Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 332
Filter
Add more filters

Publication year range
1.
Immunity ; 52(4): 683-699.e11, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32294408

ABSTRACT

Mucociliary clearance through coordinated ciliary beating is a major innate defense removing pathogens from the lower airways, but the pathogen sensing and downstream signaling mechanisms remain unclear. We identified virulence-associated formylated bacterial peptides that potently stimulated ciliary-driven transport in the mouse trachea. This innate response was independent of formyl peptide and taste receptors but depended on key taste transduction genes. Tracheal cholinergic chemosensory cells expressed these genes, and genetic ablation of these cells abrogated peptide-driven stimulation of mucociliary clearance. Trpm5-deficient mice were more susceptible to infection with a natural pathogen, and formylated bacterial peptides were detected in patients with chronic obstructive pulmonary disease. Optogenetics and peptide stimulation revealed that ciliary beating was driven by paracrine cholinergic signaling from chemosensory to ciliated cells operating through muscarinic M3 receptors independently of nerves. We provide a cellular and molecular framework that defines how tracheal chemosensory cells integrate chemosensation with innate defense.


Subject(s)
Acetylcholine/immunology , Bacterial Proteins/pharmacology , Cilia/immunology , Mucociliary Clearance/immunology , Pulmonary Disease, Chronic Obstructive/immunology , TRPM Cation Channels/immunology , Trachea/immunology , Acetylcholine/metabolism , Animals , Bacterial Proteins/immunology , Biological Transport , Cilia/drug effects , Cilia/metabolism , Female , Formates/metabolism , Gene Expression , Humans , Immunity, Innate , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Optogenetics/methods , Paracrine Communication/immunology , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/pathology , Receptor, Muscarinic M3/genetics , Receptor, Muscarinic M3/immunology , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/immunology , TRPM Cation Channels/deficiency , TRPM Cation Channels/genetics , Taste Buds/immunology , Taste Buds/metabolism , Trachea/drug effects , Trachea/pathology , Virulence
2.
Nature ; 586(7829): 417-423, 2020 10.
Article in English | MEDLINE | ID: mdl-32999463

ABSTRACT

Microglia, the brain's resident macrophages, help to regulate brain function by removing dying neurons, pruning non-functional synapses, and producing ligands that support neuronal survival1. Here we show that microglia are also critical modulators of neuronal activity and associated behavioural responses in mice. Microglia respond to neuronal activation by suppressing neuronal activity, and ablation of microglia amplifies and synchronizes the activity of neurons, leading to seizures. Suppression of neuronal activation by microglia occurs in a highly region-specific fashion and depends on the ability of microglia to sense and catabolize extracellular ATP, which is released upon neuronal activation by neurons and astrocytes. ATP triggers the recruitment of microglial protrusions and is converted by the microglial ATP/ADP hydrolysing ectoenzyme CD39 into AMP; AMP is then converted into adenosine by CD73, which is expressed on microglia as well as other brain cells. Microglial sensing of ATP, the ensuing microglia-dependent production of adenosine, and the adenosine-mediated suppression of neuronal responses via the adenosine receptor A1R are essential for the regulation of neuronal activity and animal behaviour. Our findings suggest that this microglia-driven negative feedback mechanism operates similarly to inhibitory neurons and is essential for protecting the brain from excessive activation in health and disease.


Subject(s)
Feedback, Physiological , Microglia/physiology , Neural Inhibition , Neurons/physiology , 5'-Nucleotidase/metabolism , Action Potentials , Adenosine/metabolism , Adenosine Monophosphate/metabolism , Adenosine Triphosphate/metabolism , Animals , Antigens, CD/metabolism , Apyrase/metabolism , Calcium/metabolism , Corpus Striatum/cytology , Corpus Striatum/physiology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Microglia/cytology , Neural Inhibition/genetics , Receptor, Adenosine A1/metabolism , Receptor, Muscarinic M3/genetics , Receptor, Muscarinic M3/metabolism , Time Factors
3.
Toxicol Appl Pharmacol ; 490: 117035, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39019094

ABSTRACT

Exposure to particulate matter (PM10) can induce respiratory diseases that are closely related to bronchial hyperresponsiveness. However, the involved mechanism remains to be fully elucidated. This study aimed to demonstrate the effects of PM10 on the acetylcholine muscarinic 3 receptor (CHRM3) expression and the role of the ERK1/2 pathway in rat bronchial smooth muscle. A whole-body PM10 exposure system was used to stimulate bronchial hyperresponsiveness in rats for 2 and 4 months, accompanied by MEK1/2 inhibitor U0126 injection. The whole-body plethysmography system and myography were used to detect the pulmonary and bronchoconstrictor function, respectively. The mRNA and protein levels were determined by Western blotting, qPCR, and immunofluorescence. Enzyme-linked immunosorbent assay was used to detect the inflammatory cytokines. Compared with the filtered air group, 4 months of PM10 exposure significantly increased CHRM3-mediated pulmonary function and bronchial constriction, elevated CHRM3 mRNA and protein expression levels on bronchial smooth muscle, then induced bronchial hyperreactivity. Additionally, 4 months of PM10 exposure caused an increase in ERK1/2 phosphorylation and increased the secretion of inflammatory factors in bronchoalveolar lavage fluid. Treatment with the MEK1/2 inhibitor, U0126 inhibited the PM10 exposure-induced phosphorylation of the ERK1/2 pathway, thereby reducing the PM10 exposure-induced upregulation of CHRM3 in bronchial smooth muscle and CHRM3-mediated bronchoconstriction. U0126 could rescue PM10 exposure-induced pathological changes in the bronchus. In conclusion, PM10 exposure can induce bronchial hyperresponsiveness in rats by upregulating CHRM3, and the ERK1/2 pathway may be involved in this process. These findings could reveal a potential therapeutic target for air pollution induced respiratory diseases.


Subject(s)
Bronchial Hyperreactivity , Particulate Matter , Receptor, Muscarinic M3 , Animals , Bronchial Hyperreactivity/chemically induced , Bronchial Hyperreactivity/physiopathology , Bronchial Hyperreactivity/metabolism , Male , Particulate Matter/toxicity , Receptor, Muscarinic M3/metabolism , Receptor, Muscarinic M3/genetics , Rats , Up-Regulation/drug effects , Bronchi/drug effects , Bronchi/metabolism , Bronchi/pathology , Rats, Sprague-Dawley , MAP Kinase Signaling System/drug effects , Muscle, Smooth/drug effects , Muscle, Smooth/metabolism , Bronchoconstriction/drug effects , Cytokines/metabolism , Cytokines/genetics , Butadienes , Nitriles
4.
Int J Mol Sci ; 25(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39062802

ABSTRACT

The muscarinic acetylcholine receptor M3 (M3-mAChR) is involved in various physiological and pathological processes. Owing to specific cardioprotective effects, M3-mAChR is an ideal diagnostic and therapeutic biomarker for cardiovascular diseases (CVDs). Growing evidence has linked M3-mAChR to the development of multiple CVDs, in which it plays a role in cardiac protection such as anti-arrhythmia, anti-hypertrophy, and anti-fibrosis. This review summarizes M3-mAChR's expression patterns, functions, and underlying mechanisms of action in CVDs, especially in ischemia/reperfusion injury, cardiac hypertrophy, and heart failure, opening up a new research direction for the treatment of CVDs.


Subject(s)
Cardiovascular Diseases , Receptor, Muscarinic M3 , Humans , Cardiovascular Diseases/metabolism , Animals , Receptor, Muscarinic M3/metabolism , Receptor, Muscarinic M3/genetics
5.
Nat Methods ; 17(11): 1139-1146, 2020 11.
Article in English | MEDLINE | ID: mdl-32989318

ABSTRACT

The ability to directly measure acetylcholine (ACh) release is an essential step toward understanding its physiological function. Here we optimized the GRABACh (GPCR-activation-based ACh) sensor to achieve substantially improved sensitivity in ACh detection, as well as reduced downstream coupling to intracellular pathways. The improved version of the ACh sensor retains the subsecond response kinetics, physiologically relevant affinity and precise molecular specificity for ACh of its predecessor. Using this sensor, we revealed compartmental ACh signals in the olfactory center of transgenic flies in response to external stimuli including odor and body shock. Using fiber photometry recording and two-photon imaging, our ACh sensor also enabled sensitive detection of single-trial ACh dynamics in multiple brain regions in mice performing a variety of behaviors.


Subject(s)
Acetylcholine/metabolism , Biosensing Techniques/methods , Brain/metabolism , Animals , Animals, Genetically Modified , Behavior, Animal/physiology , Cholinergic Agents/pharmacology , Drosophila/genetics , Drosophila/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Mice , Mushroom Bodies/metabolism , Neurons/metabolism , Olfactory Cortex/metabolism , Receptor, Muscarinic M3/genetics , Receptor, Muscarinic M3/metabolism , Somatosensory Cortex/metabolism
6.
Dig Dis Sci ; 68(2): 439-450, 2023 02.
Article in English | MEDLINE | ID: mdl-35947306

ABSTRACT

BACKGROUND: The specific role of the M3 muscarinic acetylcholine receptor in gastrointestinal motility under physiological conditions is unclear, due to a lack of subtype-selective compounds. AIMS: The objective of this study was to determine the region-specific role of the M3 receptor in gastrointestinal motility. METHODS: We developed a novel positive allosteric modulator (PAM) for the M3 receptor, PAM-369. The effects of PAM-369 on the carbachol-induced contractile response of porcine esophageal smooth muscle and mouse colonic smooth muscle (ex vivo) and on the transit in mouse small intestine and rat colon (in vivo) were examined. RESULTS: PAM-369 selectively potentiated the M3 receptor under the stimulation of its orthosteric ligands without agonistic or antagonistic activity. Half-maximal effective concentrations of PAM activity for human, mouse, and rat M3 receptors were 0.253, 0.345, and 0.127 µM, respectively. PAM-369 enhanced carbachol-induced contraction in porcine esophageal smooth muscle and mouse colonic smooth muscle without causing any contractile responses by itself. The oral administration of 30 mg/kg PAM-369 increased the small intestinal transit in both normal motility and loperamide-induced intestinal dysmotility mice but had no effects on the colonic transit, although the M3 receptor mRNA expression is higher in the colon than in the small intestine. CONCLUSIONS: This study provided the first direct evidence that the M3 receptor has different region-specific roles in the motility function between the small intestine and colon in physiological and pathophysiological contexts. Selective PAMs designed for targeted subtypes of muscarinic receptors are useful for elucidating the subtype-specific function.


Subject(s)
Gastrointestinal Motility , Receptor, Muscarinic M3 , Animals , Humans , Mice , Rats , Carbachol/pharmacology , Gastrointestinal Motility/genetics , Gastrointestinal Motility/physiology , Muscle Contraction , Receptor, Muscarinic M2/genetics , Receptor, Muscarinic M2/metabolism , Receptor, Muscarinic M3/genetics , Receptor, Muscarinic M3/metabolism , Receptors, Muscarinic/physiology , Swine
7.
Proc Natl Acad Sci U S A ; 116(37): 18684-18690, 2019 09 10.
Article in English | MEDLINE | ID: mdl-31451647

ABSTRACT

Given the global epidemic in type 2 diabetes, novel antidiabetic drugs with increased efficacy and reduced side effects are urgently needed. Previous work has shown that M3 muscarinic acetylcholine (ACh) receptors (M3Rs) expressed by pancreatic ß cells play key roles in stimulating insulin secretion and maintaining physiological blood glucose levels. In the present study, we tested the hypothesis that a positive allosteric modulator (PAM) of M3R function can improve glucose homeostasis in mice by promoting insulin release. One major advantage of this approach is that allosteric agents respect the ACh-dependent spatiotemporal control of M3R activity. In this study, we first demonstrated that VU0119498, a drug known to act as a PAM at M3Rs, significantly augmented ACh-induced insulin release from cultured ß cells and mouse and human pancreatic islets. This stimulatory effect was absent in islets prepared from mice lacking M3Rs, indicative of the involvement of M3Rs. VU0119498 treatment of wild-type mice caused a significant increase in plasma insulin levels, accompanied by a striking improvement in glucose tolerance. These effects were mediated by ß-cell M3Rs, since they were absent in mutant mice selectively lacking M3Rs in ß cells. Moreover, acute VU0119498 treatment of obese, glucose-intolerant mice triggered enhanced insulin release and restored normal glucose tolerance. Interestingly, doses of VU0119498 that led to pronounced improvements in glucose homeostasis did not cause any significant side effects due to activation of M3Rs expressed by other peripheral cell types. Taken together, the data from this proof-of-concept study strongly suggest that M3R PAMs may become clinically useful as novel antidiabetic agents.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/pharmacology , Islets of Langerhans/drug effects , Muscarinic Agonists/pharmacology , Receptor, Muscarinic M3/drug effects , Acetylcholine/metabolism , Adult , Allosteric Regulation/drug effects , Animals , Blood Glucose/analysis , Blood Glucose/metabolism , Cell Line, Tumor , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Disease Models, Animal , Female , Glucose Intolerance/blood , Glucose Intolerance/drug therapy , Glucose Intolerance/metabolism , Humans , Hypoglycemic Agents/therapeutic use , Insulin Secretion/drug effects , Islets of Langerhans/metabolism , Male , Mice , Mice, Obese , Mice, Transgenic , Middle Aged , Muscarinic Agonists/therapeutic use , Obesity/blood , Obesity/drug therapy , Obesity/metabolism , Primary Cell Culture , Proof of Concept Study , Receptor, Muscarinic M3/genetics , Receptor, Muscarinic M3/metabolism , Young Adult
8.
J Pharmacol Exp Ther ; 379(1): 64-73, 2021 10.
Article in English | MEDLINE | ID: mdl-34244231

ABSTRACT

Muscarinic M3 (M3) receptors mediate a wide range of acetylcholine (ACh)-induced functions, including visceral smooth-muscle contraction and glandular secretion. Positive allosteric modulators (PAMs) can avoid various side effects of muscarinic agonists with their spatiotemporal receptor activation control and potentially better subtype selectivity. However, the mechanism of allosteric modulation of M3 receptors is not fully understood, presumably because of the lack of a potent and selective PAM. In this study, we investigated the pharmacological profile of ASP8302, a novel PAM of M3 receptors, and explored the principal site of amino-acid sequences in the human M3 receptor required for the potentiation of receptor activation. In cells expressing human M3 and M5 receptors, ASP8302 shifted the concentration-response curve (CRC) for carbachol to the lower concentrations with no significant effects on other subtypes. In a binding study with M3 receptor-expressing membrane, ASP8302 also shifted the CRC for ACh without affecting the binding of orthosteric agonists. Similar shifts in the CRC of contractions by multiple stimulants were also confirmed in isolated human bladder strips. Mutagenesis analysis indicated no interaction between ASP8302 and previously reported allosteric sites; however, it identified threonine 230 as the amino acid essential for the PAM effect of ASP8302. These results demonstrate that ASP8302 enhances the activation of human M3 receptors by interacting with a single amino acid distinct from the reported allosteric sites. Our findings suggest not only a novel allosteric site of M3 receptors but also the potential application of ASP8302 to diseases caused by insufficient M3 receptor activation. SIGNIFICANCE STATEMENT: The significance of this study is that the novel M3 receptor positive allosteric modulator ASP8302 enhances the activation of human M3 receptor by interacting with a residue distinct from the reported allosteric sites. The finding of Thr230 as a novel amino acid involved in the allosteric modulation of M3 receptors provides significant insight into further research of the mechanism of allosteric modulation of M3 and other muscarinic receptors.


Subject(s)
Allosteric Site/drug effects , Muscarinic Agonists/chemistry , Muscarinic Agonists/metabolism , Receptor, Muscarinic M3/agonists , Receptor, Muscarinic M3/metabolism , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Allosteric Site/physiology , Amino Acid Sequence , Animals , CHO Cells , Cricetulus , Dose-Response Relationship, Drug , Female , Humans , Male , Muscarinic Agonists/pharmacology , Organ Culture Techniques , Receptor, Muscarinic M3/genetics , Urinary Bladder/drug effects , Urinary Bladder/metabolism
9.
Brain Behav Immun ; 91: 89-104, 2021 01.
Article in English | MEDLINE | ID: mdl-32927021

ABSTRACT

Microglia are the immune cells of the brain and become activated during any type of brain injury. In the middle cerebral artery occlusion (MCAo) model, a mouse model for ischemic stroke, we have previously shown that microglia and invaded monocytes upregulate the expression of the muscarinic acetylcholine receptor 3 (M3R) in the ischemic lesion. Here we tested whether this upregulation has an impact on the pathogenesis of MCAo. We depleted the m3R receptor in microglia, but not in circulating monocytes by giving tamoxifen to CX3CR1-CreERT+/+M3Rflox/flox (M3RKOmi) animals 3 weeks prior to MCAo. We found that M3RKOmi male mice had bigger lesions, more pronounced motor deficits after one week and cognitive deficits after about one month compared to control males. The density of Iba1+ cells was lower in the lesions of M3RKO male mice in the early, but not in the late disease phase. In females, these differences were not significant. By giving tamoxifen 1 week prior to MCAo, we depleted m3R in microglia and in circulating monocytes (M3RKOmi/mo). Male M3RKOmi/mo did not differ in lesion size, but had a lower survival rate, showed motor deficits and a reduced accumulation of Iba1+ positive cells into the lesion site. In conclusion, our data suggest that the upregulation of m3R in microglia and monocytes in stroke has a beneficial effect on the clinical outcome in male mice.


Subject(s)
Brain Ischemia , Microglia , Receptor, Muscarinic M3/genetics , Stroke , Animals , Brain , Disease Models, Animal , Female , Infarction, Middle Cerebral Artery , Male , Mice , Mice, Inbred C57BL
10.
Arterioscler Thromb Vasc Biol ; 40(11): 2649-2664, 2020 11.
Article in English | MEDLINE | ID: mdl-32938216

ABSTRACT

OBJECTIVE: Phenotypic switching of vascular smooth muscle cells (VSMCs) plays a critical role in atherosclerosis, vascular restenosis, and hypertension. Choline exerts cardioprotective effects; however, little is known about its effects on VSMC phenotypic switching and vascular remodeling. Here, we investigated whether choline modulates VSMC phenotypic changes and explored the underlying mechanisms. Approach and Results: In cultured VSMCs, choline promoted Nrf2 (nuclear factor erythroid 2-related factor 2) nuclear translocation, inducing the expression of HO-1 (heme oxygenase-1) and NQO-1 (NAD[P]H quinone oxidoreductase-1). Consequently, choline ameliorated Ang II (angiotensin II)-induced increases in NOX (NAD[P]H oxidase) expression and the mitochondrial reactive oxygen species level, thereby attenuating Ang II-induced VSMC phenotypic switching, proliferation, and migration, presumably via M3AChRs (type 3 muscarinic acetylcholine receptors). Downregulation of M3AChR or Nrf2 diminished choline-mediated upregulation of Nrf2, HO-1, and NQO-1 expression, as well as inhibition of VSMC phenotypic transformation, suggesting that M3AChR and Nrf2 activation are responsible for the protective effects of choline. Moreover, activation of the Nrf2 pathway by sulforaphane suppressed Ang II-induced VSMC phenotypic switching and proliferation, indicating that Nrf2 is a key regulator of VSMC phenotypic switching and vascular homeostasis. In a rat model of abdominal aortic constriction in vivo, choline attenuated VSMC phenotypic transformation and vascular remodeling in a manner related to activation of the Nrf2 pathway. CONCLUSIONS: These results reveal that choline impedes VSMC phenotypic switching, proliferation, migration, and vascular remodeling by activating M3AChR and Nrf2-antioxidant signaling and suggest a novel role for Nrf2 in VSMC phenotypic modulation.


Subject(s)
Cell Plasticity/drug effects , Choline/pharmacology , Muscarinic Agonists/pharmacology , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , NF-E2-Related Factor 2/metabolism , Receptor, Muscarinic M3/agonists , Vascular Remodeling/drug effects , Animals , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Male , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , NF-E2-Related Factor 2/genetics , Phenotype , Rats, Sprague-Dawley , Receptor, Muscarinic M3/genetics , Receptor, Muscarinic M3/metabolism , Signal Transduction
11.
Proc Natl Acad Sci U S A ; 115(19): 5016-5021, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29686069

ABSTRACT

G-protein-coupled receptors (GPCRs) are essential for the detection of extracellular stimuli by cells and transfer the encoded information via the activation of functionally distinct subsets of heterotrimeric G proteins into intracellular signals. Despite enormous achievements toward understanding GPCR structures, major aspects of the GPCR-G-protein selectivity mechanism remain unresolved. As this can be attributed to the lack of suitable and broadly applicable assays, we set out to develop a quantitative FRET-based assay to study kinetics and affinities of G protein binding to activated GPCRs in membranes of permeabilized cells in the absence of nucleotides. We measured the association and dissociation kinetics of agonist-induced binding of Gi/o, Gq/11, Gs, and G12/13 proteins to muscarinic M1, M2, and M3 receptors in the absence of nucleotides between fluorescently labeled G proteins and receptors expressed in mammalian cells. Our results show a strong quantitative correlation between not the on-rates of G-protein-M3-R interactions but rather the affinities of Gq and Go proteins to M3-Rs, their GPCR-G-protein lifetime and their coupling efficiencies determined in intact cells, suggesting that the G-protein subtype-specific affinity to the activated receptor in the absence of nucleotides is, in fact, a major determinant of the coupling efficiency. Our broadly applicable FRET-based assay represents a fast and reliable method to quantify the intrinsic affinity and relative coupling selectivity of GPCRs toward all G-protein subtypes.


Subject(s)
Fluorescence Resonance Energy Transfer , GTP-Binding Proteins/metabolism , Multiprotein Complexes/metabolism , Receptor, Muscarinic M3/metabolism , GTP-Binding Proteins/genetics , HEK293 Cells , Humans , Multiprotein Complexes/genetics , Receptor, Muscarinic M3/genetics
12.
Proc Natl Acad Sci U S A ; 115(47): 12046-12050, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30404914

ABSTRACT

Drugs that treat chronic obstructive pulmonary disease by antagonizing the M3 muscarinic acetylcholine receptor (M3R) have had a significant effect on health, but can suffer from their lack of selectivity against the M2R subtype, which modulates heart rate. Beginning with the crystal structures of M2R and M3R, we exploited a single amino acid difference in their orthosteric binding pockets using molecular docking and structure-based design. The resulting M3R antagonists had up to 100-fold selectivity over M2R in affinity and over 1,000-fold selectivity in vivo. The crystal structure of the M3R-selective antagonist in complex with M3R corresponded closely to the docking-predicted geometry, providing a template for further optimization.


Subject(s)
Receptor, Muscarinic M3/antagonists & inhibitors , Receptor, Muscarinic M3/genetics , Acetylcholine/metabolism , Amino Acid Sequence , Crystallography, X-Ray , Drug Design , Humans , Molecular Docking Simulation/methods , Muscarinic Antagonists/chemistry , Muscarinic Antagonists/metabolism , Receptor, Muscarinic M2/antagonists & inhibitors , Receptor, Muscarinic M2/metabolism
13.
Int J Mol Sci ; 22(2)2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33477687

ABSTRACT

Parasympathetic signalling via muscarinic acetylcholine receptors (mAChRs) regulates gastrointestinal smooth muscle function. In most instances, the mAChR population in smooth muscle consists mainly of M2 and M3 subtypes in a roughly 80% to 20% mixture. Stimulation of these mAChRs triggers a complex array of biochemical and electrical events in the cell via associated G proteins, leading to smooth muscle contraction and facilitating gastrointestinal motility. Major signalling events induced by mAChRs include adenylyl cyclase inhibition, phosphoinositide hydrolysis, intracellular Ca2+ mobilisation, myofilament Ca2+ sensitisation, generation of non-selective cationic and chloride currents, K+ current modulation, inhibition or potentiation of voltage-dependent Ca2+ currents and membrane depolarisation. A lack of ligands with a high degree of receptor subtype selectivity and the frequent contribution of multiple receptor subtypes to responses in the same cell type have hampered studies on the signal transduction mechanisms and functions of individual mAChR subtypes. Therefore, novel strategies such as genetic manipulation are required to elucidate both the contributions of specific AChR subtypes to smooth muscle function and the underlying molecular mechanisms. In this article, we review recent studies on muscarinic function in gastrointestinal smooth muscle using mAChR subtype-knockout mice.


Subject(s)
Gastrointestinal Tract/metabolism , Muscle, Smooth/metabolism , Receptor, Muscarinic M2/genetics , Receptor, Muscarinic M3/genetics , Animals , GTP-Binding Proteins/genetics , Gastrointestinal Tract/growth & development , Gastrointestinal Tract/pathology , Mice, Knockout/genetics , Muscle Contraction/genetics , Muscle, Smooth/growth & development , Signal Transduction/genetics
14.
Int J Mol Sci ; 22(2)2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33450835

ABSTRACT

Despite great advances in our understanding of the pathobiology of colorectal cancer and the genetic and environmental factors that mitigate its onset and progression, a paucity of effective treatments persists. The five-year survival for advanced, stage IV disease remains substantially less than 20%. This review examines a relatively untapped reservoir of potential therapies to target muscarinic receptor expression, activation, and signaling in colorectal cancer. Most colorectal cancers overexpress M3 muscarinic receptors (M3R), and both in vitro and in vivo studies have shown that activating these receptors stimulates cellular programs that result in colon cancer growth, survival, and spread. In vivo studies using mouse models of intestinal neoplasia have shown that using either genetic or pharmacological approaches to block M3R expression and activation, respectively, attenuates the development and progression of colon cancer. Moreover, both in vitro and in vivo studies have shown that blocking the activity of matrix metalloproteinases (MMPs) that are induced selectively by M3R activation, i.e., MMP1 and MMP7, also impedes colon cancer growth and progression. Nonetheless, the widespread expression of muscarinic receptors and MMPs and their importance for many cellular functions raises important concerns about off-target effects and the safety of employing similar strategies in humans. As we highlight in this review, highly selective approaches can overcome these obstacles and permit clinicians to exploit the reliance of colon cancer cells on muscarinic receptors and their downstream signal transduction pathways for therapeutic purposes.


Subject(s)
Antineoplastic Agents/pharmacology , Colorectal Neoplasms/metabolism , Receptors, Muscarinic/metabolism , Signal Transduction/drug effects , Animals , Antineoplastic Agents/therapeutic use , Biomarkers , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/etiology , Colorectal Neoplasms/pathology , Disease Management , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Gene Expression Regulation, Neoplastic , Humans , Matrix Metalloproteinase Inhibitors/pharmacology , Matrix Metalloproteinase Inhibitors/therapeutic use , Matrix Metalloproteinases/metabolism , Molecular Targeted Therapy , Muscarinic Agonists/pharmacology , Muscarinic Agonists/therapeutic use , Receptor, Muscarinic M3/genetics , Receptor, Muscarinic M3/metabolism , Receptors, Muscarinic/classification , Receptors, Muscarinic/genetics
15.
Am J Physiol Regul Integr Comp Physiol ; 318(5): R940-R949, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32209022

ABSTRACT

We examined the relationship between hemodynamics in the three major salivary glands and salivary secretion in urethane-anesthetized and sympathectomized type 2 diabetic and nondiabetic rats via laser speckle imaging and by collecting the saliva. Lingual nerve stimulation elicited rapid increases in glandular blood flow and induced salivary secretion from the three glands in both diabetic and nondiabetic rats. In the parotid gland, the magnitude of blood flow increase and salivary secretion was significantly lower in the diabetic rats when compared with the nondiabetic rats; however, this was not observed in the other glands. Although the intravenous administration of acetylcholine increased blood flow in the parotid gland in a dose-dependent manner, the response was significantly lower in the diabetic rats when compared with the nondiabetic rats. Similarly, mRNA expression levels of M1 and M3 muscarinic acetylcholine receptors in the parotid gland were relatively lower in the diabetic rats compared with the nondiabetic rats. Our results indicate that type 2 diabetes impairs parasympathetic vasodilation and salivary secretion in the parotid gland and suggest that disturbances in the cholinergic vasodilator pathway may contribute to the underlying mechanisms involved in the disruption of parasympathetic nerve-mediated glandular vasodilation.


Subject(s)
Diabetes Mellitus, Type 2/physiopathology , Diabetic Neuropathies/physiopathology , Parasympathetic Nervous System/physiopathology , Parotid Gland/blood supply , Parotid Gland/physiopathology , Salivation , Vasodilation , Xerostomia/physiopathology , Animals , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetic Neuropathies/etiology , Diabetic Neuropathies/genetics , Diabetic Neuropathies/metabolism , Disease Models, Animal , Down-Regulation , Male , Parotid Gland/metabolism , Rats, Inbred OLETF , Receptor, Muscarinic M1/genetics , Receptor, Muscarinic M1/metabolism , Receptor, Muscarinic M3/genetics , Receptor, Muscarinic M3/metabolism , Xerostomia/etiology , Xerostomia/genetics , Xerostomia/metabolism
16.
EMBO Rep ; 19(1): 29-42, 2018 01.
Article in English | MEDLINE | ID: mdl-29141986

ABSTRACT

The interaction of Mycobacterium tuberculosis (Mtb) with pulmonary epithelial cells is critical for early stages of bacillus colonization and during the progression of tuberculosis. Entry of Mtb into epithelial cells has been shown to depend on F-actin polymerization, though the molecular mechanisms are still unclear. Here, we demonstrate that mycobacterial uptake into epithelial cells requires rearrangements of the actin cytoskeleton, which are regulated by ADP-ribosylation factor 1 (Arf1) and phospholipase D1 (PLD1), and is dependent on the M3 muscarinic receptor (M3R). We show that this pathway is controlled by Arf GTPase-activating protein 1 (ArfGAP1), as its silencing has an impact on actin cytoskeleton reorganization leading to uncontrolled uptake and replication of Mtb. Furthermore, we provide evidence that this pathway is critical for mycobacterial entry, while the cellular infection with other pathogens, such as Shigella flexneri and Yersinia pseudotuberculosis, is not affected. Altogether, these results reveal how cortical actin plays the role of a barrier to prevent mycobacterial entry into epithelial cells and indicate a novel role for ArfGAP1 as a restriction factor of host-pathogen interactions.


Subject(s)
Actin Cytoskeleton/metabolism , Actins/genetics , GTPase-Activating Proteins/genetics , Host-Pathogen Interactions , Mycobacterium tuberculosis/pathogenicity , Pulmonary Alveoli/metabolism , A549 Cells , ADP-Ribosylation Factor 1/genetics , ADP-Ribosylation Factor 1/metabolism , Actin Cytoskeleton/microbiology , Actin Cytoskeleton/ultrastructure , Actins/metabolism , GTPase-Activating Proteins/antagonists & inhibitors , GTPase-Activating Proteins/metabolism , Gene Expression Regulation , Humans , Mycobacterium tuberculosis/physiology , Phospholipase D/genetics , Phospholipase D/metabolism , Polymerization , Pulmonary Alveoli/microbiology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Receptor, Muscarinic M3/genetics , Receptor, Muscarinic M3/metabolism , Shigella flexneri/physiology , Signal Transduction , Species Specificity , Yersinia pseudotuberculosis/physiology
17.
J Cell Physiol ; 234(5): 5354-5361, 2019 05.
Article in English | MEDLINE | ID: mdl-30478974

ABSTRACT

Cancer cells are considered to have high morphological heterogeneity in human melanoma tissue. Here, we report that epithelial cancer cells are dominant in different development stages of human melanoma tissues. The cellular and molecular mechanisms that maintain melanoma cells in the epithelial state are further investigated in the A2058 cell line. We find that micropore (8 µm) transwell invasion, but not superficial migration in the scratch assay, can induce remarkable morphological changes between epithelial and mesenchymal melanoma cells within 4 days. The morphological switch is associated with dynamic changes of epithelial-mesenchymal transition (EMT) hallmarks E-cadherin and vimentin. Further immunoflurencent staining and co-immunoprecipitation assay showed the uncoupling of the M3 muscarinic acetylcholine receptor (mAChR) and the p75 neurotrophin receptor (p75NTR) in epithelial melanoma cells. Specific knockdown of M3 mAChR by small interfering RNA (siRNA) significantly abrogates the transition of spindle-shaped mesenchymal cells to epithelial cells. Collectively, we report a cellular model of invasiveness-triggered state transition (ITST) in which melanoma cell invasion can induce morphological changes between epithelial and mesenchymal cells. ITST is one of the biological basis for maintaining metastatic melanoma cells in the epithelial state. Furthermore, M3 mAChR receptor-mediated ITST provides a novel therapeutic strategy to inhibit the development of malignant melanoma.


Subject(s)
Cell Movement , Epithelial-Mesenchymal Transition , Melanoma/pathology , Skin Neoplasms/pathology , Antigens, CD/metabolism , Cadherins/metabolism , Cell Line, Tumor , Cell Shape , Gene Expression Regulation, Neoplastic , Humans , Melanoma/genetics , Melanoma/metabolism , Neoplasm Invasiveness , Nerve Tissue Proteins/metabolism , Receptor, Muscarinic M3/genetics , Receptor, Muscarinic M3/metabolism , Receptors, Nerve Growth Factor/metabolism , Signal Transduction , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Vimentin/metabolism
18.
Clin Genet ; 96(6): 515-520, 2019 12.
Article in English | MEDLINE | ID: mdl-31441039

ABSTRACT

CHRM3 codes for the M3 muscarinic acetylcholine receptor that is located on the surface of smooth muscle cells of the detrusor, the muscle that effects urinary voiding. Previously, we reported brothers in a family affected by a congenital prune belly-like syndrome with mydriasis due to homozygous CHRM3 frameshift variants. In this study, we describe two sisters with bladders that failed to empty completely and pupils that failed to constrict fully in response to light, who are homozygous for the missense CHRM3 variant c.352G > A; p.(Gly118Arg). Samples were not available for genotyping from their brother, who had a history of multiple urinary tract infections and underwent surgical bladder draining in the first year of life. He died at the age of 6 years. This is the first independent report of biallelic variants in CHRM3 in a family with a rare serious bladder disorder associated with mydriasis and provides important evidence of this association.


Subject(s)
Mutation, Missense/genetics , Receptor, Muscarinic M3/genetics , Urinary Bladder Diseases/genetics , Base Sequence , Family , Female , Homozygote , Humans , Malaysia , Male
19.
Neurourol Urodyn ; 38(8): 2121-2129, 2019 11.
Article in English | MEDLINE | ID: mdl-31452236

ABSTRACT

AIMS: The prevalence of urinary dysfunction increases with age, yet therapies are often suboptimal. Incomplete understanding of the linkages between system, organ, and tissue domains across lifespan remains a knowledge gap. If tissue-level changes drive the aging bladder phenotype, parallel changes should be observed across these domains. In contrast, a lack of inter-domain correlation across age groups would support the hypothesis that urinary performance is a measure of the physiologic reserve, dependent on centrally-mediated adaptive mechanisms in the aging system. METHODS: Male and female mice across four age groups underwent sequential voiding spot assays, pressure/flow cystometry, bladder strip tension studies, histology, and quantitative PCR analyses. The primary objective of this study was to test the impact of age on the cortical, autonomic, tissue functional and structural, and molecular domains, and identify inter-domain correlations among variables showing significant changes with age within these domains. RESULTS: Behavior revealed diminished peripheral voiding and spot size in aged females. Cystometry demonstrated increased postvoid residual and loss of volume sensitivity, but the preservation of voiding contraction power, with almost half of oldest-old mice failing under cystometric stress. Strip studies revealed no significant differences in adrenergic, cholinergic, or EFS sensitivity. Histology showed increased detrusor and lamina propria thickness, without a change in collagen/muscle ratio. Adrb2 gene expression decreased with age. No consistent inter-domain correlations were found across age groups. CONCLUSIONS: Our findings are consistent with a model in which centrally-mediated adaptive failures to aging stressors are more influential over the aging bladder phenotype than local tissue changes.


Subject(s)
Aging/physiology , Muscle Contraction/physiology , Urinary Bladder/physiopathology , Urination/physiology , Adrenergic beta-Agonists/pharmacology , Aging/genetics , Aging/pathology , Animals , Carbachol/pharmacology , Cholinergic Agonists/pharmacology , Electric Stimulation , Female , Isoproterenol/pharmacology , Male , Mice , Mucous Membrane/pathology , Myography , Phenotype , Receptor, Muscarinic M3/genetics , Receptors, Adrenergic, beta-2/genetics , Urinary Bladder/drug effects , Urinary Bladder/metabolism , Urinary Bladder/pathology
20.
Proc Natl Acad Sci U S A ; 113(16): 4524-9, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-27071102

ABSTRACT

G protein-coupled receptors (GPCRs) are known to initiate a plethora of signaling pathways in vitro. However, it is unclear which of these pathways are engaged to mediate physiological responses. Here, we examine the distinct roles of Gq/11-dependent signaling and receptor phosphorylation-dependent signaling in bronchial airway contraction and lung function regulated through the M3-muscarinic acetylcholine receptor (M3-mAChR). By using a genetically engineered mouse expressing a G protein-biased M3-mAChR mutant, we reveal the first evidence, to our knowledge, of a role for M3-mAChR phosphorylation in bronchial smooth muscle contraction in health and in a disease state with relevance to human asthma. Furthermore, this mouse model can be used to distinguish the physiological responses that are regulated by M3-mAChR phosphorylation (which include control of lung function) from those responses that are downstream of G protein signaling. In this way, we present an approach by which to predict the physiological/therapeutic outcome of M3-mAChR-biased ligands with important implications for drug discovery.


Subject(s)
Bronchi/metabolism , Muscle, Smooth/metabolism , Receptor, Muscarinic M3/metabolism , Signal Transduction/physiology , Animals , Bronchi/cytology , Humans , Mice , Mice, Knockout , Muscle, Smooth/cytology , Phosphorylation/physiology , Receptor, Muscarinic M3/genetics
SELECTION OF CITATIONS
SEARCH DETAIL