, 6.3]; P < .001). In 18 breasts with cancer detected only at CEM after integration of both observers, 13 (72%) cancers were invasive (median tumor size, 0.6 cm) and eight of nine (88%) with staging were N0. Among 1883 screenings with adequate reference standard, there were three interval cancers (one at the scar, two in axillae). Conclusion CEM added to DBT increased early breast cancer detection each year in women with PHBC, with an accompanying approximately 5.0%-6.6% recall rate increase. Clinical trial registration no. NCT04085510 © RSNA, 2024 Supplemental material is available for this article.


Subject(s)
Breast Neoplasms , Contrast Media , Mammography , Humans , Female , Breast Neoplasms/diagnostic imaging , Mammography/methods , Prospective Studies , Middle Aged , Early Detection of Cancer/methods , Aged , Radiographic Image Enhancement/methods , Breast/diagnostic imaging
3.
Clin Radiol ; 79(4): e554-e559, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38453389

ABSTRACT

AIM: To compare the radiation dose, image quality, and conspicuity of pancreatic ductal adenocarcinoma (PDAC) in pancreatic protocol dual-energy computed tomography (CT) between two X-ray tubes mounted in the same CT machine. MATERIAL AND METHODS: This retrospective study comprised 80 patients (median age, 73 years; 45 men) who underwent pancreatic protocol dual-energy CT from January 2019 to March 2022 using either old (Group A, n=41) or new (Group B, n=39) X-ray tubes mounted in the same CT machine. The imaging parameters were completely matched between the two groups, and CT data were reconstructed at 70 and 40 keV. The CT dose-index volume (CTDIvol); CT attenuation of the abdominal aorta, pancreas, and PDAC; background noise; and qualitative scores for the image noise, overall image quality, and PDAC conspicuity were compared between the two groups. RESULTS: The CTDIvol was lower in Group B than Group A (7.9 versus 9.2 mGy; p<0.001). The CT attenuation of all anatomical structures at 70 and 40 keV was comparable between the two groups (p=0.06-0.78). The background noise was lower in Group B than Group A (12 versus 14 HU at 70 keV, p=0.046; and 26 versus 30 HU at 40 keV, p<0.001). Qualitative scores for image noise and overall image quality at 70 and 40 keV and PDAC conspicuity at 40 keV were higher in Group B than Group A (p<0.001-0.045). CONCLUSION: The latest X-ray tube could reduce the radiation dose and improve image quality in pancreatic protocol dual-energy CT.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Radiography, Dual-Energy Scanned Projection , Male , Humans , Aged , Radiographic Image Enhancement/methods , Retrospective Studies , X-Rays , Tomography, X-Ray Computed/methods , Pancreatic Neoplasms/diagnostic imaging , Pancreas/diagnostic imaging , Carcinoma, Pancreatic Ductal/diagnostic imaging , Radiographic Image Interpretation, Computer-Assisted/methods , Radiation Dosage , Radiography, Dual-Energy Scanned Projection/methods
4.
BMC Med Imaging ; 24(1): 193, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080580

ABSTRACT

RATIONALE AND OBJECTIVE: To investigate the impact of the contrast enhancement boost (CE-boost) technique on the image quality of CT angiography (CTA) derived from 80-kVp cerebral CT perfusion (CTP) data, and to compare it with conventional CTApeak as well as other currently employed methods for enhancing CTA images, such as CTAtMIP and CTAtAve extracted from CTP. MATERIALS AND METHODS: The data of forty-seven patients who underwent CTP at 80 kVp were retrospectively collected. Four sets of images: CTApeak, CTAtMIP, CTAtAve, and CE-boost images. The CTApeak image represents the arterial phase at its peak value, captured as a single time point. CTAtMIP and CTAtAve are 4D CTA images that provide maximum density projection and average images from the three most prominent time points. CE-boost is a postprocessing technique used to enhance contrast in the arterial phase at its peak value. We compared the average CT value, standard deviation (SD), signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) of the internal carotid artery (ICA) and basilar artery (BA) among the four groups. Image quality was evaluated using a 5-point scale. RESULTS: The CE-boost demonstrated and CNR in the ICA and BA (all p < 0.001). Compared with the other three CTA reconstructed images, the CE-boost images had the best subjective image quality, with the highest scores of 4.77 ± 0.43 and 4.87 ± 0.34 for each reader (all p < 0.001). CONCLUSION: Compared with other currently used techniques,CE-boost enhances the image quality of CTA derived from 80-kVp CTP data, leading to improved visualization of intracranial arteries.


Subject(s)
Computed Tomography Angiography , Contrast Media , Signal-To-Noise Ratio , Humans , Computed Tomography Angiography/methods , Female , Male , Retrospective Studies , Middle Aged , Aged , Cerebral Angiography/methods , Adult , Aged, 80 and over , Radiographic Image Enhancement/methods , Carotid Artery, Internal/diagnostic imaging , Basilar Artery/diagnostic imaging , Radiographic Image Interpretation, Computer-Assisted/methods
5.
BMC Med Imaging ; 24(1): 114, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760689

ABSTRACT

Digital dental technology covers oral cone-beam computed tomography (CBCT) image processing and low-dose CBCT dental applications. A low-dose CBCT image enhancement method based on image fusion is proposed to address the need for subzygomatic small screw insertion. Specifically, firstly, a sharpening correction module is proposed, where the CBCT image is sharpened to compensate for the loss of details in the underexposed/over-exposed region. Secondly, a visibility restoration module based on type II fuzzy sets is designed, and a contrast enhancement module using curve transformation is designed. In addition to this, we propose a perceptual fusion module that fuses visibility and contrast of oral CBCT images. As a result, the problems of overexposure/underexposure, low visibility, and low contrast that occur in oral CBCT images can be effectively addressed with consistent interpretability. The proposed algorithm was analyzed in comparison experiments with a variety of algorithms, as well as ablation experiments. After analysis, compared with advanced enhancement algorithms, this algorithm achieved excellent results in low-dose CBCT enhancement and effective observation of subzygomatic small screw implantation. Compared with the best performing method, the evaluation metric is 0.07-2 higher on both datasets. The project can be found at: https://github.com/sunpeipei2024/low-dose-CBCT .


Subject(s)
Algorithms , Bone Screws , Cone-Beam Computed Tomography , Humans , Cone-Beam Computed Tomography/methods , Zygoma/diagnostic imaging , Radiation Dosage , Image Processing, Computer-Assisted/methods , Radiographic Image Enhancement/methods
6.
BMC Med Imaging ; 24(1): 163, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38956583

ABSTRACT

PURPOSE: To examine whether there is a significant difference in image quality between the deep learning reconstruction (DLR [AiCE, Advanced Intelligent Clear-IQ Engine]) and hybrid iterative reconstruction (HIR [AIDR 3D, adaptive iterative dose reduction three dimensional]) algorithms on the conventional enhanced and CE-boost (contrast-enhancement-boost) images of indirect computed tomography venography (CTV) of lower extremities. MATERIALS AND METHODS: In this retrospective study, seventy patients who underwent CTV from June 2021 to October 2022 to assess deep vein thrombosis and varicose veins were included. Unenhanced and enhanced images were reconstructed for AIDR 3D and AiCE, AIDR 3D-boost and AiCE-boost images were obtained using subtraction software. Objective and subjective image qualities were assessed, and radiation doses were recorded. RESULTS: The CT values of the inferior vena cava (IVC), femoral vein ( FV), and popliteal vein (PV) in the CE-boost images were approximately 1.3 (1.31-1.36) times higher than in those of the enhanced images. There were no significant differences in mean CT values of IVC, FV, and PV between AIDR 3D and AiCE, AIDR 3D-boost and AiCE-boost images. Noise in AiCE, AiCE-boost images was significantly lower than in AIDR 3D and AIDR 3D-boost images ( P < 0.05). The SNR (signal-to-noise ratio), CNR (contrast-to-noise ratio), and subjective scores of AiCE-boost images were the highest among 4 groups, surpassing AiCE, AIDR 3D, and AIDR 3D-boost images (all P < 0.05). CONCLUSION: In indirect CTV of the lower extremities images, DLR with the CE-boost technique could decrease the image noise and improve the CT values, SNR, CNR, and subjective image scores. AiCE-boost images received the highest subjective image quality score and were more readily accepted by radiologists.


Subject(s)
Contrast Media , Deep Learning , Lower Extremity , Phlebography , Humans , Male , Retrospective Studies , Female , Middle Aged , Lower Extremity/blood supply , Lower Extremity/diagnostic imaging , Aged , Phlebography/methods , Adult , Algorithms , Venous Thrombosis/diagnostic imaging , Tomography, X-Ray Computed/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Popliteal Vein/diagnostic imaging , Varicose Veins/diagnostic imaging , Vena Cava, Inferior/diagnostic imaging , Femoral Vein/diagnostic imaging , Radiation Dosage , Computed Tomography Angiography/methods , Aged, 80 and over , Radiographic Image Enhancement/methods
7.
Acta Radiol ; 65(5): 422-431, 2024 May.
Article in English | MEDLINE | ID: mdl-38584372

ABSTRACT

BACKGROUND: Gallbladder cancer is a rare but aggressive malignancy that is often diagnosed at an advanced stage and is associated with poor outcomes. PURPOSE: To develop a radiomics model to discriminate between benign and malignant gallbladder lesions using enhanced computed tomography (CT) imaging. MATERIAL AND METHODS: All patients had a preoperative contrast-enhanced CT scan, which was independently analyzed by two radiologists. Regions of interest were manually delineated on portal venous phase images, and radiomics features were extracted. Feature selection was performed using mRMR and LASSO methods. The patients were randomly divided into training and test groups at a ratio of 7:3. Clinical and radiomics parameters were identified in the training group, three models were constructed, and the models' prediction accuracy and ability were evaluated using AUC and calibration curves. RESULTS: In the training group, the AUCs of the clinical model and radiomics model were 0.914 and 0.968, and that of the nomogram model was 0.980, respectively. There were statistically significant differences in diagnostic accuracy between nomograms and radiomics features (P <0.05). There was no significant difference in diagnostic accuracy between the nomograms and clinical features (P >0.05) or between the clinical features and radiomics features (P >0.05). In the testing group, the AUC of the clinical model and radiomics model were 0.904 and 0.941, and that of the nomogram model was 0.948, respectively. There was no significant difference in diagnostic accuracy between the three groups (P >0.05). CONCLUSION: It was suggested that radiomics analysis using enhanced CT imaging can effectively discriminate between benign and malignant gallbladder lesions.


Subject(s)
Contrast Media , Gallbladder Neoplasms , Gallbladder , Tomography, X-Ray Computed , Humans , Male , Female , Gallbladder Neoplasms/diagnostic imaging , Tomography, X-Ray Computed/methods , Middle Aged , Aged , Diagnosis, Differential , Adult , Gallbladder/diagnostic imaging , Retrospective Studies , Aged, 80 and over , Nomograms , Radiographic Image Enhancement/methods , Reproducibility of Results , Sensitivity and Specificity , Radiomics
8.
Radiat Environ Biophys ; 63(3): 433-442, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39020221

ABSTRACT

Technological differences between computed radiography (CR) and digital radiography (DR) systems can influence patient doses and exposure parameters in pelvic x-ray examinations. The presence of radiosensitive organs in the pelvic region underscores the need to optimize these parameters for both CR and DR systems. This prospective study aimed to compare the patient doses and exposure parameters for adult patients undergoing pelvic x-ray examinations using CR and DR systems, based on data from Sri Lanka. The study included data from 56 x-ray examinations, with 25 using CR and 31 using DR. Patient demographic characteristics and exposure parameters (kVp: kilovoltage peak, mAs: tube current-exposure time product) were recorded, and patient doses were measured in terms of the kerma-area product (PKA) using a PKA meter. Despite similar mean weight and body mass index (BMI), the CR systems showed significantly higher mean kVp (7.4%), mAs (16.4%), and PKA (29.7%) than the DR systems (CR - kVp: 73.2, mAs: 37.8, PKA: 2.29 Gy cm2; DR - kVp: 67.8, mAs: 31.6, PKA: 1.61 Gy cm2). The Mann-Whitney U test revealed statistically significant differences in PKA and kVp between the CR and DR systems (p < 0.05). Furthermore, even with lower patient weight and BMI, the mean mAs and PKA in this study were substantially higher than those reported in the literature for both CR and DR systems. These results suggest the need to optimize current mAs settings for the studied hospitals and introduce radiographic system-specific exposure parameters and reference dose levels for pelvic x-ray examinations in order to enhance patient protection.


Subject(s)
Pelvis , Radiation Dosage , Humans , Pelvis/diagnostic imaging , Pelvis/radiation effects , Male , Female , Adult , Middle Aged , Aged , Radiographic Image Enhancement , Tomography, X-Ray Computed , Prospective Studies , Young Adult
9.
Skeletal Radiol ; 53(8): 1517-1528, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38378861

ABSTRACT

OBJECTIVE: Distances and angles measured from long-leg radiographs (LLR) are important for surgical decision-making. However, projectional radiography suffers from distortion, potentially generating differences between measurement and true anatomical dimension. These phenomena are not uniform between conventional radiography (CR) digital radiography (DR) and fan-beam technology (EOS). We aimed to identify differences between these modalities in an experimental setup. MATERIALS AND METHODS: A hemiskeleton was stabilized using an external fixator in neutral, valgus and varus knee alignment. Ten images were acquired for each alignment and each modality: one CR setup, two different DR systems, and an EOS. A total of 1680 measurements were acquired and analyzed. RESULTS: We observed great differences for dimensions and angles between the 4 modalities. Femoral head diameter measurements varied in the range of > 5 mm depending on the modality, with EOS being the closest to the true anatomical dimension. With functional leg length, a difference of 8.7% was observed between CR and EOS and with the EOS system being precise in the vertical dimension on physical-technical grounds, this demonstrates significant projectional magnification with CR-LLR. The horizontal distance between the medial malleoli varied by 20 mm between CR and DR, equating to 21% of the mean. CONCLUSIONS: Projectional distortion resulting in variations approaching 21% of the mean indicate, that our confidence on measurements from standing LLR may not be justified. It appears likely that among the tested equipment, EOS-generated images are closest to the true anatomical situation most of the time.


Subject(s)
Radiographic Image Enhancement , Humans , Radiographic Image Enhancement/methods , Standing Position , Leg/diagnostic imaging , Patient Positioning/methods
10.
J Appl Clin Med Phys ; 25(4): e14285, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38317593

ABSTRACT

PURPOSE: To investigate the impact of digital image post-processing algorithms on various image quality (IQ) metrics of radiographic images under different exposure conditions. METHODS: A custom-made phantom constructed according to the instructions given in the IAEA Human Health Series No.39 publication was used, along with the respective software that automatically calculates various IQ metrics. Images with various exposure parameters were acquired with a digital radiography unit, which for each acquisition produces two images: one for-processing (raw) and one for-presentation (clinical). Various examination protocols were used, which incorporate diverse post-processing algorithms. The IQ metrics' values (IQ-scores) obtained were analyzed to investigate the effects of increasing incident air kerma (IAK) on the image receptor, tube potential (kVp), additional filtration, and examination protocol on image quality, and the differences between image type (raw or clinical). RESULTS: The IQ-scores were consistent for repeated identical exposures for both raw and clinical images. The effect that changes in exposure parameters and examination protocol had on IQ-scores were different depending on the IQ metric and image type. The expected positive effect that increasing IAK and decreasing tube potential should have on IQ was clearly exhibited in two IQ metrics only, the signal difference-to-noise-ratio (SDNR) and the detectability index (d'), for both image types. No effect of additional filtration on any of the IQ metrics was detected on images of either type. An interesting finding of the study was that for all different image acquisition selections the d' scores were larger in raw images, whereas the other IQ metrics were larger in clinical images for most of the cases. CONCLUSIONS: Since IQ-scores of raw and their respective clinical images may be largely different, the same type of image should be consistently used for monitoring IQ constancy and when results from different X-ray systems are compared.


Subject(s)
Radiographic Image Enhancement , Software , Humans , Radiation Dosage , Radiography , X-Rays , Phantoms, Imaging
11.
Radiol Med ; 129(7): 1076-1085, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38856961

ABSTRACT

OBJECTIVES: Health technology assessment (HTA) is a systematic process used to evaluate the properties and effects of healthcare technologies within their intended use context. This paper describes the adoption of HTA process to assess the adoption of the EOSedge™ system in clinical practice. METHODS: The EOSedge™ system is a digital radiography system that delivers whole-body, high-quality 2D/3D biplanar images covering the complete set of musculoskeletal and orthopedic exams. Full HTA model was chosen using the EUnetHTA Core Model® version 3.0. The HTA Core Model organizes the information into nine domains. Information was researched and obtained by consulting the manufacturers' user manuals, scientific literature, and institutional sites for regulatory aspects. RESULTS: All nine domains of the EUnetHTA Core Model® helped conduct the HTA of the EOSedge, including (1) description and technical characteristics of the technology; (2) health problem and current clinical practice; (3) safety; (4) clinical effectiveness; (5) organizational aspects; (6) economic evaluation; (7) impact on the patient; (8) ethical aspects; and (9) legal aspects. CONCLUSIONS: EOS technologies may be a viable alternative to conventional radiographs. EOSedge has the same intended use and similar indications for use, technological characteristics, and operation principles as the EOS System and provides significant dose reduction factors for whole spine imaging compared to the EOS System without compromising image quality. Regarding the impact of EOS imaging on patient outcomes, most studies aim to establish technical ability without evaluating their ability to improve patient outcomes; thus, more studies on this aspect are warranted.


Subject(s)
Musculoskeletal Diseases , Technology Assessment, Biomedical , Humans , Musculoskeletal Diseases/diagnostic imaging , Radiographic Image Enhancement/methods
12.
Radiol Med ; 129(7): 989-998, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38987501

ABSTRACT

PURPOSE: Contrast-enhanced mammography (CEM) is an innovative imaging tool for breast cancer detection, involving intravenous injection of a contrast medium and the assessment of lesion enhancement in two phases: early and delayed. The aim of the study was to analyze the topographic concordance of lesions detected in the early- versus delayed phase acquisitions. MATERIALS AND METHODS: Approved by the Ethics Committee (No. 118/20), this prospective study included 100 women with histopathological confirmed breast neoplasia (B6) at the Radiodiagnostics Department of the Maggiore della Carità Hospital of Novara, Italy from May 1, 2021, to October 17, 2022. Participants underwent CEM examinations using a complete protocol, encompassing both early- and delayed image acquisitions. Three experienced radiologists blindly analyzed the CEM images for contrast enhancement to determine the topographic concordance of the identified lesions. Two readers assessed the complete study (protocol A), while one reader assessed the protocol without the delayed phase (protocol B). The average glandular dose (AGD) of the entire procedure was also evaluated. RESULTS: The analysis demonstrated high concordance among the three readers in the topographical identification of lesions within individual quadrants of both breasts, with a Cohen's κ > 0.75, except for the lower inner quadrant of the right breast and the retro-areolar region of the left breast. The mean whole AGD was 29.2 mGy. The mean AGD due to CEM amounted to 73% of the whole AGD (21.2 mGy). The AGD attributable to the delayed phase of CEM contributed to 36% of the whole AGD (10.5 mGy). CONCLUSIONS: As we found no significant discrepancy between the readings of the two protocols, we conclude that delayed-phase image acquisition in CEM does not provide essential diagnostic benefits for effective disease management. Instead, it contributes to unnecessary radiation exposure.


Subject(s)
Breast Neoplasms , Contrast Media , Mammography , Neoplasm Staging , Adult , Aged , Aged, 80 and over , Female , Humans , Middle Aged , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Mammography/methods , Prospective Studies , Radiographic Image Enhancement/methods
13.
Vet Radiol Ultrasound ; 65(1): 19-30, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38098240

ABSTRACT

Image processing (IP) in digital radiography has been steadily refined to improve image quality. Adaptable settings enable users to adjust systems to their specific requirements. This prospective, analytical study aimed to investigate the influence of different IP settings and dose reductions on image quality. Included were 20 cadaveric equine limb specimens distal to the metacarpophalangeal and metatarsophalangeal joints. Images were processed with the Dynamic Visualization II system (Fujifilm) using five different IP settings including multiobjective frequency processing, flexible noise control (FNC), and virtual grid processing (VGP). Seven criteria were assessed by three veterinary radiology Diplomates and one veterinary radiology resident in a blinded study using a scoring system. Algorithm comparison was performed using an absolute visual grading analysis. The rating of bone structures was improved by VGP at full dose (P < .05; AUCVGC  = 0.45). Überschwinger artifact perception was enhanced by VGP (P < .001; AUCVGC  = 0.66), whereas image noise perception was suppressed by FNC (P < .001; AUCVGC  = 0.29). The ratings of bone structures were improved by FNC at 50% dose (P < .05; AUCVGC  = 0.44), and 25% dose (P < .001; AUCVGC  = 0.32), and clinically acceptable image quality was maintained at 50% dose (mean rating 2.16; 95.8% ratings sufficient or better). The favored IP setting varied among observers, with higher agreement at lower dose levels. These findings supported using individualized IP settings based on the radiologist's preferences and situational image requirements, rather than using default settings.


Subject(s)
Algorithms , Horse Diseases , Animals , Horses , Humans , Prospective Studies , Radiography , Radiation Dosage , Radiologists , Cadaver , Radiographic Image Enhancement/methods
14.
J Radiol Prot ; 44(3)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38950524

ABSTRACT

The aim of this study was to investigate the performance of eight digital radiography systems and to optimise the dose-image quality relationship for digital pelvis radiography. The study involved eight digital radiography systems used for general examinations at Vilnius University Hospital Santaros Klinikos. An anthropomorphic pelvic phantom (CIRS, US) was used to simulate a patient undergoing clinical pelvis radiography. Dose quantities entrance surface dose, dose area product (DAP) and exposure parameters (kVp, mA, mAs) were measured and the effects on the images were evaluated, considering physical contrast to noise ratio (CNR) and observer-based evaluations as image quality metrics. Increasing the tube voltage by 5 kVp from standard protocol led to a reduction in radiation dose (DAP) by 12%-20% with a slight impact on image quality (CNR decreases by 2%-10%). There was an inter-observer variability in image rating across different equipment (kappa value between 0 and 0.3); however, both observers agreed that increasing kVp up to 85-90 kV had no effect on perceived image quality. The results indicate that optimisation strategies should be tailored specifically for each x-ray system since significant performance differences and wide variations in radiation dose exist across various digital radiography systems used in clinical settings. The use of high kVp can be used for dose optimisation in digital pelvis radiography without compromising image diagnostic accuracy.


Subject(s)
Pelvis , Phantoms, Imaging , Radiation Dosage , Radiographic Image Enhancement , Pelvis/diagnostic imaging , Humans , Reproducibility of Results , Sensitivity and Specificity
15.
J Radiol Prot ; 44(1)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38194904

ABSTRACT

This study aims to assess the image quality (IQ) of 12 mammographic units and to identify units with potential optimisation needs. Data for 350 mammography examinations meeting inclusion criteria were collected retrospectively from April 2021 to April 2022. They were categorised based on the medical reports into 10 normal cases, 10 cases displaying calcifications and 10 cases presenting lesions. Two radiologists assessed the IQ of 1400 mammograms, evaluating system performance per Boitaet al's study and positioning performance following European guidelines. To measure agreement between the two radiologists, the Cohen's Kappa coefficient (κ) was computed, quantifying the excess of agreement beyond chance. The visual grading analysis score (VGAS) was computed to compare system and positioning performance assessments across different categories and facilities. Median average glandular dose (AGD) values for cranio caudal and medio lateral oblique views were calculated for each category and facility and compared to the national diagnostic reference levels. The health facilities were categorised by considering both IQ VGAS and AGD levels. Inter-rater agreement between radiologists ranged from poor (κ< 0.20) to moderate (0.41 <κ< 0.60), likely influenced by inherent biases and distinct IQ expectations. 50% of the facilities were classified as needing corrective actions for their system performance as they had IQ or high AGD that could increase recall rate and radiation risk and 50% of the health facilities exhibited insufficient positioning performance that could mask tumour masses and microcalcifications. The study's findings emphasise the importance of implementing quality assurance programs to ensure optimal IQ for accurate diagnoses while adhering to radiation exposure guidelines. Additionally, comprehensive training for technologists is essential to address positioning challenges. These initiatives collectively aim to enhance the overall quality of breast imaging services, contributing to improved patient care.


Subject(s)
Breast Neoplasms , Radiation Exposure , Humans , Female , Radiation Dosage , Retrospective Studies , Mammography , Diagnostic Reference Levels , Breast Neoplasms/diagnostic imaging , Radiographic Image Enhancement/methods
16.
J Xray Sci Technol ; 32(4): 1061-1077, 2024.
Article in English | MEDLINE | ID: mdl-38669513

ABSTRACT

BACKGROUND: Recently, X-rays have been widely used to detect complex structural workpieces. Due to the uneven thickness of the workpiece and the high dynamic range of the X-ray image itself, the detailed internal structure of the workpiece cannot be clearly displayed. OBJECTIVE: To solve this problem, we propose an image enhancement algorithm based on a multi-scale local edge-preserving filter. METHODS: Firstly, the global brightness of the image is enhanced through logarithmic transformation. Then, to enhance the local contrast, we propose utilizing the gradient decay function based on fuzzy entropy to process the gradient and then incorporate the gradient into the energy function of the local edge-preserving filter (LEP) as a constraint term. Finally, multiple base layers and detail layers are obtained through filtering multi-scale decomposition. All detail layers are enhanced and fused using S-curve mapping to improve contrast further. RESULTS: This method is competitive in both quantitative indices and visual perception quality. CONCLUSIONS: The experimental results demonstrate that the proposed method significantly enhances various complex workpieces and is highly efficient.


Subject(s)
Algorithms , Entropy , Fuzzy Logic , Image Processing, Computer-Assisted/methods , Radiographic Image Enhancement/methods , Humans
17.
BMC Oral Health ; 24(1): 429, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38584280

ABSTRACT

BACKGROUND: Accurate assessment of remaining dentin thickness (RDT) is paramount for restorative decisions and treatment planning of vital teeth to avoid any pulpal injury. This diagnostic accuracy study compared the validity and patient satisfaction of an electrical impedance based device Prepometer™ (Hager & Werken, Duisburg, Germany) versus intraoral digital radiography for the estimation of remaining dentin thickness in carious posterior permanent teeth. METHODS: Seventy patients aged 12-25 years with carious occlusal or proximal permanent vital posterior teeth were recruited. Tooth preparation was performed to receive an adhesive restoration. Pre- and post-excavation RDT were measured radiographically by two calibrated raters using the paralleling periapical technique. Prepometer™ measurements were performed by the operator. Patients rated their satisfaction level with each tool on a 4-point Likert scale and 100 mm visual analog scale (VAS). Inter and intragroup comparisons were analyzed using signed rank test, while agreement between devices and observations was tested using weight kappa (WK) coefficient. RESULTS: the intergroup comparisons showed that, before and after excavation, there was a significant difference between measurements made by both techniques (p < 0.001). After excavation, there was a weak agreement between measurements (WK = 0.2, p < 0.001), whereas before excavation, the agreement was not statistically significant (p = 0.407). Patients were significantly more satisfied with Prepometer™ based on scales and VAS (p < 0.001). CONCLUSION: Prepometer™ could be a viable clinical tool for determining RDT with high patient satisfaction, while radiographs tended to overestimate RDT in relation to the Prepometer™.


Subject(s)
Dental Caries , Patient Satisfaction , Humans , Electric Impedance , Radiographic Image Enhancement , Dentin/diagnostic imaging , Dental Caries/diagnostic imaging , Dental Caries/therapy
18.
J Xray Sci Technol ; 32(3): 569-581, 2024.
Article in English | MEDLINE | ID: mdl-38217636

ABSTRACT

PURPOSE: To compare image quality, iodine intake, and radiation dose in overweight and obese patients undergoing abdominal computed tomography (CT) enhancement using different scanning modes and contrast medium. METHODS: Ninety overweight and obese patients (25 kg/m2≤body mass index (BMI)< 30 kg/m2 and BMI≥30 kg/m2) who underwent abdominal CT-enhanced examinations were randomized into three groups (A, B, and C) of 30 each and scanned using gemstone spectral imaging (GSI) +320 mgI/ml, 100 kVp + 370 mgI/ml, and 120 kVp + 370 mgI/ml, respectively. Reconstruct monochromatic energy images of group A at 50-70 keV (5 keV interval). The iodine intake and radiation dose of each group were recorded and calculated. The CT values, contrast-to-noise ratios (CNRs), and subjective scores of each subgroup image in group A versus images in groups B and C were by using one-way analysis of variance or Kruskal-Wallis H test, and the optimal keV of group A was selected. RESULTS: The dual-phase CT values and CNRs of each part in group A were higher than or similar to those in groups B and C at 50-60 keV, and similar to or lower than those in groups B and C at 65 keV and 70 keV. The subjective scores of the dual-phase images in group A were lower than those of groups B and C at 50 keV and 55 keV, whereas no significant difference was seen at 60-70 keV. Compared to groups B and C, the iodine intake in group A decreased by 12.5% and 13.3%, respectively. The effective doses in groups A and B were 24.7% and 25.8% lower than those in group C, respectively. CONCLUSION: GSI +320 mgI/ml for abdominal CT-enhanced in overweight patients satisfies image quality while reducing iodine intake and radiation dose, and the optimal keV was 60 keV.


Subject(s)
Contrast Media , Obesity , Overweight , Radiography, Abdominal , Tomography, X-Ray Computed , Adult , Aged , Female , Humans , Male , Middle Aged , Obesity/diagnostic imaging , Overweight/diagnostic imaging , Radiation Dosage , Radiographic Image Enhancement/methods , Radiography, Abdominal/methods , Tomography, X-Ray Computed/methods , Aged, 80 and over
19.
BMC Bioinformatics ; 24(1): 401, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37884877

ABSTRACT

BACKGROUND: Recent advancements in computing power and state-of-the-art algorithms have helped in more accessible and accurate diagnosis of numerous diseases. In addition, the development of de novo areas in imaging science, such as radiomics and radiogenomics, have been adding more to personalize healthcare to stratify patients better. These techniques associate imaging phenotypes with the related disease genes. Various imaging modalities have been used for years to diagnose breast cancer. Nonetheless, digital breast tomosynthesis (DBT), a state-of-the-art technique, has produced promising results comparatively. DBT, a 3D mammography, is replacing conventional 2D mammography rapidly. This technological advancement is key to AI algorithms for accurately interpreting medical images. OBJECTIVE AND METHODS: This paper presents a comprehensive review of deep learning (DL), radiomics and radiogenomics in breast image analysis. This review focuses on DBT, its extracted synthetic mammography (SM), and full-field digital mammography (FFDM). Furthermore, this survey provides systematic knowledge about DL, radiomics, and radiogenomics for beginners and advanced-level researchers. RESULTS: A total of 500 articles were identified, with 30 studies included as the set criteria. Parallel benchmarking of radiomics, radiogenomics, and DL models applied to the DBT images could allow clinicians and researchers alike to have greater awareness as they consider clinical deployment or development of new models. This review provides a comprehensive guide to understanding the current state of early breast cancer detection using DBT images. CONCLUSION: Using this survey, investigators with various backgrounds can easily seek interdisciplinary science and new DL, radiomics, and radiogenomics directions towards DBT.


Subject(s)
Breast Neoplasms , Deep Learning , Humans , Female , Radiographic Image Enhancement/methods , Breast/diagnostic imaging , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/genetics , Mammography/methods
20.
AJR Am J Roentgenol ; 221(3): 313-322, 2023 09.
Article in English | MEDLINE | ID: mdl-37095672

ABSTRACT

BACKGROUND. Studies establishing the validity of BI-RADS category 3 excluded patients with personal history of breast cancer (PHBC). Use of category 3 in patients with PHBC may be impacted not only by this population's increased breast cancer risk, but also by adoption of digital breast tomosynthesis (DBT) over full-field digital mammography (FFDM). OBJECTIVE. The purpose of this article was to compare the frequency, outcomes, and additional characteristics of BI-RADS category 3 assessments between FFDM and DBT in patients with PHBC. METHODS. This retrospective study included 14,845 mammograms in 10,118 patients (mean age, 63 years) with PHBC who had undergone mastectomy and/or lumpectomy. Of these, 8422 examinations were performed by FFDM from October 2014 to September 2016, and 6423 examinations by FFDM with DBT from February 2017 to December 2018, after interval conversion of the center's mammography units. Information was extracted from the EHR and radiology reports. FFDM and DBT groups were compared in the entire sample and among index category 3 lesions (i.e., earliest category 3 assessment per lesion). RESULTS. The frequency of category 3 assessment was lower for DBT than FFDM (5.6% vs 6.4%; p = .05). DBT, compared with FFDM, showed a lower malignancy rate for category 3 lesions (1.8% vs 5.0%; p = .04), higher malignancy rate for category 4 lesions (32.0% vs 23.2%; p = .03), and no difference in malignancy rate for category 5 lesions (100.0% vs 75.0%; p = .24). Analysis of index category 3 lesions included 438 and 274 lesions for FFDM and DBT, respectively. For category 3 lesions, DBT, compared with FFDM, showed lower PPV3 (13.9% vs 36.1%; p = .02) and a more frequent mammographic finding of mass (33.2% vs 23.1%; p = .003). CONCLUSION. The malignancy rate for category 3 lesions in patients with PHBC was less than the accepted limit (2%) for DBT (1.8%), but not FFDM (5.0%). A lower malignancy rate for category 3 lesions but higher malignancy rate for category 4 lesions for DBT supports more appropriate application of category 3 assessment in patients with PHBC through use of DBT. CLINICAL IMPACT. These insights may help establish whether category 3 assessments in patients with PHBC are within benchmarks for early detection of second cancers and reduction of benign biopsies.


Subject(s)
Breast Neoplasms , Humans , Middle Aged , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Retrospective Studies , Radiographic Image Enhancement/methods , Mastectomy , Mammography/methods , Breast/diagnostic imaging , Breast/pathology
SELECTION OF CITATIONS
SEARCH DETAIL