Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 297
Filter
Add more filters

Publication year range
1.
J Neurophysiol ; 125(5): 1543-1551, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33760672

ABSTRACT

Eupnea and gasping in infancy depend on central nervous system (CNS) serotonin (5-hydroxytryptamine; 5-HT). Although previous in vitro preparations have provided some evidence that 5-HT acts through type 2 A receptors (5-HT2A) to facilitate eupnea and gasping, here the hypothesis addressed is that 5-HT2A receptor activation is necessary for eupnea and the proper generation of gasping in vivo. To test this, we administered 2,5-dimethoxy-4-iodoamphetamine (DOI; 0.25 mg/kg i.p.), a 5-HT2A agonist, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT; 0.25 mg/kg i.p.), a 5-HT1A agonist, or vehicle (saline) to 7-9-day-old tryptophan hydroxylase 2 knockout (TPH2-/-) mice. A second experiment assessed the effect of MDL-11,939 (MDL; 10 mg/kg i.p.), the specific 5-HT2A antagonist, or vehicle (DMSO) on the gasping of wild-type (TPH2+/+) animals. Drugs were given 15 min prior to five episodes of severe hypoxia that elicited gasping. TPH2-/- breathed more slowly but had the same V̇e and V̇e/V̇o2 compared with TPH2+/+. As previously reported, the gasping of TPH2-/- was significantly delayed (P < 0.001) and occurred at a significantly lower frequency compared with TPH2+/+ (P = 0.04). For both genotypes, DOI hastened eupneic frequency but had no effect on V̇e or V̇e/V̇o2. The gasping of TPH2-/-, although unaffected by 8-OH-DPAT, was indistinguishable from the gasping of TPH2+/+ following DOI. In TPH2+/+, application of MDL led to hypoventilation (P = 0.01), a delay in the appearance of gasping (P = 0.005), and reduced gasp frequency (P = 0.05). These data show that, in vivo, 5-HT2A receptors facilitate both eupnea and gasping. As has been shown in vitro, 5-HT2A probably promotes gasping by exciting hypoxia-resistant pacemaker neurons.NEW & NOTEWORTHY Previous in vitro studies suggest that 5-HT2A receptors contribute to eupnea and are necessary for fictive gasping. The current study shows that the impaired gasping displayed by neonatal TPH2-/- mice, deficient in CNS serotonin, is restored by 5-HT2A receptor activation. Following 5-HT2A blockade, wild-type mice hypoventilated and their gasping resembled that of TPH2-/- mice. This study shows that both eupnea and gasping in vivo rely on the activation of 5-HT2A receptors.


Subject(s)
Hypoventilation/chemically induced , Receptor, Serotonin, 5-HT2A/physiology , Respiratory Mechanics/physiology , Respiratory Rate/physiology , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Animals , Animals, Newborn , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Receptor, Serotonin, 5-HT2A/drug effects , Respiratory Mechanics/drug effects , Respiratory Rate/drug effects , Serotonin 5-HT2 Receptor Agonists/pharmacology , Tryptophan Hydroxylase
2.
Hepatology ; 71(3): 990-1008, 2020 03.
Article in English | MEDLINE | ID: mdl-31344280

ABSTRACT

BACKGROUND AND AIMS: Serotonin (5HT) is a neuroendocrine hormone synthetized in the central nervous system (CNS) as well as enterochromaffin cells of the gastrointestinal tract. Tryptophan hydroxylase (TPH1) and monoamine oxidase (MAO-A) are the key enzymes for the synthesis and catabolism of 5HT, respectively. Previous studies demonstrated that 5-hydroxytryptamine receptor (5HTR)1A/1B receptor agonists inhibit biliary hyperplasia in bile-duct ligated (BDL) rats, whereas 5HTR2B receptor antagonists attenuate liver fibrosis (LF) in mice. Our aim was to evaluate the role of 5HTR2A/2B/2C agonists/antagonists in cholestatic models. APPROACH AND RESULTS: While in vivo studies were performed in BDL rats and the multidrug resistance gene 2 knockout (Mdr2-/- ) mouse model of PSC, in vitro studies were performed in cell lines of cholangiocytes and hepatic stellate cells (HSCs). 5HTR2A/2B/2C and MAO-A/TPH1 are expressed in cholangiocytes and HSCs from BDL rats and Mdr2-/- - mice. Ductular reaction, LF, as well as the mRNA expression of proinflammatory genes increased in normal, BDL rats, and Mdr2-/- - mice following treatment 5HTR2A/2B/2C agonists, but decreased when BDL rats and Mdr2-/- mice were treated with 5HTR2A/2B/2C antagonists compared to BDL rats and Mdr2-/- mice, respectively. 5HT levels increase in Mdr2-/- mice and in PSC human patients compared to their controls and decrease in serum of Mdr2-/- mice treated with 5HTR2A/2B/2C antagonists compared to untreated Mdr2-/- mice. In vitro, cell lines of murine cholangiocytes and human HSCs express 5HTR2A/2B/2C and MAO-A/TPH1; treatment of these cell lines with 5HTR2A/2B/2C antagonists or TPH1 inhibitor decreased 5HT levels as well as expression of fibrosis and inflammation genes compared to controls. CONCLUSIONS: Modulation of the TPH1/MAO-A/5HT/5HTR2A/2B/2C axis may represent a therapeutic approach for management of cholangiopathies, including PSC.


Subject(s)
Bile Ducts/pathology , Cholestasis/pathology , Liver Cirrhosis/etiology , Monoamine Oxidase/physiology , Receptors, Serotonin/physiology , Serotonin/physiology , Tryptophan Hydroxylase/physiology , ATP Binding Cassette Transporter, Subfamily B/physiology , Animals , Cell Proliferation , Cholangitis, Sclerosing/etiology , Humans , Male , Mice , Rats , Rats, Sprague-Dawley , Receptor, Serotonin, 5-HT2A/physiology , Receptor, Serotonin, 5-HT2B/physiology , Receptor, Serotonin, 5-HT2C/physiology , Serotonin/blood , ATP-Binding Cassette Sub-Family B Member 4
3.
J Reprod Dev ; 67(4): 241-250, 2021 Aug 27.
Article in English | MEDLINE | ID: mdl-33980767

ABSTRACT

In the present study, we investigated the regulatory mechanisms underlying sperm hyperactivation enhanced by 5-hydroxytryptamine (5-HT) in hamsters. First, we examined the types of 5-HT receptors that regulate hyperactivation. Hyperactivation was significantly enhanced by 5-HT2A and 5-HT4 receptor agonists. Moreover, the results of the motility assay revealed that 5-HT2A, 5-HT3, and 5-HT4 receptor agonists significantly decreased the velocity and/or amplitude of sperm. Under 5-HT2 receptor stimulation, hyperactivation was associated with phospholipase C (PLC), inositol 1,4,5-trisphosphate (IP3) receptor, soluble adenylate cyclase (sAC), and protein kinase A (PKA). In contrast, under 5-HT4 receptor stimulation, hyperactivation was associated with transmembrane adenylate cyclase (tmAC), sAC, PKA, and CatSper channels. Accordingly, under the condition that sperm are hyperactivated, 5-HT likely stimulates PLC/IP3 receptor signals via the 5-HT2A receptor and tmAC/PKA/CatSper channel signals via the 5-HT4 receptor. After sAC and PKA are activated by these stimulations, sperm hyperactivation is enhanced.


Subject(s)
Receptors, Serotonin/physiology , Serotonin/pharmacology , Spermatozoa/physiology , Animals , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Male , Mesocricetus , Receptor, Serotonin, 5-HT2A/drug effects , Receptor, Serotonin, 5-HT2A/physiology , Receptors, Serotonin/drug effects , Receptors, Serotonin, 5-HT4/drug effects , Receptors, Serotonin, 5-HT4/physiology , Signal Transduction/physiology , Sperm Motility/drug effects , Spermatozoa/drug effects , Type C Phospholipases/metabolism
4.
Int J Mol Sci ; 22(10)2021 May 17.
Article in English | MEDLINE | ID: mdl-34067933

ABSTRACT

Serotonin receptors play important roles in neuronal excitation, emotion, platelet aggregation, and vasoconstriction. The serotonin receptor subtype 2A (5-HT2AR) is a Gq-coupled GPCR, which activate phospholipase C. Although the structures and functions of 5-HT2ARs have been well studied, little has been known about their real-time dynamics. In this study, we analyzed the intramolecular motion of the 5-HT2AR in living cells using the diffracted X-ray tracking (DXT) technique. The DXT is a very precise single-molecular analytical technique, which tracks diffraction spots from the gold nanocrystals labeled on the protein surface. Trajectory analysis provides insight into protein dynamics. The 5-HT2ARs were transiently expressed in HEK 293 cells, and the gold nanocrystals were attached to the N-terminal introduced FLAG-tag via anti-FLAG antibodies. The motions were recorded with a frame rate of 100 µs per frame. A lifetime filtering technique demonstrated that the unliganded receptors contain high mobility population with clockwise twisting. This rotation was, however, abolished by either a full agonist α-methylserotonin or an inverse agonist ketanserin. Mutation analysis revealed that the "ionic lock" between the DRY motif in the third transmembrane segment and a negatively charged residue of the sixth transmembrane segment is essential for the torsional motion at the N-terminus of the receptor.


Subject(s)
Receptor, Serotonin, 5-HT2A/metabolism , Receptor, Serotonin, 5-HT2A/physiology , Single Molecule Imaging/methods , Carrier Proteins/metabolism , Crystallography, X-Ray/methods , Gold , HEK293 Cells , Humans , Ions/metabolism , Ligands , Nanotechnology/methods , Receptors, Serotonin/metabolism , Receptors, Serotonin/physiology , X-Ray Diffraction/methods , X-Rays
5.
Mol Psychiatry ; 24(11): 1610-1626, 2019 11.
Article in English | MEDLINE | ID: mdl-29858599

ABSTRACT

The serotonin 5-HT2A and glutamate mGlu2 receptors continue to attract particular attention, given their implication in psychosis associated with schizophrenia and the mechanism of action of atypical antipsychotics and a new class of antipsychotics, respectively. A large body of evidence indicates a functional crosstalk between both receptors in the brain, but the underlying mechanisms are not entirely elucidated. Here, we have explored the influence of 5-HT2A receptor upon the phosphorylation pattern of mGlu2 receptor in light of the importance of specific phosphorylation events in regulating G protein-coupled receptor signaling and physiological outcomes. Among the five mGlu2 receptor-phosphorylated residues identified in HEK-293 cells, the phosphorylation of Ser843 was enhanced upon mGlu2 receptor stimulation by the orthosteric agonist LY379268 only in cells co-expressing the 5-HT2A receptor. Likewise, administration of LY379268 increased mGlu2 receptor phosphorylation at Ser843 in prefrontal cortex of wild-type mice but not 5-HT2A-/- mice. Exposure of HEK-293 cells co-expressing mGlu2 and 5-HT2A receptors to 5-HT also increased Ser843 phosphorylation state to a magnitude similar to that measured in LY379268-treated cells. In both HEK-293 cells and prefrontal cortex, Ser843 phosphorylation elicited by 5-HT2A receptor stimulation was prevented by the mGlu2 receptor antagonist LY341495, while the LY379268-induced effect was abolished by the 5-HT2A receptor antagonist M100907. Mutation of Ser843 into alanine strongly reduced Gi/o signaling elicited by mGlu2 or 5-HT2A receptor stimulation in cells co-expressing both receptors. Collectively, these findings identify mGlu2 receptor phosphorylation at Ser843 as a key molecular event that underlies the functional crosstalk between both receptors.


Subject(s)
Receptor, Serotonin, 5-HT2A/metabolism , Receptors, Metabotropic Glutamate/metabolism , Serotonin/pharmacology , Amino Acids/pharmacology , Animals , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Phosphorylation , Prefrontal Cortex/metabolism , Receptor, Serotonin, 5-HT2A/physiology , Receptors, Metabotropic Glutamate/physiology , Serine , Signal Transduction/drug effects
6.
Cereb Cortex ; 29(4): 1659-1669, 2019 04 01.
Article in English | MEDLINE | ID: mdl-29917056

ABSTRACT

The prefrontal cortex (PFC) plays a key role in many high-level cognitive processes. It is densely innervated by serotonergic neurons originating from the dorsal and median raphe nuclei, which profoundly influence PFC activity. Among the 5-HT receptors abundantly expressed in PFC, 5-HT2A receptors located in dendrites of layer V pyramidal neurons control neuronal excitability and mediate the psychotropic effects of psychedelic hallucinogens, but their impact on glutamatergic transmission and synaptic plasticity remains poorly characterized. Here, we show that a 20-min exposure of mouse PFC slices to serotonin or the 5-HT2A receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) produces a long-lasting depression of evoked AMPA excitatory postsynaptic currents in layer V pyramidal neurons. DOI-elicited long-term depression (LTD) of synaptic transmission is absent in slices from 5-HT2A receptor-deficient mice, is rescued by viral expression of 5-HT2A receptor in pyramidal neurons and occludes electrically induced long-term depression. Furthermore, 5-HT2A receptor activation promotes phosphorylation of GluA2 AMPA receptor subunit at Ser880 and AMPA receptor internalization, indicating common mechanisms with electrically induced LTD. These findings provide one of the first examples of LTD gating under the control of a G protein-coupled receptor that might lead to imbalanced synaptic plasticity and memory impairment following a nonphysiological elevation of extracellular serotonin.


Subject(s)
Long-Term Synaptic Depression/physiology , Neuronal Plasticity/physiology , Prefrontal Cortex/physiology , Pyramidal Cells/physiology , Receptor, Serotonin, 5-HT2A/physiology , Synapses/physiology , Amphetamines/administration & dosage , Animals , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Long-Term Synaptic Depression/drug effects , Mice, Knockout , Neuronal Plasticity/drug effects , Prefrontal Cortex/drug effects , Pyramidal Cells/drug effects , Receptor, Serotonin, 5-HT2A/genetics , Receptors, AMPA/metabolism , Serotonin Receptor Agonists/administration & dosage , Synapses/drug effects
7.
J Physiol ; 597(2): 481-498, 2019 01.
Article in English | MEDLINE | ID: mdl-30382587

ABSTRACT

KEY POINTS: Concurrent 5-HT2A (Q pathway) and 5-HT7 (S pathway) serotonin receptor activation cancels phrenic motor facilitation due to mutual cross-talk inhibition. Spinal protein kinase Cδ (PKCδ) or protein kinase A inhibition restores phrenic motor facilitation with concurrent Q and S pathway activation, demonstrating a key role for these kinases in cross-talk inhibition. Spinal PKCδ inhibition enhances adenosine-dependent severe acute intermittent hypoxia-induced phrenic long-term facilitation (S pathway), consistent with relief of cross-talk inhibition. ABSTRACT: Intermittent spinal serotonin receptor activation elicits long-lasting phrenic motor facilitation (pMF), a form of respiratory motor plasticity. When activated alone, spinal Gq protein-coupled serotonin 2A receptors (5-HT2A ) initiate pMF by a mechanism that requires ERK-MAP kinase signalling and new BDNF protein synthesis (Q pathway). Spinal Gs protein-coupled serotonin 7 (5-HT7 ) and adenosine 2A (A2A ) receptor activation also elicits pMF, but via distinct mechanisms (S pathway) that require Akt signalling and new TrkB protein synthesis. Although studies have shown inhibitory cross-talk interactions between these competing pathways, the underlying cellular mechanisms are unknown. We propose the following hypotheses: (1) concurrent 5-HT2A and 5-HT7 activation undermines pMF; (2) protein kinase A (PKA) and (3) NADPH oxidase mediate inhibitory interactions between Q (5-HT2A ) and S (5-HT7 ) pathways. Selective 5-HT2A (DOI hydrochloride) and 5HT7 (AS-19) agonists were administered intrathecally at C4 (three injections, 5-min intervals) in anaesthetized, vagotomized and ventilated male rats. With either spinal 5-HT2A or 5-HT7 activation alone, phrenic amplitude progressively increased (pMF). In contrast, concurrent 5-HT2A and 5-HT7 activation failed to elicit pMF. The 5-HT2A -induced Q pathway was restored by inhibiting PKA activity (Rp-8-Br-cAMPS). NADPH oxidase inhibition did not prevent cross-talk inhibition. Therefore, we investigated alternative mechanisms to explain Q to S pathway inhibition. Spinal protein kinase C (PKC) inhibition with Gö6983 or PKCδ peptide inhibitor restored the 5-HT7 -induced S pathway to pMF, revealing PKCδ as the relevant isoform. Spinal PKCδ inhibition enhanced the S pathway-dependent form of pMF elicited by severe acute intermittent hypoxia. We suggest that powerful constraints between 5-HT2A and 5-HT7 or A2A receptor-induced pMF are mediated by PKCδ and PKA, respectively.


Subject(s)
Hypoxia/physiopathology , Phrenic Nerve/physiology , Protein Kinase C-delta/physiology , Receptor, Serotonin, 5-HT2A/physiology , Receptors, Serotonin/physiology , Spinal Cord/physiology , Amphetamines/pharmacology , Animals , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Cyclic AMP-Dependent Protein Kinases/physiology , Male , Protein Kinase C-delta/antagonists & inhibitors , Pyrazoles/pharmacology , Rats, Sprague-Dawley , Serotonin Receptor Agonists/pharmacology , Tetrahydronaphthalenes/pharmacology
8.
J Pharmacol Exp Ther ; 368(1): 41-49, 2019 01.
Article in English | MEDLINE | ID: mdl-30373886

ABSTRACT

Impulsivity and the attentional orienting response to cocaine-associated cues (cue reactivity) promote relapse in cocaine-use disorder (CUD). A time-dependent escalation of cue reactivity (incubation) occurs during extended, forced abstinence from cocaine self-administration in rats. The investigational serotonin (5-HT) 5-HT2A receptor (5-HT2AR) antagonist/inverse agonist M100907 suppresses impulsive action, or the inability to withhold premature responses, and cocaine-seeking behaviors. The present preclinical study was designed to establish the potential for repurposing the Food and Drug Administration-approved selective 5-HT2AR antagonist/inverse agonist pimavanserin as a therapeutic agent to forestall relapse vulnerability in CUD. In male Sprague-Dawley rats, pimavanserin suppressed impulsive action (premature responses) measured in the 1-choice serial reaction time (1-CSRT) task, similarly to M100907. We also used the 1-CSRT task to establish baseline levels of impulsive action before cocaine self-administration and evaluation of cue reactivity (lever presses reinforced by the discrete cue complex previously paired with cocaine delivery). We observed an incubation of cocaine cue reactivity between day 1 and day 30 of forced abstinence from cocaine self-administration. Baseline levels of impulsive action predicted incubated levels of cocaine cue reactivity in late abstinence. We also found that baseline impulsive action predicted the effectiveness of pimavanserin to suppress incubated cue reactivity in late abstinence from cocaine self-administration at doses that were ineffective in early abstinence. These data suggest that integration of clinical measures of impulsive action may inform refined, personalized pharmacotherapeutic intervention for the treatment of relapse vulnerability in CUD.


Subject(s)
Cocaine/administration & dosage , Cues , Dopamine Uptake Inhibitors/administration & dosage , Impulsive Behavior/drug effects , Impulsive Behavior/physiology , Receptor, Serotonin, 5-HT2A/physiology , Animals , Dose-Response Relationship, Drug , Fluorobenzenes/pharmacology , Male , Piperidines/pharmacology , Rats , Rats, Sprague-Dawley , Reaction Time/drug effects , Reaction Time/physiology , Self Administration , Serotonin Antagonists/pharmacology , Urea/analogs & derivatives , Urea/pharmacology
9.
Behav Pharmacol ; 30(2 and 3-Spec Issue): 151-162, 2019 04.
Article in English | MEDLINE | ID: mdl-30632995

ABSTRACT

Serotonin, one of the first neurotransmitters to be identified, is an evolutionarily old molecule that is highly conserved across the animal kingdom, and widely used throughout the brain. Despite this, ascribing a specific set of functions to brain serotonin and its receptors has been difficult and controversial. The 2A subtype of serotonin receptors (5-HT2A receptor) is the major excitatory serotonin receptor in the brain and has been linked to the effects of drugs that produce profound sensory and cognitive changes. Numerous studies have shown that this receptor is upregulated by a broad variety of stressors, and have related 5-HT2A receptor function to associative learning. This review proposes that stress, particularly stress related to danger and existential threats, increases the expression and function of 5-HT2A receptors. It is argued that this is a neurobiological adaptation to promote learning and avoidance of danger in the future. Upregulation of 5-HT2A receptors during stressful events forms associations that tune the brain to environmental cues that signal danger. It is speculated that life-threatening situations may activate this system and contribute to the symptoms associated with post-traumatic stress disorder (PTSD). 3,4-Methylenedioxymethamphetamine, which activates 5-HT2A receptors, has been successful in the treatment of PTSD and has recently achieved status as a breakthrough therapy. An argument is presented that 3,4-methylenedioxymethamphetamine may paradoxically act through these same 5-HT2A receptors to ameliorate the symptoms of PTSD. The central thematic contention is that a key role of serotonin may be to function as a stress detection and response system.


Subject(s)
Receptor, Serotonin, 5-HT2A/metabolism , Receptor, Serotonin, 5-HT2A/physiology , Stress Disorders, Post-Traumatic/metabolism , 3,4-Methylenedioxyamphetamine/analogs & derivatives , 3,4-Methylenedioxyamphetamine/pharmacology , Animals , Brain/metabolism , Cues , Gene Expression , Gene Expression Regulation/physiology , Humans , Learning , Serotonin/metabolism , Stress Disorders, Post-Traumatic/drug therapy , Stress Disorders, Post-Traumatic/physiopathology , Stress, Physiological/physiology
10.
Cereb Cortex ; 28(11): 3939-3950, 2018 11 01.
Article in English | MEDLINE | ID: mdl-29028939

ABSTRACT

Classic psychedelic drugs (serotonin 2A, or 5HT2A, receptor agonists) have notable effects on music listening. In the current report, blood oxygen level-dependent (BOLD) signal was collected during music listening in 25 healthy adults after administration of placebo, lysergic acid diethylamide (LSD), and LSD pretreated with the 5HT2A antagonist ketanserin, to investigate the role of 5HT2A receptor signaling in the neural response to the time-varying tonal structure of music. Tonality-tracking analysis of BOLD data revealed that 5HT2A receptor signaling alters the neural response to music in brain regions supporting basic and higher-level musical and auditory processing, and areas involved in memory, emotion, and self-referential processing. This suggests a critical role of 5HT2A receptor signaling in supporting the neural tracking of dynamic tonal structure in music, as well as in supporting the associated increases in emotionality, connectedness, and meaningfulness in response to music that are commonly observed after the administration of LSD and other psychedelics. Together, these findings inform the neuropsychopharmacology of music perception and cognition, meaningful music listening experiences, and altered perception of music during psychedelic experiences.


Subject(s)
Auditory Perception/drug effects , Auditory Perception/physiology , Brain/drug effects , Brain/physiology , Lysergic Acid Diethylamide/administration & dosage , Music , Receptor, Serotonin, 5-HT2A/physiology , Serotonin Receptor Agonists/administration & dosage , Brain Mapping , Double-Blind Method , Emotions/drug effects , Hallucinogens/administration & dosage , Humans , Ketanserin/administration & dosage , Magnetic Resonance Imaging , Memory/drug effects , Serotonin 5-HT2 Receptor Antagonists/administration & dosage
11.
Proc Natl Acad Sci U S A ; 113(17): 4853-8, 2016 Apr 26.
Article in English | MEDLINE | ID: mdl-27071089

ABSTRACT

Lysergic acid diethylamide (LSD) is the prototypical psychedelic drug, but its effects on the human brain have never been studied before with modern neuroimaging. Here, three complementary neuroimaging techniques: arterial spin labeling (ASL), blood oxygen level-dependent (BOLD) measures, and magnetoencephalography (MEG), implemented during resting state conditions, revealed marked changes in brain activity after LSD that correlated strongly with its characteristic psychological effects. Increased visual cortex cerebral blood flow (CBF), decreased visual cortex alpha power, and a greatly expanded primary visual cortex (V1) functional connectivity profile correlated strongly with ratings of visual hallucinations, implying that intrinsic brain activity exerts greater influence on visual processing in the psychedelic state, thereby defining its hallucinatory quality. LSD's marked effects on the visual cortex did not significantly correlate with the drug's other characteristic effects on consciousness, however. Rather, decreased connectivity between the parahippocampus and retrosplenial cortex (RSC) correlated strongly with ratings of "ego-dissolution" and "altered meaning," implying the importance of this particular circuit for the maintenance of "self" or "ego" and its processing of "meaning." Strong relationships were also found between the different imaging metrics, enabling firmer inferences to be made about their functional significance. This uniquely comprehensive examination of the LSD state represents an important advance in scientific research with psychedelic drugs at a time of growing interest in their scientific and therapeutic value. The present results contribute important new insights into the characteristic hallucinatory and consciousness-altering properties of psychedelics that inform on how they can model certain pathological states and potentially treat others.


Subject(s)
Brain Mapping/methods , Brain/drug effects , Consciousness/drug effects , Hallucinations/physiopathology , Hallucinogens/pharmacology , Lysergic Acid Diethylamide/pharmacology , Magnetic Resonance Imaging/methods , Magnetoencephalography/methods , Multimodal Imaging/methods , Brain/physiopathology , Cerebrovascular Circulation/drug effects , Connectome , Consciousness/physiology , Hallucinations/chemically induced , Humans , Nerve Net/drug effects , Oxygen/blood , Receptor, Serotonin, 5-HT2A/physiology , Serotonin 5-HT2 Receptor Agonists/pharmacology , Spin Labels , Synaptic Transmission/drug effects
12.
Proc Natl Acad Sci U S A ; 113(10): E1382-91, 2016 Mar 08.
Article in English | MEDLINE | ID: mdl-26903620

ABSTRACT

Higher-level cognitive processes strongly depend on a complex interplay between mediodorsal thalamus nuclei and the prefrontal cortex (PFC). Alteration of thalamofrontal connectivity has been involved in cognitive deficits of schizophrenia. Prefrontal serotonin (5-HT)2A receptors play an essential role in cortical network activity, but the mechanism underlying their modulation of glutamatergic transmission and plasticity at thalamocortical synapses remains largely unexplored. Here, we show that 5-HT2A receptor activation enhances NMDA transmission and gates the induction of temporal-dependent plasticity mediated by NMDA receptors at thalamocortical synapses in acute PFC slices. Expressing 5-HT2A receptors in the mediodorsal thalamus (presynaptic site) of 5-HT2A receptor-deficient mice, but not in the PFC (postsynaptic site), using a viral gene-delivery approach, rescued the otherwise absent potentiation of NMDA transmission, induction of temporal plasticity, and deficit in associative memory. These results provide, to our knowledge, the first physiological evidence of a role of presynaptic 5-HT2A receptors located at thalamocortical synapses in the control of thalamofrontal connectivity and the associated cognitive functions.


Subject(s)
Association Learning/physiology , Cerebral Cortex/physiology , Neuronal Plasticity/physiology , Receptor, Serotonin, 5-HT2A/physiology , Thalamus/physiology , Animals , Blotting, Western , Cerebral Cortex/metabolism , Electrophysiological Phenomena , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Fluorescence , Neuronal Plasticity/genetics , Prefrontal Cortex/metabolism , Prefrontal Cortex/physiology , Protein Kinase C/metabolism , Rats, Sprague-Dawley , Receptor, Serotonin, 5-HT2A/genetics , Receptor, Serotonin, 5-HT2A/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/physiology , Synapses/metabolism , Synapses/physiology , Synaptic Transmission/genetics , Synaptic Transmission/physiology , Thalamus/metabolism , Type C Phospholipases/metabolism
13.
Reprod Biomed Online ; 36(5): 560-567, 2018 May.
Article in English | MEDLINE | ID: mdl-29602729

ABSTRACT

Spermatozoa and neurones share similar membrane characteristics and features. Associations of multiple polymorphisms traditionally related to neurotransmission were investigated. Infertile men were grouped into controls with normospermia (n = 182) and idiopathic infertile men with asthenozoospermia (n = 103), and analysed as a case-control study and as a quantitative association of each genotype. Ten neurotransmission-associated genetic variants were mapped by SNP analysis using quantitative polymerase chain reaction with TaqMan probes. Men with HTR2A rs6313 had a higher risk of asthenozoospermia (OR = 2.14; P = 0.04). MAOA rs3788862 G carriers displayed an increased risk of asthenozoospermia (OR = 2.29; P = 0.02). The SLC18A1 rs1390938 G allele was more frequent among such cases (0.75 versus 0.87; P < 0.01 and P < 0.01 for Armitage trend test); for SLC18A1 rs2270641 P = 0.02 (case-control frequency) and P = 0.01 (Armitage trend test). MAOA rs3788862 was correlated with sperm motility (Spearman ρ = 0.14; P = 0.02); SLC18A1 rs1390938 was correlated with sperm count and motility (Spearman ρ = 0.20; P < 0.01). Gene polymorphisms of HTR2A, MAOA and SLC18A1, related to neurotransmission, are individually associated with asthenozoospermia through variation in sperm count and motility, without detectable allelic or genotype interaction.


Subject(s)
Asthenozoospermia/genetics , Monoamine Oxidase/genetics , Receptor, Serotonin, 5-HT2A/genetics , Sperm Count , Sperm Motility/genetics , Vesicular Monoamine Transport Proteins/genetics , Case-Control Studies , Genotype , Humans , Male , Monoamine Oxidase/physiology , Polymorphism, Genetic , Receptor, Serotonin, 5-HT2A/physiology , Vesicular Monoamine Transport Proteins/physiology
14.
Pharmacol Res ; 118: 93-103, 2017 04.
Article in English | MEDLINE | ID: mdl-27663259

ABSTRACT

Antidepressants are one of the first line treatments for neuropathic pain but their use is limited by the incidence and severity of side effects of tricyclics and the weak effectiveness of selective serotonin reuptake inhibitors (SSRIs). Serotonin type 2A (5-HT2A) receptors interact with PDZ proteins that regulate their functionality and SSRI efficacy to alleviate pain. We investigated whether an interfering peptide (TAT-2ASCV) disrupting the interaction between 5-HT2A receptors and associated PDZ proteins would improve the treatment of traumatic neuropathic allodynia. Tactile allodynia was assessed in spinal nerve ligation-induced neuropathic pain in rats using von Frey filaments after acute treatment with TAT-2ASCV and/or 5-HT2A receptor agonist, alone or in combination with repeated treatment with fluoxetine. In vivo microdialysis was performed in order to examine the involvement of GABA in TAT-2ASCV/fluoxetine treatment-associated analgesia. TAT-2ASCV (100ng, single i.t. injection) improved SNL-induced tactile allodynia by increasing 5-HT2A receptor responsiveness to endogenous 5-HT. Fluoxetine alone (10mg/kg, five i.p. injections) slightly increased tactile thresholds and its co-administration with TAT-2ASCV (100ng, single i.t. injection) further enhanced the anti-allodynic effect. This effect depends on the integrity of descending serotonergic bulbospinal pathways and spinal release of GABA. The anti-allodynic effect of fluoxetine can be enhanced by disrupting 5-HT2A receptor-PDZ protein interactions. This enhancement depends on 5-HT2A receptor activation, spinal GABA release and GABAA receptor activation.


Subject(s)
Fluoxetine/therapeutic use , Hyperalgesia/drug therapy , Neuralgia/drug therapy , Receptor, Serotonin, 5-HT2A/physiology , gamma-Aminobutyric Acid/metabolism , Animals , Drug Synergism , Male , Rats , Rats, Sprague-Dawley , Receptors, GABA-A/physiology , Spinal Cord/physiology
15.
Epilepsy Behav ; 73: 111-118, 2017 08.
Article in English | MEDLINE | ID: mdl-28624721

ABSTRACT

Cannabidiol (CBD) is a phytocannabinoid that has demonstrated anticonvulsant efficacy in several animal models of seizure. The current experiment validated CBD's anticonvulsant effect using the acute pentylenetetrazol (PTZ) model. Furthermore, it tested whether CBD reduces seizure activity by interacting with either the serotonergic 5HT1A or 5HT2A receptor. 120 male adolescent Wistar-Kyoto rats were randomly assigned to 8 treatment groups in two consecutive experiments. In both experiments, subjects received either CBD (100mg/kg) or vehicle 60min prior to seizure testing. In Experiment 1, subjects received either WAY-100635 (1mg/kg), a 5HT1A antagonist, or saline vehicle injection 80min prior to seizure testing. In Experiment 2, subjects received either MDL-100907 (0.3mg/kg), a specific 5HT2A antagonist, or 40% DMSO vehicle 80min prior to seizure testing. 85mg/kg of PTZ was administered to induce seizure, and behavior was recorded for 30min. Seizure behaviors were subsequently coded using a 5-point scale of severity. Across both experiments, subjects in the vehicle control groups exhibited high levels of seizure activity and mortality. In both experiments, CBD treatment significantly attenuated seizure activity. Pre-treatment with either WAY-100635 or MDL-100907 did not block CBD's anticonvulsant effect. WAY-100635 administration, by itself, also led to a significant attenuation of seizure activity. These results do not support the hypothesis that CBD attenuates seizure activity through activation of the 5HT1A or 5HT2A receptor. While this work further confirms the anticonvulsant efficacy of CBD and supports its application in the treatment of human seizure disorders, additional research on CBD's mechanism of action must be conducted.


Subject(s)
Anticonvulsants/therapeutic use , Cannabidiol/therapeutic use , Receptor, Serotonin, 5-HT1A/physiology , Receptor, Serotonin, 5-HT2A/physiology , Seizures/drug therapy , Animals , Fluorobenzenes/pharmacology , Male , Pentylenetetrazole/toxicity , Piperazines/pharmacology , Piperidines/pharmacology , Pyridines/pharmacology , Rats , Rats, Inbred WKY , Seizures/chemically induced , Seizures/metabolism , Serotonin 5-HT1 Receptor Antagonists/pharmacology , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Treatment Outcome
16.
Int J Urol ; 23(11): 946-951, 2016 11.
Article in English | MEDLINE | ID: mdl-27531585

ABSTRACT

OBJECTIVES: To examine the effect of 5-hydroxytryptamine (5-HT; serotonin) on the contractile properties of the urothelium and lamina propria, as a better understanding of bladder physiology might aid the development of new treatments. METHODS: Strips of porcine urothelium and lamina propria were suspended in gassed Krebs-bicarbonate solution, and cumulative concentration-response curves for 5-HT were generated in the absence and presence of 5-HT antagonists, Nω-nitro-l-arginine and indomethacin. Responses to α-methyl-5-HT were also examined. RESULTS: Strips of urothelium/lamina propria developed spontaneous contractions, whereas the addition of 5-HT induced concentration-dependent increases in contractile tone with maximal contractions of 50.43 ± 2.78 mN/g tissue weight (n = 100). Tonic contractions to 5-HT were unchanged in the presence of Nω-nitro-l-arginine (100 µmol/L) or indomethacin (5 µmol/L). Selective concentrations of the antagonists methiothepin (5-HT1&2 , 100 nmol/L), RS102221 (5-HT2C , 30 nmol/L), ondansetron (5-HT3 , 30 nmol/L), GR113808, (5-HT4 , 100 nmol/L), SB699551 (5-HT5 , 10 nmol/L), SB399885 (5-HT6 , 100 nmol/L) and SB269970 (5-HT7 , 10 nmol/L) did not influence responses to 5-HT. However, the 5-HT2A antagonist, ketanserin (30-300 µmol/L), caused a shift of the 5-HT curve yielding an affinity estimate of 7.9. CONCLUSIONS: The results show that contractile responses of the urothelium/lamina propria to 5-HT are predominantly mediated through the 5-HT2A receptor.


Subject(s)
Muscle Contraction , Receptor, Serotonin, 5-HT2A/physiology , Urothelium/physiology , Animals , Mucous Membrane , Serotonin Antagonists , Swine
17.
J Neurochem ; 134(4): 704-16, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26031442

ABSTRACT

We have previously demonstrated that nicotine withdrawal produces depression-like behavior and that serotonin (5-HT)2A/2C receptor ligands modulate that mood-like state. In the present study we aimed to identify the mechanisms (changes in radioligand binding, transcription or RNA-editing) related to such a behavioral outcome. Rats received vehicle or nicotine (0.4 mg/kg, s.c.) for 5 days in home cages. Brain 5-HT2A/2C receptors were analyzed on day 3 of nicotine withdrawal. Nicotine withdrawal increased [(3)H]ketanserin binding to 5-HT2A receptors in the ventral tegmental area and ventral dentate gyrus, yet decreased binding in the nucleus accumbens shell. Reduction in [(3)H]mesulergine binding to 5-HT2C receptors was seen in the ventral dentate gyrus. Profound decrease in the 5-HT2A receptor transcript level was noted in the hippocampus and ventral tegmental area. Out of five 5-HT2C receptor mRNA editing sites, deep sequencing data showed a reduction in editing at the E site and a trend toward reduction at the C site in the hippocampus. In the ventral tegmental area, a reduction for the frequency of CD 5-HT2C receptor transcript was seen. These results show that the reduction in the 5-HT2A receptor transcript level may be an auto-regulatory response to the increased receptor density in the hippocampus and ventral tegmental area during nicotine withdrawal, while decreased 5-HT2C receptor mRNA editing may explain the reduction in receptor labeling in the hippocampus. Serotonin (5-HT)2A/2C receptor ligands alleviate depression-like state in nicotine-withdrawn rats. Here, we show that the reduction in 5-HT2A receptor transcript level may be an auto-regulatory response to the increased receptor number in the hippocampus and ventral tegmental area during nicotine withdrawal, while attenuated 5-HT2C receptor mRNA editing in the hippocampus might explain reduced inverse agonist binding to 5-HT2C receptor and suggest a shift toward a population of more active receptors. 5-HT, serotonin; 5-HT2A R, 5-HT2A receptor; 5-HT2C R, 5-HT2C receptor.


Subject(s)
Brain/metabolism , Nicotine/adverse effects , Receptor, Serotonin, 5-HT2A/physiology , Receptor, Serotonin, 5-HT2C/physiology , Substance Withdrawal Syndrome/metabolism , Animals , Brain/drug effects , Immobilization/psychology , Male , Nicotine/administration & dosage , Rats , Rats, Wistar , Substance Withdrawal Syndrome/psychology
18.
Mol Pharmacol ; 86(3): 275-83, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24989932

ABSTRACT

Serotonin (5-HT) interacts with a wide variety of 5-HT receptors (5-HTR) of which 5-HT2AR plays an important target for antidepressant and atypical antipsychotic drugs. The carboxyl-terminal tail of 5-HT2AR encodes a motif that mediates interactions with PSD-95/disc large/zona occludens (PDZ) domain-containing proteins. In the present study, we found that 5-HT2AR interacts with synapse-associated protein 97 (SAP97; also known as DLG1) by coimmunoprecipitation in human embryonic 293 (HEK 293) cells and cortical brain lysates. We found that 5-HT2AR expression results in the recruitment of SAP97 from the cytosol to the plasma membrane and that this recruitment is dependent on an intact 5-HT2AR PDZ binding motif. We also show that 5-HT2AR interacts with SAP97 using bioluminescence energy transfer and that overexpression of SAP97 retards 5-HT2AR endocytosis, while single hairpin RNA knockdown facilitates 5-HT2AR internalization. The knockdown of SAP97 in HEK 293 cells results in a reduction in the maximum efficacy for 5-HT2AR-stimulated inositol phosphate formation and that the deletion of the 5-HT2AR PDZ motif also impairs 5-HT2AR signaling. Similarly to what has been observed for the corticotropin-releasing factor receptor 1 (CRFR1), SAP97 expression is essential for 5-HT2AR-stimulated extracellular-regulated protein kinase 1/2 (ERK1/2) phosphorylation by a PDZ interaction-independent mechanism. Moreover, we find that SAP97 is not responsible for CRFR1-mediated sensitization of 5-HT2AR signaling. Taken together, our studies show that SAP97 plays a conserved role in regulating 5-HT2AR endocytosis and ERK1/2 signaling, but plays a novel role in regulating 5-HT2AR G protein coupling.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Membrane Proteins/physiology , Receptor, Serotonin, 5-HT2A/physiology , Cell Membrane/metabolism , Discs Large Homolog 1 Protein , Endocytosis , Enzyme Activation , Humans , Inositol Phosphates/biosynthesis , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Phosphorylation , Protein Binding , Protein Structure, Tertiary , Protein Transport , Receptors, Corticotropin-Releasing Hormone/metabolism , Signal Transduction
19.
J Pharmacol Exp Ther ; 350(3): 605-14, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24947464

ABSTRACT

Brexpiprazole (OPC-34712, 7-{4-[4-(1-benzothiophen-4-yl)piperazin-1-yl]butoxy}quinolin-2(1H)-one) is a novel serotonin-dopamine activity modulator with partial agonist activity at serotonin 1A (5-HT1A) and D2/3 receptors, combined with potent antagonist effects on 5-HT2A, α1B-, and α2C-adrenergic receptors. Brexpiprazole inhibited conditioned avoidance response (ED50 = 6.0 mg/kg), apomorphine- or d-amphetamine-induced hyperactivity (ED50 = 2.3 and 0.90, respectively), and apomorphine-induced stereotypy (ED50 = 2.9) in rats at clinically relevant D2 receptor occupancies. Brexpiprazole also potently inhibited apomorphine-induced eye blinking in monkeys. The results suggest that brexpiprazole has antipsychotic potential. Brexpiprazole induced catalepsy (ED50 = 20) well above clinically relevant D2 receptor occupancies, suggesting a low risk for extrapyramidal side effects. Subchronic treatment with phencyclidine (PCP) induced cognitive impairment in both novel object recognition (NOR) and attentional set-shifting (ID-ED) tests in rats. Brexpiprazole reversed the PCP-induced cognitive impairment in the NOR test at 1.0 and 3.0 mg/kg, and in the ID-ED test at 1.0 mg/kg. However, aripiprazole (10 mg/kg) was ineffective in both tests, despite achieving relevant D2 occupancies. In the NOR test, the 5-HT1A agonist buspirone and the 5-HT2A antagonist M100907 [(R)-(2,3-dimethoxyphenyl)[1-(4-fluorophenethyl)piperidin-4-yl]methanol] partially but significantly reversed PCP-induced impairment. Furthermore, the effect of brexpiprazole was reversed by cotreatment with the 5-HT1A antagonist WAY100635 (N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide maleate). The results indicate that brexpiprazole has antipsychotic-like activity and robust efficacy in relevant models of cognitive impairment associated with schizophrenia. The effects of brexpiprazole in the cognitive tests are superior to those of aripiprazole. We propose that the pharmacologic profile of brexpiprazole be based on its balanced effects on 5-HT1A, D2, and 5-HT2A receptors, with possible modulating activity through additional monoamine receptors.


Subject(s)
Antipsychotic Agents/pharmacology , Avoidance Learning/drug effects , Cognition/drug effects , Dopamine/physiology , Serotonin/physiology , Animals , Avoidance Learning/physiology , Cognition/physiology , Dose-Response Relationship, Drug , Macaca fascicularis , Male , Motor Activity/drug effects , Motor Activity/physiology , Rats , Rats, Wistar , Receptor, Serotonin, 5-HT1A/physiology , Receptor, Serotonin, 5-HT2A/physiology , Receptors, Dopamine D2/physiology , Treatment Outcome
20.
Headache ; 54(1): 204-10, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24117004

ABSTRACT

The pathogenesis of medication overuse headache is unclear. Clinical and preclinical studies have consistently demonstrated increased excitability of neurons in the cerebral cortex and trigeminal system after medication overuse. Cortical hyperexcitability may facilitate the development of cortical spreading depression, while increased excitability of trigeminal neurons may facilitate the process of peripheral and central sensitization. These changes may be secondary to the derangement of central, probably serotonin (5-HT)-, and perhaps endocannabinoid-dependent or other, modulating systems. Increased expression of excitatory cortical 5-HT2A receptors may increase the susceptibility to developing cortical spreading depression, an analog of migraine aura. A reduction of diffuse noxious inhibitory controls may facilitate the process of central sensitization, activate the nociceptive facilitating system, or promote similar molecular mechanisms to those involved in kindling. Low 5-HT levels also increase the expression and release of calcitonin gene-related peptide from the trigeminal ganglion and sensitize trigeminal nociceptors. Thus, derangement of central modulation of the trigeminal system as a result of chronic medication use may increase sensitivity to pain perception and foster or reinforce medication overuse headache.


Subject(s)
Headache Disorders, Secondary/chemically induced , Headache Disorders, Secondary/physiopathology , Analgesics/administration & dosage , Analgesics/adverse effects , Calcitonin Gene-Related Peptide/physiology , Headache Disorders, Secondary/diagnosis , Humans , Receptor, Serotonin, 5-HT2A/physiology , Trigeminal Ganglion/drug effects , Trigeminal Ganglion/physiology
SELECTION OF CITATIONS
SEARCH DETAIL