Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 946
Filter
Add more filters

Publication year range
1.
Nat Rev Neurosci ; 22(7): 423-438, 2021 07.
Article in English | MEDLINE | ID: mdl-34021274

ABSTRACT

Recent years have been transformational in regard to the perception of the health risks and benefits of cannabis with increased acceptance of use. This has unintended neurodevelopmental implications given the increased use of cannabis and the potent levels of Δ9-tetrahydrocannabinol today being consumed by pregnant women, young mothers and teens. In this Review, we provide an overview of the neurobiological effects of cannabinoid exposure during prenatal/perinatal and adolescent periods, in which the endogenous cannabinoid system plays a fundamental role in neurodevelopmental processes. We highlight impaired synaptic plasticity as characteristic of developmental exposure and the important contribution of epigenetic reprogramming that maintains the long-term impact into adulthood and across generations. Such epigenetic influence by its very nature being highly responsive to the environment also provides the potential to diminish neural perturbations associated with developmental cannabis exposure.


Subject(s)
Brain/drug effects , Cannabis , Prenatal Exposure Delayed Effects , Adolescent , Adult , Age Factors , Animals , Brain/embryology , Brain/growth & development , Cannabis/adverse effects , Child , Child, Preschool , Dronabinol/adverse effects , Dronabinol/pharmacokinetics , Dronabinol/pharmacology , Endocannabinoids/physiology , Epigenesis, Genetic/drug effects , Female , Humans , Infant , Lactation , Lipase/physiology , Male , Marijuana Smoking , Maternal Exposure , Mice , Milk, Human/chemistry , Neurodevelopmental Disorders/chemically induced , Neuronal Plasticity/drug effects , Neurotransmitter Agents/physiology , Paternal Exposure , Pregnancy , Rats , Receptor, Cannabinoid, CB1/physiology , Species Specificity , Young Adult
2.
Am J Physiol Gastrointest Liver Physiol ; 323(3): G219-G238, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35787179

ABSTRACT

The endocannabinoid system of the gastrointestinal tract is involved in the control of intestinal barrier function. Whether the cannabinoid 1 (CB1) receptor is expressed on the intestinal epithelium and acutely regulates barrier function has not been determined. Here, we tested the hypothesis that ligands of the CB1 receptor acutely modulate small intestinal permeability and that this is associated with altered distribution of tight junction proteins. We examined the acute effects of CB1 receptor ligands on small intestinal permeability both in chow-fed and 2-wk high-fat diet (HFD)-fed mice using Ussing chambers. We assessed the distribution of CB1 receptor and tight junction proteins using immunofluorescence and the expression of CB1 receptor using PCR. A low level of CB1 expression was found on the intestinal epithelium. CB1 receptor was highly expressed on enteric nerves in the lamina propria. Neither the CB1/CB2 agonist CP55,940 nor the CB1 neutral antagonist AM6545 altered the flux of 4kDa FITC dextran (FD4) across the jejunum or ileum of chow-fed mice. Remarkably, both CP55,940 and AM6545 reduced FD4 flux across the jejunum and ileum in HFD-fed mice that have elevated baseline intestinal permeability. These effects were absent in CB1 knockout mice. CP55,940 reduced the expression of claudin-2, whereas AM6545 had little effect on claudin-2 expression. Neither ligand altered the expression of ZO-1. Our data suggest that CB1 receptor on the intestinal epithelium regulates tight junction protein expression and restores barrier function when it is increased following exposure to a HFD for 2 wk.NEW & NOTEWORTHY The endocannabinoid system of the gastrointestinal tract regulates homeostasis by acting as brake on motility and secretion. Here we show that when exposed to a high fat diet, intestinal permeability is increased and activation of the CB1 receptor on the intestinal epithelium restores barrier function. This work further highlights the role of the endocannabinoid system in regulating intestinal homeostasis when it is perturbed.


Subject(s)
Diet, High-Fat , Intestinal Mucosa , Receptor, Cannabinoid, CB1 , Animals , Claudin-2/metabolism , Diet, High-Fat/adverse effects , Endocannabinoids/physiology , Intestinal Mucosa/physiology , Mice , Permeability , Receptor, Cannabinoid, CB1/physiology
3.
J Neurosci ; 40(5): 1028-1041, 2020 01 29.
Article in English | MEDLINE | ID: mdl-31831522

ABSTRACT

The nucleus accumbens (NAc) is a mesocorticolimbic structure that integrates cognitive, emotional and motor functions. Although its role in psychiatric disorders is widely acknowledged, the understanding of its circuitry is not complete. Here, we combined optogenetic and whole-cell recordings to draw a functional portrait of excitatory disambiguated synapses onto D1 and D2 medium spiny neurons (MSNs) in the adult male mouse NAc core. Comparing synaptic properties of ventral hippocampus (vHipp), basolateral amygdala (BLA) and prefrontal cortex (PFC) inputs revealed a hierarchy of synaptic inputs that depends on the identity of the postsynaptic target MSN. Thus, the BLA is the dominant excitatory pathway onto D1 MSNs (BLA > PFC = vHipp) while PFC inputs dominate D2 MSNs (PFC > vHipp > BLA). We also tested the hypothesis that endocannabinoids endow excitatory circuits with pathway- and cell-specific plasticity. Thus, whereas CB1 receptors (CB1R) uniformly depress excitatory pathways regardless of MSNs identity, TRPV1 receptors (TRPV1R) bidirectionally control inputs onto the NAc core in a pathway-specific manner. Finally, we show that the interplay of TRPV1R/CB1R shapes plasticity at BLA-NAc synapses. Together these data shed new light on synapse and circuit specificity in the adult NAc core and illustrate how endocannabinoids contribute to pathway-specific synaptic plasticity.SIGNIFICANCE STATEMENT We examined the impact of connections from the ventral hippocampus (vHipp,) basolateral amygdala (BLA) and prefrontal cortex (PFC) onto identified medium spiny neurons (MSNs) in the adult accumbens core. We found BLA inputs were strongest at D1 MSNs while PFC inputs dominate D2 MSNs. Pathway- and cell-specific circuit control was also facilitated by endocannabinoids that endow bidirectional synaptic plasticity at identified BLA-NAc synapses. These data provide mechanistic insights on synapse and circuit specificity in the adult NAc core.


Subject(s)
Excitatory Postsynaptic Potentials , Neurons/physiology , Nucleus Accumbens/physiology , Receptor, Cannabinoid, CB1/physiology , Synapses/physiology , TRPV Cation Channels/physiology , Action Potentials , Animals , Basolateral Nuclear Complex/physiology , Endocannabinoids/physiology , Hippocampus/physiology , Male , Mice, Inbred C57BL , Neural Pathways/physiology , Nucleus Accumbens/metabolism , Optogenetics , Prefrontal Cortex/physiology , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/metabolism
4.
Am J Physiol Endocrinol Metab ; 321(1): E146-E155, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34097543

ABSTRACT

Cannabinoid 1 receptor (CB1R) inverse agonists reduce body weight and improve several parameters of glucose homeostasis. However, these drugs have also been associated with deleterious side effects. CB1R expression is widespread in the brain and in peripheral tissues, but whether specific sites of expression can mediate the beneficial metabolic effects of CB1R drugs, while avoiding the untoward side effects, remains unclear. Evidence suggests inverse agonists may act on key sites within the central nervous system to improve metabolism. The ventromedial hypothalamus (VMH) is a critical node regulating energy balance and glucose homeostasis. To determine the contributions of CB1Rs expressed in VMH neurons in regulating metabolic homeostasis, we generated mice lacking CB1Rs in the VMH. We found that the deletion of CB1Rs in the VMH did not affect body weight in chow- and high-fat diet-fed male and female mice. We also found that deletion of CB1Rs in the VMH did not alter weight loss responses induced by the CB1R inverse agonist SR141716. However, we did find that CB1Rs of the VMH regulate parameters of glucose homeostasis independent of body weight in diet-induced obese male mice.NEW & NOTEWORTHY Cannabinoid 1 receptors (CB1Rs) regulate metabolic homeostasis, and CB1R inverse agonists reduce body weight and improve parameters of glucose metabolism. However, the cell populations expressing CB1Rs that regulate metabolic homeostasis remain unclear. CB1Rs are highly expressed in the ventromedial hypothalamic nucleus (VMH), which is a crucial node that regulates metabolism. With CRISPR/Cas9, we generated mice lacking CB1Rs specifically in VMH neurons and found that CB1Rs in VMH neurons are essential for the regulation of glucose metabolism independent of body weight regulation.


Subject(s)
Body Weight/physiology , Glucose/metabolism , Homeostasis/physiology , Neurons/metabolism , Receptor, Cannabinoid, CB1/physiology , Ventromedial Hypothalamic Nucleus/metabolism , Animals , Body Composition/physiology , CRISPR-Associated Protein 9 , Clustered Regularly Interspaced Short Palindromic Repeats , Diet, High-Fat , Energy Metabolism/physiology , Female , Gene Editing , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/etiology , Obesity/metabolism , Receptor, Cannabinoid, CB1/deficiency , Receptor, Cannabinoid, CB1/genetics
5.
Neurobiol Dis ; 148: 105214, 2021 01.
Article in English | MEDLINE | ID: mdl-33278598

ABSTRACT

The basal ganglia (BG) are involved in cognitive/motivational functions in addition to movement control. Thus, BG segregated circuits, the sensorimotor (SM) and medial prefrontal (mPF) circuits, process different functional domains, such as motor and cognitive/motivational behaviours, respectively. With a high presence in the BG, the CB1 cannabinoid receptor modulates BG circuits. Furthermore, dopamine (DA), one of the principal neurotransmitters in the BG, also plays a key role in circuit functionality. Taking into account the interaction between DA and the endocannabinoid system at the BG level, we investigated the functioning of BG circuits and their modulation by the CB1 receptor under DA-depleted conditions. We performed single-unit extracellular recordings of substantia nigra pars reticulata (SNr) neurons with simultaneous cortical stimulation in sham and 6-hydroxydopamine (6-OHDA)-lesioned rats, together with immunohistochemical assays. We showed that DA loss alters cortico-nigral information processing in both circuits, with a predominant transmission through the hyperdirect pathway in the SM circuit and an increased transmission through the direct pathway in the mPF circuit. Moreover, although DA denervation does not change CB1 receptor density, it impairs its functionality, leading to a lack of modulation. These data highlight an abnormal transfer of information through the associative/limbic domains after DA denervation that may be related to the non-motor symptoms manifested by Parkinson's disease patients.


Subject(s)
Basal Ganglia/metabolism , Dopamine/metabolism , Limbic System/metabolism , Motor Cortex/metabolism , Neurons/metabolism , Pars Reticulata/metabolism , Receptor, Cannabinoid, CB1/metabolism , Action Potentials/physiology , Animals , Basal Ganglia/drug effects , Disease Models, Animal , Electrodes , Immunohistochemistry , Limbic System/drug effects , Male , Motor Cortex/drug effects , Neural Pathways/drug effects , Neural Pathways/metabolism , Neurons/drug effects , Oxidopamine/toxicity , Parkinson Disease/metabolism , Pars Reticulata/cytology , Pars Reticulata/drug effects , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Rats , Receptor, Cannabinoid, CB1/physiology , Sympathectomy, Chemical , Sympatholytics/toxicity
6.
Reprod Biol Endocrinol ; 19(1): 16, 2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33531043

ABSTRACT

BACKGROUND: The denomyotic junctional zone (JZ) plays an important role in the pathogenesis of adenomyosis. Proliferating cell nuclear antigen (PCNA) is an important nuclear marker of cell proliferation. This study aimed to evaluate the effects of the cannabinoid receptor CB1 on proliferation and apoptosis in the JZ in women with and without adenomyosis. METHODS: JZ smooth muscle cells (JZSMCs) of the adenomyosis and control groups were collected and cultivated. Immunohistochemistry and immunoblotting were used for protein localization and expression detection of CB1 and PCNA. Additionally, qRT-PCR was used to quantitatively analyse the mRNA expression of the two. AM251 and ACEA were used to regulate the function of CB1 receptors, and CCK-8 assay and flow cytometry assay were used to verify the proliferation and apoptosis of JZSMCs after regulation. RESULTS: We demonstrated that in normal JZSMCs CB1 and PCNA messenger RNA (mRNA) and protein expression was significantly higher in the proliferative phase of the menstrual cycle than in the secretory phase. CB1 and PCNA expression in JZSMCs from women with ADS was significantly higher than that in control women and did not significantly differ across the menstrual cycle. CB1 receptor antagonist AM251 inhibited the proliferation of adenomyotic JZSMCs in a dose-dependent manner. The CB1 receptor agonist ACEA significantly promoted the proliferation of adenomyotic JZSMCs. The apoptosis rate of adenomyotic JZSMCs treated with AM251 was significantly higher than that of JZSMCs from the untreated control group. The apoptosis rate was significantly decreased in the ACEA group compared with that in the untreated control group. Furthermore, AM251 suppressed the phosphorylation of AKT and Erk1/2 in adenomyotic JZSMCs. The CB1 agonist ACEA significantly promoted the phosphorylation of AKT and Erk1/2. CONCLUSIONS: Our results indicated that the levels of CB1 and PCNA were increased in patients with adenomyosis and that cyclic changes were lost. CB1 may affect uterine JZ proliferation and apoptosis in adenomyosis by enhancing AKT and MAPK/Erk signalling.


Subject(s)
Adenomyosis/pathology , Myocytes, Smooth Muscle/physiology , Myometrium/pathology , Receptor, Cannabinoid, CB1/physiology , Adult , Apoptosis/genetics , Case-Control Studies , Cell Proliferation/genetics , Cells, Cultured , China , Female , Humans , Middle Aged , Myocytes, Smooth Muscle/pathology , Myometrium/physiopathology , Receptor, Cannabinoid, CB1/genetics , Uterus/pathology
7.
Exp Cell Res ; 389(1): 111881, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32006556

ABSTRACT

Human adipose tissue includes large quantities of mesenchymal stromal cells (atMSCs), which represent an abundant cell source for therapeutic applications in the field of regenerative medicine. Adipose tissue secrets various soluble factors including endocannabinoids, and atMSCs express the cannabinoid receptors CB1 and CB2. This indicates that adipose tissue possesses an endocannabinoid system (ECS). The ECS is also ascribed great significance for wound repair, e.g. by modulating inflammation. However, the exact effects of CB1/CB2 activation in human atMSCs have not been investigated, yet. In the present study, we stimulated human atMSCs with increasing concentrations (1-30 µM) of the unspecific cannabinoid receptor ligand WIN55,212-2 and the specific CB2 agonist JWH-133, either alone or co-applied with the receptor antagonist Rimonabant (CB1) or AM 630 (CB2). We investigated the effects on metabolic activity, cell number, differentiation and cytokine release, which are important processes during tissue regeneration. WIN decreased metabolic activity and cell number, which was reversed by Rimonabant. This suggests a CB1 dependent mechanism, whereas the number of atMSCs was increased after CB2 ligation. WIN and JWH increased the release of VEGF, TGF-ß1 and HGF. Adipogenesis was enhanced by WIN, which could be reversed by blocking CB1. There was no effect on osteogenesis, and only WIN increased chondrogenic differentiation. Our results indicate that definite activation of the cannabinoid receptors exerted different effects in atMSCs, which could be of specific value in cell-based therapy for wound regeneration.


Subject(s)
Adipose Tissue/cytology , Cell Self Renewal , Mesenchymal Stem Cells/physiology , Receptor, Cannabinoid, CB1/physiology , Receptor, Cannabinoid, CB2/physiology , Regeneration , Benzoxazines/pharmacology , Cannabinoids/pharmacology , Cell Differentiation/drug effects , Cell Self Renewal/drug effects , Cells, Cultured , Cytokines/metabolism , Dose-Response Relationship, Drug , Endocannabinoids/agonists , Endocannabinoids/antagonists & inhibitors , Endocannabinoids/pharmacology , Humans , Indoles/pharmacology , Intercellular Signaling Peptides and Proteins/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Morpholines/pharmacology , Naphthalenes/pharmacology , Primary Cell Culture , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB2/agonists , Receptor, Cannabinoid, CB2/antagonists & inhibitors , Regeneration/drug effects , Regeneration/physiology , Rimonabant/pharmacology
8.
Mol Cell Neurosci ; 109: 103566, 2020 12.
Article in English | MEDLINE | ID: mdl-33049367

ABSTRACT

Human SH-SY5Y neuroblastoma cells stably expressing exogenous CB1 (CB1XS) or CB2 (CB2XS) receptors were developed to investigate endocannabinoid signaling in the extension of neuronal projections. Expression of cannabinoid receptors did not alter proliferation rate, viability, or apoptosis relative to parental SH-SY5Y. Transcripts for endogenous cannabinoid system enzymes (diacylglycerol lipase, monoacylglycerol lipase, α/ß-hydrolase domain containing proteins 6 and 12, N-acyl phosphatidylethanolamine-phospholipase D, and fatty acid amide hydrolase) were not altered by CB1 or CB2 expression. Endocannabinoid ligands 2-arachidonoylglycerol (2-AG) and anandamide were quantitated in SH-SY5Y cells, and diacylglycerol lipase inhibitor tetrahydrolipstatin decreased 2-AG abundance by 90% but did not alter anandamide abundance. M3 muscarinic agonist oxotremorine M, and inhibitors of monoacylglycerol lipase and α/ß hydrolase domain containing proteins 6 &12 increased 2-AG abundance. CB1 receptor expression increased lengths of short (<30 µm) and long (>30 µm) projections, and this effect was significantly reduced by tetrahydrolipstatin, indicative of stimulation by endogenously produced 2-AG. Pertussis toxin, Gßγ inhibitor gallein, and ß-arrestin inhibitor barbadin did not significantly alter long projection length in CB1XS, but significantly reduced short projections, with gallein having the greatest inhibition. The rho kinase inhibitor Y27632 increased CB1 receptor-mediated long projection extension, indicative of actin cytoskeleton involvement. CB1 receptor expression increased GAP43 and ST8SIA2 mRNA and decreased ITGA1 mRNA, whereas CB2 receptor expression increased NCAM and SYT mRNA. We propose that basal endogenous production of 2-AG provides autocrine stimulation of CB1 receptor signaling through Gi/o, Gßγ, and ß-arrestin mechanisms to promote neuritogenesis, and rho kinase influences process extension.


Subject(s)
Endocannabinoids/physiology , Neurites/ultrastructure , Receptor, Cannabinoid, CB1/physiology , Receptor, Cannabinoid, CB2/physiology , Actin Cytoskeleton/ultrastructure , Amides/pharmacology , Apoptosis/drug effects , Arachidonic Acids/biosynthesis , Cell Line, Tumor , Endocannabinoids/biosynthesis , Gene Expression Regulation/drug effects , Glycerides/biosynthesis , Humans , Lipoprotein Lipase/antagonists & inhibitors , Lipoprotein Lipase/metabolism , Neoplasm Proteins/drug effects , Neoplasm Proteins/physiology , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , Neuroblastoma , Orlistat/pharmacology , Oxotremorine/pharmacology , Pertussis Toxin/pharmacology , Polyunsaturated Alkamides , Pyridines/pharmacology , Pyrimidines/pharmacology , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Receptor, Cannabinoid, CB1/drug effects , Receptor, Cannabinoid, CB2/drug effects , Recombinant Proteins/biosynthesis , Signal Transduction , Xanthenes/pharmacology
9.
Molecules ; 26(20)2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34684760

ABSTRACT

The cannabinoid 1 (CB1) receptor regulates appetite and body weight; however, unwanted central side effects of both agonists (in wasting disorders) or antagonists (in obesity and diabetes) have limited their therapeutic utility. At the peripheral level, CB1 receptor activation impacts the energy balance of mammals in a number of different ways: inhibiting satiety and emesis, increasing food intake, altering adipokine and satiety hormone levels, altering taste sensation, decreasing lipolysis (fat break down), and increasing lipogenesis (fat generation). The CB1 receptor also plays an important role in the gut-brain axis control of appetite and satiety. The combined effect of peripheral CB1 activation is to promote appetite, energy storage, and energy preservation (and the opposite is true for CB1 antagonists). Therefore, the next generation of CB1 receptor medicines (agonists and antagonists, and indirect modulators of the endocannabinoid system) have been peripherally restricted to mitigate these issues, and some of these are already in clinical stage development. These compounds also have demonstrated potential in other conditions such as alcoholic steatohepatitis and diabetic nephropathy (peripherally restricted CB1 antagonists) and pain conditions (peripherally restricted CB1 agonists and FAAH inhibitors). This review will discuss the mechanisms by which peripheral CB1 receptors regulate body weight, and the therapeutic utility of peripherally restricted drugs in the management of body weight and beyond.


Subject(s)
Body Weight/physiology , Receptor, Cannabinoid, CB1/drug effects , Receptor, Cannabinoid, CB1/metabolism , Appetite/physiology , Cannabinoid Receptor Antagonists/therapeutic use , Cannabinoids/therapeutic use , Endocannabinoids/therapeutic use , Humans , Obesity/drug therapy , Receptor, Cannabinoid, CB1/physiology , Receptor, Cannabinoid, CB2/drug effects , Receptor, Cannabinoid, CB2/metabolism , Receptor, Cannabinoid, CB2/physiology , Receptors, Cannabinoid/metabolism , Receptors, Cannabinoid/physiology
10.
Learn Mem ; 27(9): 380-389, 2020 09.
Article in English | MEDLINE | ID: mdl-32817304

ABSTRACT

Cannabinoid receptors are widely expressed throughout the hippocampal formation, but are particularly dense in the dentate gyrus (DG) subregion. We, and others, have shown in mice that cannabinoid type 1 receptors (CB1Rs) are involved in a long-term depression (LTD) that can be induced by prolonged 10 Hz stimulation of the medial perforant path (MPP)-granule cell synaptic input to the DG. Here, we extend this work to examine the involvement of CB1Rs in other common forms of LTD in the hippocampus of juvenile male and female Sprague-Dawley rats (Rattus norvegicus). We found, as in mice, that prolonged 10 Hz stimulation (6000 pulses) could reliably induce a form of LTD that was dependent upon CB1R activation. In addition, we also discovered a role for both CB1R and mGluR proteins in LTD induced with 1 Hz low-frequency stimulation (1 Hz-LTD; 900 pulses) and in LTD induced by bath application of the group I mGluR agonist (RS)-3,5-Dihydroxyphenylglycine (DHPG; DHPG-LTD). This study elucidates an essential role for endocannabinoid receptors in a number of forms of LTD in the rat DG, and identifies a novel role for CB1Rs as potential therapeutic targets for conditions that involve impaired LTD in the DG.


Subject(s)
Dentate Gyrus/metabolism , Long-Term Synaptic Depression/physiology , Receptor, Cannabinoid, CB1/physiology , Animals , Electric Stimulation , Female , Male , Methoxyhydroxyphenylglycol/analogs & derivatives , Methoxyhydroxyphenylglycol/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Metabotropic Glutamate/agonists
11.
J Physiol ; 598(1): 139-150, 2020 01.
Article in English | MEDLINE | ID: mdl-31642519

ABSTRACT

KEY POINTS: The fine control of food intake is important for the maintenance of a healthy metabolic state. Gastric vagal afferents (GVAs) are involved in the peripheral regulation of food intake via signalling the degree of distension of the stomach which ultimately leads to feelings of fullness and satiety. This study provides evidence that endocannabinoids such as anandamide are capable of regulating GVA sensitivity in a concentration-dependent biphasic manner. This biphasic effect is dependent upon interactions between the CB1, TRPV1 and GHSR receptors. These data have important implications for the peripheral control of food intake. ABSTRACT: Gastric vagal afferents (GVAs) signal to the hindbrain resulting in satiety. Endocannabinoids are endogenous ligands of cannabinoid 1 receptor (CB1) and transient receptor potential vanilloid-1 (TRPV1) channels. The endocannabinoid anandamide (AEA) is expressed in the stomach, and its receptor CB1 is expressed in ghrelin-positive gastric mucosal cells. Further, TRPV1, CB1 and growth hormone secretagogue receptor (ghrelin receptor, GHSR) are expressed in subpopulations of GVA neurons. This study aimed to determine the interaction between TRPV1, CB1, GHSR and endocannabinoids in the modulation of GVA signalling. An in vitro electrophysiology preparation was used to assess GVA mechanosensitivity in male C57BL/6 mice. Effects of methanandamide (mAEA; 1-100 nm), on GVA responses to stretch were determined in the absence and presence of antagonists of CB1, TRPV1, GHSR, protein kinase-A (PKA), protein kinase-C (PKC) and G-protein subunits Gαi/o , or Gαq . Low doses (1-10 nm) of mAEA reduced GVA responses to 3 g stretch, whereas high doses (30-100 nm) increased the response. The inhibitory and excitatory effects of mAEA (1-100 nm) were reduced/lost in the presence of a CB1 and TRPV1 antagonist. PKA, Gαi/o or GHSR antagonists prevented the inhibitory effect of mAEA on GVA mechanosensitivity. Conversely, in the presence of a PKC or Gαq antagonist the excitatory effect of mAEA was reduced or lost, respectively. Activation of CB1, by mAEA, can activate or inhibit TRPV1 to increase or decrease GVA responses to stretch, depending on the pathway activated. These interactions could play an important role in the fine control of food intake.


Subject(s)
Arachidonic Acids/pharmacology , Endocannabinoids/pharmacology , Stomach/physiology , Vagus Nerve/physiology , Animals , Male , Mice , Mice, Inbred C57BL , Receptor, Cannabinoid, CB1/physiology , Receptors, Ghrelin/physiology , Satiety Response , TRPV Cation Channels/physiology
12.
J Pharmacol Exp Ther ; 373(2): 230-238, 2020 05.
Article in English | MEDLINE | ID: mdl-32054717

ABSTRACT

Metastatic breast cancer is prevalent worldwide, and one of the most common sites of metastasis is long bones. Of patients with disease, the major symptom is pain, yet current medications fail to adequately result in analgesic efficacy and present major undesirable adverse effects. In our study, we investigate the potential of a novel monoacylglycerol lipase (MAGL) inhibitor, MJN110, in a murine model of cancer-induced bone pain. Literature has previously demonstrated that MAGL inhibitors function to increase the endogenous concentrations of 2-arachydonylglycerol, which then activates CB1 and CB2 receptors to inhibit inflammation and pain. We demonstrate that administration of MJN110 significantly and dose dependently alleviates spontaneous pain behavior during acute administration compared with vehicle control. In addition, MJN110 maintains its efficacy in a chronic-dosing paradigm over the course of 7 days without signs of receptor sensitization. In vitro analysis of MJN110 demonstrated a dose-dependent and significant decrease in cell viability and proliferation of 66.1 breast adenocarcinoma cells to a greater extent than KML29, an alternate MAGL inhibitor, or the CB2 agonist JWH015. Chronic administration of the compound did not appear to affect tumor burden, as evidenced by radiograph or histologic analysis. Together, these data support the application for MJN110 as a novel therapeutic for cancer-induced bone pain. SIGNIFICANCE STATEMENT: Current standard of care for metastatic breast cancer pain is opioid-based therapies with adjunctive chemotherapy, which have highly addictive and other deleterious side effects. The need for effective, non-opioid-based therapies is essential, and harnessing the endogenous cannabinoid system is proving to be a new target to treat various types of pain conditions. We present a novel drug targeting the endogenous cannabinoid system that is effective at reducing pain in a mouse model of metastatic breast cancer to bone.


Subject(s)
Bone Neoplasms/secondary , Cancer Pain/drug therapy , Carbamates/therapeutic use , Endocannabinoids/physiology , Mammary Neoplasms, Experimental/pathology , Monoacylglycerol Lipases/antagonists & inhibitors , Succinimides/therapeutic use , Animals , Bone Neoplasms/physiopathology , Cell Line, Tumor , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Mice , Mice, Inbred BALB C , Receptor, Cannabinoid, CB1/physiology , Receptor, Cannabinoid, CB2/physiology
13.
Neurobiol Learn Mem ; 170: 106896, 2020 04.
Article in English | MEDLINE | ID: mdl-29964164

ABSTRACT

Systemic administration of cannabinoid agonists impairs cerebellum-dependent motor learning. The cannabinoid-induced impairment of motor learning has been hypothesized to be due to disruption of Purkinje cell plasticity within the cerebellar cortex. In the current study, we tested this hypothesis in rats with localized microinfusions of cannabinoid agonists and antagonists into the cerebellar cortex during eyeblink conditioning, a type of cerebellum-dependent motor learning. Infusions of the cannabinoid agonists WIN55,212-2 or ACEA directly into the eyeblink conditioning microzone of the cerebellar cortex severely impaired acquisition of eyeblink conditioning, whereas the CB1R antagonist SR141716A did not produce a significant impairment. Infusions of WIN55,212-2 outside of the eyeblink conditioning microzone did not impair motor learning, establishing anatomical specificity for the agonist effects. The motor learning impairment caused by WIN55,212-2 and ACEA was rescued by SR141716A, indicating that the learning deficit was produced through CB1Rs. The current findings demonstrate that the effects of cannabinoid receptor agonists on motor learning are localized to CB1Rs within a discrete microzone of the cerebellar cortex.


Subject(s)
Cannabinoid Receptor Agonists/administration & dosage , Cerebellum/drug effects , Cerebellum/physiology , Conditioning, Eyelid/drug effects , Conditioning, Eyelid/physiology , Receptor, Cannabinoid, CB1/physiology , Animals , Male , Rats, Long-Evans
14.
FASEB J ; 33(2): 2484-2497, 2019 02.
Article in English | MEDLINE | ID: mdl-30265576

ABSTRACT

Excess energy intake causes obesity, which leads to insulin resistance and various other complications of metabolic syndrome, including diabetes, atherosclerosis, dyslipidemia, and nonalcoholic fatty liver disease. Although recent studies have depicted altered lipid metabolism as an underlying feature, the detailed mechanisms are still unclear. Here we describe a possible role in high-fat diet (HFD)-induced obesity for monoacylglycerol lipase (MGL), an enzyme that is also known to hydrolyze the endocannabinoid 2-arachidonoylglycerol in brain. MGL-deficient [MGL-knockout (KO)] mice fed a HFD gained less body weight than wild-type mice and were protected from insulin resistance and hepatic steatosis. Food intake and energy expenditure were not altered in MGL-KO mice, but blood triglyceride levels after oral olive oil gavage were suppressed, indicating a role for MGL in intestinal fat absorption. Experiments with cannabinoid receptor type 1 (CB1)/MGL double-KO mice revealed that these phenotypes may include mechanisms that are independent of CB1-receptor-mediated endocannabinoid functions. We also noted that MGL-KO mice had less preference for HFD over normal chow diet. Oral but not intraperitoneal lipid administration strongly suppressed the appetites of MGL-KO and CB1/MGL double-KO mice, but not of wild-type and CB1-KO mice. Appetite suppression was reversed by vagotomy, suggesting involvement of MGL in the gut-brain axis regulation of appetite. Our results provide mechanistic insights of MGL's role in diet-induced obesity, lipid metabolic disorder, and regulation of appetite.-Yoshida, K., Kita, Y., Tokuoka, S. M., Hamano, F., Yamazaki, M., Sakimura, K., Kano, M., Shimizu, T. Monoacylglycerol lipase deficiency affects diet-induced obesity, fat absorption, and feeding behavior in CB1 cannabinoid receptor-deficient mice.


Subject(s)
Asialoglycoproteins/deficiency , Diet, High-Fat/adverse effects , Fatty Liver/pathology , Feeding Behavior , Intestinal Absorption , Lectins, C-Type/deficiency , Membrane Proteins/deficiency , Obesity/pathology , Receptor, Cannabinoid, CB1/physiology , Animals , Body Weight , Eating , Energy Metabolism , Fatty Liver/etiology , Fatty Liver/metabolism , Insulin Resistance , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/etiology , Obesity/metabolism
15.
Handb Exp Pharmacol ; 258: 323-353, 2020.
Article in English | MEDLINE | ID: mdl-32236882

ABSTRACT

Since antiquity, Cannabis has provoked enormous intrigue for its potential medicinal properties as well as for its unique pharmacological effects. The elucidation of its major cannabinoid constituents, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), led to the synthesis of new cannabinoids (termed synthetic cannabinoids) to understand the mechanisms underlying the pharmacology of Cannabis. These pharmacological tools were instrumental in the ultimate discovery of the endogenous cannabinoid system, which consists of CB1 and CB2 cannabinoid receptors and endogenously produced ligands (endocannabinoids), which bind and activate both cannabinoid receptors. CB1 receptors mediate the cannabimimetic effects of THC and are highly expressed on presynaptic neurons in the nervous system, where they modulate neurotransmitter release. In contrast, CB2 receptors are primarily expressed on immune cells. The endocannabinoids are tightly regulated by biosynthetic and hydrolytic enzymes. Accordingly, the endocannabinoid system plays a modulatory role in many physiological processes, thereby generating many promising therapeutic targets. An unintended consequence of this research was the emergence of synthetic cannabinoids sold for human consumption to circumvent federal laws banning Cannabis use. Here, we describe research that led to the discovery of the endogenous cannabinoid system and show how knowledge of this system benefitted as well as unintentionally harmed human health.


Subject(s)
Endocannabinoids/physiology , Receptor, Cannabinoid, CB1/physiology , Receptor, Cannabinoid, CB2/physiology , Cannabidiol/pharmacology , Cannabinoids/pharmacology , Dronabinol/pharmacology , Humans
16.
Proc Natl Acad Sci U S A ; 114(41): E8750-E8759, 2017 10 10.
Article in English | MEDLINE | ID: mdl-28973852

ABSTRACT

The basolateral amygdala (BLA) sends excitatory projections to the nucleus accumbens (NAc) and regulates motivated behaviors partially by activating NAc medium spiny neurons (MSNs). Here, we characterized a feedforward inhibition circuit, through which BLA-evoked activation of NAc shell (NAcSh) MSNs was fine-tuned by GABAergic monosynaptic innervation from adjacent fast-spiking interneurons (FSIs). Specifically, BLA-to-NAcSh projections predominantly innervated NAcSh FSIs compared with MSNs and triggered action potentials in FSIs preceding BLA-mediated activation of MSNs. Due to these anatomical and temporal properties, activation of the BLA-to-NAcSh projection resulted in a rapid FSI-mediated inhibition of MSNs, timing-contingently dictating BLA-evoked activation of MSNs. Cocaine self-administration selectively and persistently up-regulated the presynaptic release probability of BLA-to-FSI synapses, entailing enhanced FSI-mediated feedforward inhibition of MSNs upon BLA activation. Experimentally enhancing the BLA-to-FSI transmission in vivo expedited the acquisition of cocaine self-administration. These results reveal a previously unidentified role of an FSI-embedded circuit in regulating NAc-based drug seeking and taking.


Subject(s)
Action Potentials/physiology , Cocaine/administration & dosage , Drug-Seeking Behavior/physiology , Neural Inhibition , Neurons/physiology , Nucleus Accumbens/physiology , Vasoconstrictor Agents/administration & dosage , Animals , Basolateral Nuclear Complex , Female , Gene Knock-In Techniques , Long-Term Synaptic Depression , Male , Mice, Inbred C57BL , Neurons/cytology , Receptor, Cannabinoid, CB1/physiology , Self Administration
17.
J Integr Neurosci ; 19(1): 11-19, 2020 Mar 30.
Article in English | MEDLINE | ID: mdl-32259882

ABSTRACT

The endocannabinoid system modulates many brain functions, including episodic memories, which contain memories of time and places. Most studies have focused on the involvement of the endocannabinoid system in spatial memory; however, its role in temporal memory is not well understood. Few studies have tested whether the unilateral endocannabinoid system is sufficient to modulate memory retrieval. Here, we tested whether type 1 cannabinoid receptors in the right hippocampal cornu ammonis area 1 region are enough to modulate the retrieval of episodic memories, specifically their spatial and temporal components. Because rats have innate preferences for displaced or old familiar objects, we changed the locations of "old familiar" and "recent familiar" objects in an open field and measured the rats' exploration times to evaluate spatial and temporal memory. To address the influence of the type 1 cannabinoid receptors on the retrieval of episodic-like memories, two doses of arachidonylcyclopropylamide, a selective type 1 cannabinoid receptor agonist, were infused into the cornu ammonis area 1 of rats ten minutes before the discrimination trials. We observed that rats injected with a low dose of arachidonylcyclopropylamide spent less time investigating displaced objects, suggesting spatial memory impairment, whereas those receiving a high dose explored old familiar objects less frequently, suggesting temporal memory impairment. This indicates that unilateral activation of type 1 cannabinoid receptors in the cornu ammonis area 1 impairs the spatial and temporal aspects of episodic memories. This research mimics the influence of marijuana intoxication effects in humans, such as spatial and temporal disintegration.


Subject(s)
CA1 Region, Hippocampal/physiology , Memory, Episodic , Mental Recall/physiology , Receptor, Cannabinoid, CB1/physiology , Spatial Memory/physiology , Animals , Male , Rats, Sprague-Dawley , Spatial Processing/physiology , Time Factors
18.
Int J Mol Sci ; 21(24)2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33371336

ABSTRACT

There are two well-characterized cannabinoid receptors (CB1R and CB2R and other candidates): the central nervous system (CNS) enriched CB1R and peripheral tissue enriched CB2R with a wide dynamic range of expression levels in different cell types of human tissues. Hepatocytes and neurons express low baseline CB1R and CB2R, respectively, and their cell-type-specific functions are not well defined. Here we report inducible expression of CB1R in the liver by high-fat and high sugar diet and CB2R in cortical neurons by methamphetamine. While there is less controversy about hepatocyte CB1R, the presence of functional neuronal CB2R is still debated to date. We found that neuron CB2R basal expression was higher than that of hepatocyte CB1R by measuring mRNA levels of specific isoform CB2A in neurons isolated by fluorescence-activated cell sorting (FACS) and CB1A in hepatocytes isolated by collagenase perfusion of liver. For in vivo studies, we generated hepatocyte, dopaminergic neuron, and microglia-specific conditional knockout mice (Abl-Cnr1Δ, Dat-Cnr2Δ, and Cx3cr1-Cnr2Δ) of CB1R and CB2R by crossing Cnr1f/f and Cnr2f/f strains to Abl-Cre, Dat-Cre, and Cx3cr1-Cre deleter mouse strains, respectively. Our data reveals that neuron and microglia CB2Rs are involved in the "tetrad" effects of the mixed agonist WIN 55212-2, CB1R selective agonist arachidonyl-2'-chloroethylamide (ACEA), and CB2R selective agonist JWH133. Dat-Cnr2Δ and Cx3cr1-Cnr2Δ mice showed genotypic differences in hypomobility, hypothermia, analgesia, and catalepsy induced by the synthetic cannabinoids. Alcohol conditioned place preference was abolished in DAT-Cnr2Δ mice and remained intact in Cx3cr1-Cnr2Δ mice in comparison to WT mice. These Cre-loxP recombinant mouse lines provide unique approaches in cannabinoid research for dissecting the complex endocannabinoid system that is implicated in many chronic disorders.


Subject(s)
Behavior, Animal/drug effects , Cannabinoids/pharmacology , Dopaminergic Neurons/drug effects , Microglia/drug effects , Receptor, Cannabinoid, CB1/physiology , Receptor, Cannabinoid, CB2/metabolism , Animals , Dopaminergic Neurons/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/metabolism , Rats , Rats, Sprague-Dawley , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/genetics , Receptor, Cannabinoid, CB2/physiology
19.
J Neurosci ; 38(32): 7120-7131, 2018 08 08.
Article in English | MEDLINE | ID: mdl-30006367

ABSTRACT

In the striatum, medium spiny neurons (MSNs) are heavily involved in controlling movement and reward. MSNs form two distinct populations expressing either dopamine receptor 1 (D1-MSN) or dopamine receptor 2 (D2-MSN), which differ in their projection targets and neurochemical composition. The activity of both types of MSNs is shaped by multiple neuromodulatory inputs processed by GPCRs that fundamentally impact their synaptic properties biasing behavioral outcomes. How these GPCR signaling cascades are regulated and what downstream targets they recruit in D1-MSN and D2-MSN populations are incompletely understood. In this study, we examined the cellular and molecular mechanisms underlying the action of RGS9-2, a key GPCR regulator in MSNs implicated in both movement control and actions of addictive drugs. Imaging cultured striatal neurons, we found that ablation of RGS9-2 significantly reduced calcium influx through NMDARs. Electrophysiological recordings in slices confirmed inhibition of NMDAR function in MSNs, resulting in enhanced AMPAR/NMDAR ratio. Accordingly, male mice lacking RGS9-2 displayed behavioral hypersensitivity to NMDAR blockade by MK-801 or ketamine. Recordings from genetically identified populations of striatal neurons revealed that these changes were selective to D2-MSNs. Surprisingly, we found that these postsynaptic effects resulted in remodeling of presynaptic inputs to D2-MSNs increasing the frequency of mEPSC and inhibiting paired-pulse ratio. Pharmacological dissection revealed that these adaptations were mediated by the NMDAR-dependent inhibition of retrograde endocannabinoid signaling from D2-MSNs to CB1 receptor on presynaptic terminals. Together, these data demonstrate a novel mechanism for pathway selective regulation of synaptic plasticity in MSNs controlled by GPCR signaling.SIGNIFICANCE STATEMENT This study identifies a role for a major G-protein regulator in controlling synaptic properties of striatal neurons in a pathway selective fashion.


Subject(s)
Corpus Striatum/physiology , Dopaminergic Neurons/physiology , RGS Proteins/physiology , Synaptic Transmission/physiology , Animals , Calcium Signaling , Cells, Cultured , Corpus Striatum/cytology , Dopaminergic Neurons/chemistry , Dopaminergic Neurons/classification , Dopaminergic Neurons/drug effects , Endocannabinoids/physiology , Exploratory Behavior , Female , Genes, Reporter , Glutamic Acid/metabolism , Male , Mice , Mice, Knockout , Patch-Clamp Techniques , Presynaptic Terminals/metabolism , RGS Proteins/deficiency , RGS Proteins/genetics , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB1/physiology , Receptors, Dopamine D2/analysis , Receptors, Dopamine D2/genetics , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/physiology , Rotarod Performance Test , Synapses/physiology
20.
J Physiol ; 597(12): 3167-3181, 2019 06.
Article in English | MEDLINE | ID: mdl-31020998

ABSTRACT

KEY POINTS: Inhibition of synaptic responses by activation of presynaptic cannabinoid type-1 (Cb1) receptors is reduced at parallel fibre synapses in the cerebellum following 4 Hz stimulation. Activation of adenylyl cyclase is necessary and sufficient for down-regulation of Cb1 receptors induced by 4 Hz stimulation. 4 Hz stimulation reduces Cb1 receptor function by (i) increasing the rate of endocannabinoid clearance from the synapse and (ii) decreasing expression of Cb1 receptors. ABSTRACT: Cannabinoid type-1 receptors (Cb1R) are expressed in the presynaptic membrane of many synapses, including parallel fibre-Purkinje cell synapses in the cerebellum, where they are involved in short- and long-term plasticity of synaptic responses. We show that Cb1R expression itself is a plastic property of the synapse regulated by physiological activity patterns. We made patch clamp recordings from Purkinje cells in cerebellar slices and assessed Cb1R activity by measuring depolarization-induced suppression of excitation (DSE). We find that DSE is normally stable at parallel fibre synapses but, following 4 Hz stimulation, DSE is persistently reduced and recovers more rapidly. Using a combination of electrophysiology, pharmacology and biochemistry, we show that changes in DSE are a result of the reduced expression of Cb1Rs and increased degradation of endocannabinoids by monoacylglycerol lipase. Long-term changes in presynaptic Cb1R expression may alter other forms of Cb1R-dependent plasticity at parallel fibre synapses, priming or inhibiting the circuit for associative learning.


Subject(s)
Receptor, Cannabinoid, CB1/physiology , Receptors, Presynaptic/physiology , Synapses/physiology , Animals , Cerebellum/physiology , Female , In Vitro Techniques , Male , Mice, Inbred C57BL , Purkinje Cells/physiology
SELECTION OF CITATIONS
SEARCH DETAIL