Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 349
Filter
Add more filters

Publication year range
1.
FASEB J ; 38(11): e23697, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38842874

ABSTRACT

Diabetic retinopathy (DR) is characterized by chronic, low-grade inflammation. This state may be related to the heightened production of neutrophil extracellular traps (NETs) induced by high glucose (HG). Human cathelicidin antimicrobial peptide (LL37) is an endogenous ligand of G protein-coupled chemoattractant receptor formyl peptide receptor 2 (FPR2), expressed on neutrophils and facilitating the formation and stabilization of the structure of NETs. In this study, we detected neutrophils cultured under different conditions, the retinal tissue of diabetic mice, and fibrovascular epiretinal membranes (FVM) samples of patients with proliferative diabetic retinopathy (PDR) to explore the regulating effect of LL37/FPR2 on neutrophil in the development of NETs during the process of DR. Specifically, HG or NG with LL37 upregulates the expression of FPR2 in neutrophils, induces the opening of mitochondrial permeability transition pore (mPTP), promotes the increase of reactive oxygen species and mitochondrial ROS, and then leads to the rise of NET production, which is mainly manifested by the release of DNA reticular structure and the increased expression of NETs-related markers. The PI3K/AKT signaling pathway was activated in neutrophils, and the phosphorylation level was enhanced by FPR2 agonists in vitro. In vivo, increased expression of NETs markers was detected in the retina of diabetic mice and in FVM, vitreous fluid, and serum of PDR patients. Transgenic FPR2 deletion led to decreased NETs in the retina of diabetic mice. Furthermore, in vitro, inhibition of the LL37/FPR2/mPTP axis and PI3K/AKT signaling pathway decreased NET production induced by high glucose. These results suggested that FPR2 plays an essential role in regulating the production of NETs induced by HG, thus may be considered as one of the potential therapeutic targets.


Subject(s)
Antimicrobial Cationic Peptides , Cathelicidins , Diabetic Retinopathy , Extracellular Traps , Mice, Inbred C57BL , Neutrophils , Receptors, Formyl Peptide , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/pathology , Extracellular Traps/metabolism , Animals , Receptors, Formyl Peptide/metabolism , Receptors, Formyl Peptide/genetics , Humans , Neutrophils/metabolism , Mice , Antimicrobial Cationic Peptides/metabolism , Male , Receptors, Lipoxin/metabolism , Receptors, Lipoxin/genetics , Diabetes Mellitus, Experimental/metabolism , Signal Transduction , Reactive Oxygen Species/metabolism , Female , Middle Aged
2.
Nature ; 574(7776): 57-62, 2019 10.
Article in English | MEDLINE | ID: mdl-31534221

ABSTRACT

The causative agent of plague, Yersinia pestis, uses a type III secretion system to selectively destroy immune cells in humans, thus enabling Y. pestis to reproduce in the bloodstream and be transmitted to new hosts through fleabites. The host factors that are responsible for the selective destruction of immune cells by plague bacteria are unknown. Here we show that LcrV, the needle cap protein of the Y. pestis type III secretion system, binds to the N-formylpeptide receptor (FPR1) on human immune cells to promote the translocation of bacterial effectors. Plague infection in mice is characterized by high mortality; however, Fpr1-deficient mice have increased survival and antibody responses that are protective against plague. We identified FPR1R190W as a candidate resistance allele in humans that protects neutrophils from destruction by the Y. pestis type III secretion system. Thus, FPR1 is a plague receptor on immune cells in both humans and mice, and its absence or mutation provides protection against Y. pestis. Furthermore, plague selection of FPR1 alleles appears to have shaped human immune responses towards other infectious diseases and malignant neoplasms.


Subject(s)
Macrophages/metabolism , Neutrophils/metabolism , Plague/microbiology , Receptors, Formyl Peptide/metabolism , Yersinia pestis/metabolism , Alleles , Animals , Antigens, Bacterial/metabolism , Bacterial Adhesion , CRISPR-Cas Systems , Chemotaxis/immunology , Disease Models, Animal , Female , HEK293 Cells , Humans , Macrophages/cytology , Macrophages/immunology , Macrophages/microbiology , Male , Mice , Mice, Inbred C57BL , Neutrophils/cytology , Neutrophils/immunology , Neutrophils/microbiology , Plague/immunology , Plague/prevention & control , Polymorphism, Single Nucleotide/genetics , Pore Forming Cytotoxic Proteins/metabolism , Receptors, Formyl Peptide/antagonists & inhibitors , Receptors, Formyl Peptide/deficiency , Receptors, Formyl Peptide/genetics , Type III Secretion Systems/drug effects , U937 Cells , Yersinia pestis/chemistry , Yersinia pestis/immunology , Yersinia pestis/pathogenicity
3.
Int J Mol Sci ; 25(18)2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39337294

ABSTRACT

Alcohol-associated liver disease (ALD) is a prevalent medical problem with limited effective treatment strategies. Although many biological processes contributing to ALD have been elucidated, a complete understanding of the underlying mechanisms is still lacking. The current study employed a proteomic approach to identify hepatic changes resulting from ethanol (EtOH) consumption and the genetic ablation of the formyl peptide receptor 2 (FPR2), a G-protein coupled receptor known to regulate multiple signaling pathways and biological processes, in a mouse model of ALD. Since previous research from our team demonstrated a notable reduction in hepatic FPR2 protein levels in patients with alcohol-associated hepatitis (AH), the proteomic changes in the livers of Fpr2-/- EtOH mice were compared to those observed in patients with AH in order to identify common hepatic proteomic alterations. Several pathways linked to exacerbated ALD in Fpr2-/- EtOH mice, as well as hepatic protein changes resembling those found in patients suffering from AH, were identified. These alterations included decreased levels of coagulation factors F2 and F9, as well as reduced hepatic levels of glutamate-cysteine ligase catalytic subunit (GCLC) and total glutathione in Fpr2-/- EtOH compared to WT EtOH mice. In conclusion, the data suggest that FPR2 may play a regulatory role in hepatic blood coagulation and the antioxidant system, both in a pre-clinical model of ALD and in human AH, however further experiments are required to validate these findings.


Subject(s)
Liver , Mice, Knockout , Proteomics , Receptors, Formyl Peptide , Animals , Receptors, Formyl Peptide/metabolism , Receptors, Formyl Peptide/genetics , Mice , Liver/metabolism , Liver/pathology , Proteomics/methods , Humans , Male , Disease Models, Animal , Alcohol Drinking/adverse effects , Mice, Inbred C57BL , Proteome/metabolism , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/pathology , Liver Diseases, Alcoholic/genetics
4.
FASEB J ; 36(11): e22579, 2022 11.
Article in English | MEDLINE | ID: mdl-36183323

ABSTRACT

Abdominal aortic aneurysm (AAA) formation is characterized by inflammation, leukocyte infiltration, and vascular remodeling. Resolvin D1 (RvD1) is derived from ω-3 polyunsaturated fatty acids and is involved in the resolution phase of chronic inflammatory diseases. The aim of this study was to decipher the protective role of RvD1 via formyl peptide receptor 2 (FPR2) receptor signaling in attenuating abdominal aortic aneurysms (AAA). The elastase-treatment model of AAA in C57BL/6 (WT) mice and human AAA tissue was used to confirm our hypotheses. Elastase-treated FPR2-/- mice had a significant increase in aortic diameter, proinflammatory cytokine production, immune cell infiltration (macrophages and neutrophils), elastic fiber disruption, and decrease in smooth muscle cell α-actin expression compared to elastase-treated WT mice. RvD1 treatment attenuated AAA formation, aortic inflammation, and vascular remodeling in WT mice, but not in FPR2-/- mice. Importantly, human AAA tissue demonstrated significantly decreased FPR2 mRNA expression compared to non-aneurysm human aortas. Mechanistically, RvD1/FPR2 signaling mitigated p47phox phosphorylation and prevented hallmarks of ferroptosis, such as lipid peroxidation and Nrf2 translocation, thereby attenuating HMGB1 secretion. Collectively, this study demonstrates RvD1-mediated immunomodulation of FPR2 signaling on macrophages to mitigate ferroptosis and HMGB1 release, leading to resolution of aortic inflammation and remodeling during AAA pathogenesis.


Subject(s)
Aortic Aneurysm, Abdominal , Ferroptosis , HMGB1 Protein , Actins/metabolism , Animals , Aortic Aneurysm, Abdominal/metabolism , Cytokines/metabolism , Disease Models, Animal , Docosahexaenoic Acids/metabolism , HMGB1 Protein/metabolism , Humans , Inflammation/metabolism , Macrophages/metabolism , Mice , Mice, Inbred C57BL , NF-E2-Related Factor 2/metabolism , Pancreatic Elastase/metabolism , RNA, Messenger/metabolism , Receptors, Formyl Peptide/genetics , Receptors, Formyl Peptide/metabolism , Receptors, Lipoxin , Vascular Remodeling
5.
Ophthalmic Res ; 66(1): 681-691, 2023.
Article in English | MEDLINE | ID: mdl-36805961

ABSTRACT

INTRODUCTION: In proliferative diabetic retinopathy (PDR), retinal neovascularization is the essential pathogenic process that is linked to endothelial-to-mesenchymal transition (EndoMT) induced by high glucose (HG). This pathophysiological process may be regulated by a G-protein-coupled chemoattractant receptor FPR2 (mouse Fpr2), involved in inflammatory cell migration and proliferation. In the current study, we investigated the role of Fpr2 in regulating EndoMT and the underlying mechanisms during diabetic retinopathy progression. METHODS: FPR2 agonist or inhibitor was added to human microvascular endothelial cells (HMECs) exposed to normal glucose or HG. Morphologic, phenotypic, and functional changes of HMECs as well as the formation of microvasculature related to EndoMT were assessed. EndoMT biomarkers were detected in the retinal tissues of diabetic mice and fibrovascular epiretinal membranes (FVMs) from patients with PDR. RESULTS: HG upregulated FPR2 in HMECs, which triggered morphological changes, and the cells acquired mesenchymal phenotype, with enhanced cell migration, viability, and angiogenic process shown by tube formation and aortic ring sprouting. Inhibition of FPR2 attenuated HG-induced EndoMT and endothelial cell migration to form vessel-like tube structures. RNA sequence and protein analysis further revealed that inhibition of FPR2 decreased the expression of genes associated with EndoMT. ERK1/2 and P38 signaling pathway was activated in HMECs, promoting neovascularization in HG-induced EndoMT of HMECs. In vivo, increased expression of mesenchymal markers was detected in the retina of diabetic mice and FVMs from patients with PDR. FPR2 deficiency was associated with diminished EndoMT-related phenotypic changes in the retina of diabetic mice. CONCLUSIONS: FPR2 is actively involved in the progression of EndoMT that may contribute to the pathogenesis of PDR. Thus, FPR2 may be a potential therapeutic target for PDR.


Subject(s)
Diabetic Retinopathy , Endothelial-Mesenchymal Transition , Receptors, Formyl Peptide , Animals , Humans , Mice , Diabetes Mellitus, Experimental/complications , Diabetic Retinopathy/pathology , Endothelial Cells/metabolism , Glucose , GTP-Binding Proteins/metabolism , Receptors, Formyl Peptide/genetics , Receptors, Formyl Peptide/metabolism
6.
Proc Natl Acad Sci U S A ; 117(25): 14354-14364, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32513697

ABSTRACT

Ischemic injury initiates a sterile inflammatory response that ultimately participates in the repair and recovery of tissue perfusion. Macrophages are required for perfusion recovery during ischemia, in part because they produce growth factors that aid in vascular remodeling. The input signals governing this pro-revascularization phenotype remain of interest. Here we found that hindlimb ischemia increases levels of resolvin D1 (RvD1), an inflammation-resolving lipid mediator that targets macrophages via its receptor, ALX/FPR2. Exogenous RvD1 enhances perfusion recovery during ischemia, and mice deficient in Alx/Fpr2 have an endogenous defect in this process. Mechanistically, RNA sequencing revealed that RvD1 induces a transcriptional program in macrophages characteristic of a pro-revascularization phenotype. Vascularization of ischemic skeletal muscle, as well as cutaneous wounds, is impaired in mice with myeloid-specific deficiency of Alx/Fpr2, and this is associated with altered expression of pro-revascularization genes in skeletal muscle and macrophages isolated from skeletal muscle. Collectively, these results uncover a role of ALX/FPR2 in revascularization that may be amenable to therapeutic targeting in diseases associated with altered tissue perfusion and repair.


Subject(s)
Docosahexaenoic Acids/metabolism , Ischemia/immunology , Neovascularization, Physiologic/immunology , Receptors, Formyl Peptide/metabolism , Receptors, Lipoxin/metabolism , Wound Healing/immunology , Animals , Cells, Cultured , Disease Models, Animal , Female , Gene Knockout Techniques , Humans , Ischemia/pathology , Macrophages/immunology , Macrophages/metabolism , Male , Mice , Mice, Knockout , Muscle, Skeletal/blood supply , Muscle, Skeletal/immunology , Muscle, Skeletal/pathology , Primary Cell Culture , RNA-Seq , Receptors, Formyl Peptide/genetics , Receptors, Lipoxin/genetics , Signal Transduction/immunology , Skin/blood supply , Skin/immunology , Skin/injuries , Skin/pathology , Transcription, Genetic/immunology
7.
Breast Cancer Res ; 24(1): 25, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35382852

ABSTRACT

BACKGROUND: Despite advancements in therapies, brain metastasis in patients with triple negative subtype of breast cancer remains a therapeutic challenge. Activated microglia are often observed in close proximity to, or within, malignant tumor masses, suggesting a critical role that microglia play in brain tumor progression. Annexin-A1 (ANXA1), a glucocorticoid-regulated protein with immune-regulatory properties, has been implicated in the growth and metastasis of many cancers. Its role in breast cancer-microglia signaling crosstalk is not known. METHODS: The importance of microglia proliferation and activation in breast cancer to brain metastasis was evaluated in MMTV-Wnt1 spontaneous mammary tumor mice and BALBc mice injected with 4T1 murine breast cancer cells into the carotid artery using flow cytometry. 4T1 induced-proliferation and migration of primary microglia and BV2 microglia cells were evaluated using 2D and coculture transwell assays. The requirement of ANXA1 in these functions was examined using a Crispr/Cas9 deletion mutant of ANXA1 in 4T1 breast cancer cells as well as BV2 microglia. Small molecule inhibition of the ANXA1 receptor FPR1 and FPR2 were also examined. The signaling pathways involved in these interactions were assessed using western blotting. The association between lymph node positive recurrence-free patient survival and distant metastasis-free patient survival and ANXA1 and FPR1 and FPR2 expression was examined using TCGA datasets. RESULTS: Microglia activation is observed prior to brain metastasis in MMTV-Wnt1 mice with primary and secondary metastasis in the periphery. Metastatic 4T1 mammary cancer cells secrete ANXA1 to promote microglial migration, which in turn, enhances tumor cell migration. Silencing of ANXA1 in 4T1 cells by Crispr/Cas9 deletion, or using inhibitors of FPR1 or FPR2 inhibits microglia migration and leads to reduced activation of STAT3. Finally, elevated ANXA1, FPR1 and FPR2 is significantly associated with poor outcome in lymph node positive patients, particularly, for distant metastasis free patient survival. CONCLUSIONS: The present study uncovered a network encompassing autocrine/paracrine ANXA1 signaling between metastatic mammary cancer cells and microglia that drives microglial recruitment and activation. Inhibition of ANXA1 and/or its receptor may be therapeutically rewarding in the treatment of breast cancer and secondary metastasis to the brain.


Subject(s)
Annexin A1 , Breast Neoplasms , Microglia , Receptors, Formyl Peptide , Animals , Annexin A1/genetics , Brain/pathology , Breast Neoplasms/pathology , Female , Humans , Mice , Microglia/metabolism , Receptors, Formyl Peptide/genetics , Receptors, Formyl Peptide/metabolism , Receptors, Lipoxin
8.
FASEB J ; 35(2): e21315, 2021 02.
Article in English | MEDLINE | ID: mdl-33538366

ABSTRACT

Cataracts are a common consequence of aging; however, pathogenesis remains poorly understood. Here, we observed that after 3 months of age mice lacking the G protein-coupled leukocyte chemotactic receptor Fpr1 (N-formyl peptide receptor 1) began to develop bilateral posterior subcapsular cataracts that progressed to lens rupture and severe degeneration, without evidence of either systemic or local ocular infection or inflammation. Consistent with this, Fpr1 was detected in both mouse and human lens in primary lens epithelial cells (LECs), the only cell type present in the lens; however, expression was confined to subcapsular LECs located along the anterior hemispheric surface. To maximize translucency, LECs at the equator proliferate and migrate posteriorly, then differentiate into lens fiber cells by nonclassical apoptotic signaling, which results in loss of nuclei and other organelles, including mitochondria which are a rich source of endogenous N-formyl peptides. In this regard, denucleation and posterior migration of LECs were abnormal in lenses from Fpr1-/- mice, and direct stimulation of LECs with the prototypic N-formyl peptide agonist fMLF promoted apoptosis. Thus, Fpr1 is repurposed beyond its immunoregulatory role in leukocytes to protect against cataract formation and lens degeneration during aging.


Subject(s)
Aging/metabolism , Aging/pathology , Cataract/metabolism , Receptors, Formyl Peptide/metabolism , Animals , Cataract/pathology , Cell Differentiation/physiology , Cell Proliferation/genetics , Cell Proliferation/physiology , Flow Cytometry , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Humans , Immunohistochemistry , Magnetic Resonance Imaging , Mice , Mice, Inbred C57BL , Receptors, Formyl Peptide/genetics , Ultrasonography
9.
J Pharmacol Sci ; 148(1): 56-64, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34924130

ABSTRACT

Acute kidney injury (AKI) is a serious complication in critically ill patients. Accumulating evidences indicated that macrophages play an important pro-inflammatory role in AKI and isoliquiritigenin (ISL) can inhibit macrophagic inflammation, but its role in AKI and the underlying mechanism are unknown. The present study aims to investigate the renoprotective effect of ISL on AKI and the role of Formyl peptide receptors 2 (FPR2) in this process. In this study, cisplatin-induced AKI model and lipopolysaccharide-induced macrophage inflammatory model were employed to perform the in vivo and in vitro experiments. The results showed that ISL strongly relieved kidney injury and inhibited renal inflammation in vivo and suppress macrophagic inflammatory response in vitro. Importantly, it was found that FPR2 was significantly upregulated compared to the control group in AKI and LPS-induced macrophage, whereas it was strongly suppressed by ISL. Interestingly, overexpression of FPR2 with transfection of pcDNA3.1-FPR2 effectively reversed the anti-inflammatory effect of ISL in macrophage, suggesting that FPR2 may be the potential target for ISL to prevent inflammation and improve kidney injury of AKI. Take together, these findings indicated that ISL improved cisplantin-induced kidney injury by inhibiting FPR2 involved macrophagic inflammation, which may provide a potential therapeutic option for AKI.


Subject(s)
Acute Kidney Injury/genetics , Acute Kidney Injury/prevention & control , Chalcones/pharmacology , Chalcones/therapeutic use , Cisplatin/adverse effects , Macrophages/metabolism , Receptors, Formyl Peptide/antagonists & inhibitors , Receptors, Lipoxin/antagonists & inhibitors , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Animals , Cells, Cultured , Chalcones/isolation & purification , Gene Expression/drug effects , Glycyrrhiza/chemistry , Inflammation , Male , Mice, Inbred C57BL , Molecular Targeted Therapy , Phytotherapy , Receptors, Formyl Peptide/genetics , Receptors, Formyl Peptide/metabolism , Receptors, Formyl Peptide/physiology , Receptors, Lipoxin/genetics , Receptors, Lipoxin/metabolism , Receptors, Lipoxin/physiology , Up-Regulation/drug effects
10.
Eur J Oral Sci ; 130(4): e12883, 2022 08.
Article in English | MEDLINE | ID: mdl-35808844

ABSTRACT

Chronic inflammatory responses can inflict permanent damage to host tissues. Specialized pro-resolving mediators downregulate inflammation but also can have other functions. The aim of this study was to examine whether oral epithelial cells express the receptors FPR2/ALX and DRV1/GPR32, which bind RvD1n-3 DPA , a recently described pro-resolving mediator derived from omega-3 docosapentaenoic acid (DPA), and whether RvD1n-3 DPA exposure induced significant responses in these cells. Gingival biopsies were stained using antibodies to FPR2/ALX and DRV1/GPR32. Expression of FPR2/ALX and DRV1/GPR32 was examined in primary oral epithelial cells by qRT-PCR, flow cytometry, and immunofluorescence. The effect of RvD1n-3 DPA on intracellular calcium mobilization and transcription of beta-defensins 1 and 2, and cathelicidin was evaluated by qRT-PCR. FPR2/ALX and DRV1/GPR32 were expressed by gingival keratinocytes in situ. In cultured oral epithelial cells, FPR2/ALX was detected on the cell surface, whereas FPR2/ALX and DRV1/GPR32 were detected intracellularly. Exposure to RvD1n-3 DPA induced intracellular calcium mobilization, FPR2/ALX internalization, DRV1/GPR32 translocation to the nucleus, and significantly increased expression of genes coding for beta-defensin 1, beta-defensin 2, and cathelicidin. This shows that the signal constituted by RvD1n-3 DPA is recognized by oral keratinocytes and that this can strengthen the antimicrobial and regulatory potential of the oral epithelium.


Subject(s)
Receptors, Formyl Peptide , beta-Defensins , Calcium , Docosahexaenoic Acids/pharmacology , Epithelial Cells/metabolism , Humans , Inflammation/pathology , Receptors, Formyl Peptide/genetics , Receptors, Formyl Peptide/metabolism
11.
J Assist Reprod Genet ; 39(1): 239-250, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35018584

ABSTRACT

PURPOSE: The dysfunction of trophoblast during inflammation plays an important role in PE. Formyl peptide receptor 2 (FPR2) plays crucial roles in the development of inflammation-associated disease. This present study aimed to explore the effect of FPR2 on a trophoblast cellular model of preeclampsia. METHODS: The expression of FPR2 in placenta was detected by immunohistochemical staining and western blotting. Transfection of siRNA was used to knockdown FPR2 in HTR-8/SVneo cells. Inflammatory cytokines were detected by ELISA. CCK8, Transwell, wound healing, FACS and tube formation assays were performed to observe the abilities of cell proliferation, migration, invasion, apoptosis and angiogenesis. Western blotting was implemented to clarify that NF-κB signaling pathway was downstream of FPR2. RESULTS: The expression levels of FPR2 were higher in placental tissues of patients with PE. Knockdown of FPR2 expression by siFPR2 or inhibition of its activity by WRW4 decreased the release of proinflammatory cytokines in HTR8/SVneo cells treated with LPS. Knockdown of FPR2 expression or inhibition of its activity further reversed the LPS-induced attenuation of the proliferation, migration, invasion and angiogenesis and increase in apoptosis in HTR8/SVneo cells. Moreover, the NF-κB signaling pathway was activated in both placental tissues of patients with PE and LPS-treated HTR8/SVneo cells. However, the activation was attenuated when FPR2 was knocked down or inhibited. CONCLUSION: Suppression of FPR2 expression alleviated the effects of inflammation induced by LPS on trophoblasts via the NF-κB signaling pathway, which provided a novel and potential strategy for the treatment of PE.


Subject(s)
Gene Expression/physiology , Inflammation/prevention & control , Receptors, Formyl Peptide/antagonists & inhibitors , Receptors, Lipoxin/antagonists & inhibitors , Trophoblasts/metabolism , Adult , Cell Movement/drug effects , Cell Proliferation/drug effects , Female , Humans , Inflammation/physiopathology , NF-kappa B/antagonists & inhibitors , Pre-Eclampsia/drug therapy , Pre-Eclampsia/physiopathology , Pregnancy , Receptors, Formyl Peptide/genetics , Receptors, Lipoxin/genetics
12.
Genomics ; 113(4): 2240-2252, 2021 07.
Article in English | MEDLINE | ID: mdl-34015461

ABSTRACT

The vomeronasal organ (VNO) is a chemosensory organ specialized in pheromone detection that shows a broad morphofunctional and genomic diversity among mammals. However, its expression patterns have only been well-characterized in mice. Here, we provide the first comprehensive RNA sequencing study of the rabbit VNO across gender and sexual maturation stages. We characterized the VNO transcriptome, updating the number and expression of the two main vomeronasal receptor families, including 128 V1Rs and 67 V2Rs. Further, we defined the expression of formyl-peptide receptor and transient receptor potential channel families, both known to have specific roles in the VNO. Several sex hormone-related pathways were consistently enriched in the VNO, highlighting the relevance of this organ in reproduction. Moreover, whereas juvenile and adult VNOs showed significant transcriptome differences, male and female did not. Overall, these results contribute to understand the genomic basis of behavioural responses mediated by the VNO in a non-rodent model.


Subject(s)
Vomeronasal Organ , Animals , Female , Male , Mammals/genetics , Mice , Pheromones , Rabbits , Receptors, Formyl Peptide/genetics , Transcriptome , Vomeronasal Organ/metabolism
13.
Int J Mol Sci ; 23(18)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36142517

ABSTRACT

Formyl peptide receptor (FPR) 2 is known to play a critical role in regulating inflammation, including either the pro-inflammatory or pro-resolving effects. However, its role in neonatal hyperoxia-induced lung injury has not been delineated. In this study, we investigate whether mesenchymal stem cells (MSCs) attenuate hyperoxia-induced neonatal lung injury by regulating FPR2 activity. We observed a significant increase in FPR2 levels in alveolar macrophages (RAW264.7 cells) after H2O2-induced stress, which decreased after MSC treatment. In the H2O2-induction model, increased levels of inflammatory cytokines (IL-1α and TNF-α) were significantly reduced in RAW264.7 cells after treatment with WRW4, an inhibitor of FPR2, or MSCs. Viability of lung epithelial cells and endothelial cells was significantly improved when cultured in the conditioned media of RAW264.7 cells treated with WRW4 or MSCs, compared to when cultured in the conditioned media of control RAW265.7 cells exposed to H2O2. For the in vivo study, wild-type and FPR2 knockout (FPR2-/-) C57/BL6 mouse pups were randomly exposed to 80% oxygen or room air from postnatal day (P) 1 to P14. At P5, 2 × 105 MSCs were transplanted intratracheally. MSCs reduced the elevated FPR2 activity at P7 and improved the decreased FPR2 activity as well as the increased immuno-stained FPR2 activity in alveolar macrophages in hyperoxic lungs at P14. Both FPR2-/- and MSCs similarly attenuated impaired alveolarization and angiogenesis, and increased apoptosis and inflammation of hyperoxic lungs without synergistic effects. Our findings suggest that the protective effects of MSCs in hyperoxic lung injury might be related to indirect modulation of FPR2 activity, at least of alveolar macrophages in neonatal mice.


Subject(s)
Bronchopulmonary Dysplasia , Hyperoxia , Lung Injury , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Animals , Mice , Animals, Newborn , Culture Media, Conditioned , Cytokines , Disease Models, Animal , Endothelial Cells , Hydrogen Peroxide , Hyperoxia/complications , Inflammation , Lung , Lung Injury/etiology , Lung Injury/therapy , Oxygen , Receptors, Formyl Peptide/genetics , Tumor Necrosis Factor-alpha
14.
Mol Med ; 27(1): 18, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33632134

ABSTRACT

BACKGROUND: Hepatic ischemia/reperfusion (I/R) injury can be a major complication following liver surgery contributing to post-operative liver dysfunction. Maresin 1 (MaR1), a pro-resolving lipid mediator, has been shown to suppress I/R injury. However, the mechanisms that account for the protective effects of MaR1 in I/R injury remain unknown. METHODS: WT (C57BL/6J) mice were subjected to partial hepatic warm ischemia for 60mins followed by reperfusion. Mice were treated with MaR1 (5-20 ng/mouse), Boc2 (Lipoxin A4 receptor antagonist), LY294002 (Akt inhibitor) or corresponding controls just prior to liver I/R or at the beginning of reperfusion. Blood and liver samples were collected at 6 h post-reperfusion. Serum aminotransferase, histopathologic changes, inflammatory cytokines, and oxidative stress were analyzed to evaluate liver injury. Signaling pathways were also investigated in vitro using primary mouse hepatocyte (HC) cultures to identify underlying mechanisms for MaR1 in liver I/R injury. RESULTS: MaR1 treatment significantly reduced ALT and AST levels, diminished necrotic areas, suppressed inflammatory responses, attenuated oxidative stress and decreased hepatocyte apoptosis in liver after I/R. Akt signaling was significantly increased in the MaR1-treated liver I/R group compared with controls. The protective effect of MaR1 was abrogated by pretreatment with Boc2, which together with MaR1-induced Akt activation. MaR1-mediated liver protection was reversed by inhibition of Akt. CONCLUSIONS: MaR1 protects the liver against hepatic I/R injury via an ALXR/Akt signaling pathway. MaR1 may represent a novel therapeutic agent to mitigate the detrimental effects of I/R-induced liver injury.


Subject(s)
Docosahexaenoic Acids/therapeutic use , Liver Diseases/drug therapy , Protective Agents/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Formyl Peptide/metabolism , Reperfusion Injury/drug therapy , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Cell Survival/drug effects , Cytokines/blood , Docosahexaenoic Acids/pharmacology , Glutathione Peroxidase/metabolism , Hepatocytes/drug effects , Liver/drug effects , Liver/metabolism , Liver/pathology , Liver Diseases/blood , Liver Diseases/metabolism , Liver Diseases/pathology , Male , Malondialdehyde/metabolism , Mice, Inbred C57BL , Oxidative Stress/drug effects , Protective Agents/pharmacology , Receptors, Formyl Peptide/genetics , Reperfusion Injury/blood , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Signal Transduction/drug effects
15.
Biochem Biophys Res Commun ; 574: 33-38, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34428707

ABSTRACT

Formyl peptide receptors (Fprs) play fundamental roles in multiple cell functions including promotion of osteogenesis and bone fracture healing. In this study, the role of Fpr1 gene in osteogenic and adipogenic differentiation of adipose derived stem cells (ADSCs) was investigated. Primary ADSCs (mADSCs) from either Fpr1 knockout (KO) or wild type (WT) mice and human ADSCs (hADSCs) were treated by osteogenic (OM) or adipogenic (AM) medium, with basal medium as control. Osteogenesis and adipogenesis were measured by histological and biochemical methods. In both hADSCs and mADSCs, Fpr1 gene expression, osteogenic gene expression, as well as mineralization were increased after osteogenic induction. The osteogenic capacity of KO ADSCs was remarkably reduced compared to WT ADSCs, with decreased levels of expression of osteogenic markers, alkaline phosphatase activity, and mineralization. In contrast, the adipogenesis of KO ADSCs was remarkably enhanced compared with WT ADSCs, forming more lipid droplets, and increasing expression of adipogenic markers PPARγ and aP2. Expression of the nuclear transcription factor Forkhead box protein O1 (FoxO1) was decreased in KO ADSCs, while OM and AM caused increase and decrease in FoxO1 expression, respectively. The current study revealed a correlation of Fpr1 gene expression with osteogenesis and adipogenesis of mADSCs, underlying a mechanism involving FoxO1. Our present research suggests that targeting Fpr1 might be a novel strategy to enhance osteogenesis of ADSCs.


Subject(s)
Adipocytes/metabolism , Adipogenesis/genetics , Osteogenesis/genetics , Receptors, Formyl Peptide/genetics , Stem Cells/metabolism , Gene Expression Profiling , Humans
16.
Inflamm Res ; 70(3): 309-321, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33502586

ABSTRACT

OBJECTIVE AND DESIGN: This study is aimed at uncovering the signaling pathways activated by vasoactive intestinal peptide in human macrophages MATERIALS: Human peripheral blood mononuclear cell-derived macrophages were used for the in vitro investigation of the VIP-activated signaling pathways. METHODS AND TREATMENT: Time-course and dose-response experiments and siRNA were used in human macrophages co-challenged with various concentrations of VIP and different MAPK pharmacologic inhibitors to investigate signaling pathways activated by VIP. Flow analysis was performed to assess the levels of CD11b, CD35 and CD66. Luminescence spectrometry was used to measure the levels of the released hydrogen peroxide and the intracellular calcium levels in the media. RESULTS: Macrophages incubated with VIP showed increased phospho-AKT and phospho-ERK1/2 levels in a GTP-RhoA-GTPase-dependent manner. Similarly, VIP increased intracellular release of H2O2 and calcium via PLC and GTP-RhoA-GTPase, in addition to inducing the expression of CD11b, CD35, CD66 and MMP9. Furthermore, VIP activated P38 MAPK through the cAMP/PKA pathway but was independent of both PLC and RhoA signaling. The above-mentioned VIP effects were mediated via activation of the FPRL1 receptor. CONCLUSION: VIP/FPRL1/VPAC/GTP-RhoA-GTPase signaling modulated macrophages phenotype through activation of multiple signaling pathways including ERK1/2, AKT, P38, ROS, cAMP and calcium.


Subject(s)
Macrophages/metabolism , Receptors, Formyl Peptide/metabolism , Receptors, Lipoxin/metabolism , Vasoactive Intestinal Peptide/metabolism , rhoA GTP-Binding Protein/metabolism , Calcium/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Hydrogen Peroxide/metabolism , Matrix Metalloproteinase 9/metabolism , Phenotype , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Formyl Peptide/genetics , Receptors, Lipoxin/genetics , Signal Transduction , Type C Phospholipases/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , rhoA GTP-Binding Protein/genetics
17.
Bioorg Chem ; 116: 105338, 2021 11.
Article in English | MEDLINE | ID: mdl-34521045

ABSTRACT

Four pairs of novel meroterpenoid dimers, (±)-applandimeric acids A-D (1-4) with an unprecedented spiro[furo[3,2-b]benzofuran-3,2'-indene] core were isolated from the fruiting bodies of Ganoderma applanatum. Their planar structures were unambiguously determined via extensive spectroscopic analysis. Their relative and absolute configurations were confirmed through calculated internuclear distance, coupling constant, 13C NMR with DP4 + analysis and electronic circular dichroism (ECD). Furthermore, the molecular docking-based method was used to evaluate their interaction with formyl peptide receptor 2 (FPR2) associated with inflammation. Interestingly, (±)-applandimeric acid D (4) can bond with FPR2 by some key hydrogen bonds. Furthermore, an in vitro bioassay verified that 4 can inhibit the expression of FPR2 with IC50 value of 7.93 µM. In addition, compared to the positive control LiCl (20 mM), 4 showed comparable anti-lipogenesis activity at the concentration of 20 µM. Meanwhile, 4 can suppress the protein levels of peroxisome proliferators-activated receptor-γ (PPAR-γ), CCAAT/enhancer-binding protein-ß (C/EBP-ß), adipocyte fatty acid-binding protein 4 (FABP4), and fatty acid synthase (FAS) through activating AMP-activated protein kinase (AMPK) signaling pathway. Thus, our findings indicate that compound 4 could be a lead compound to treat obesity and obesity-related diseases by inhibiting lipid accumulation in adipocyte and alleviating inflammation.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Ganoderma/chemistry , Lipogenesis/drug effects , Receptors, Formyl Peptide/antagonists & inhibitors , Receptors, Lipoxin/antagonists & inhibitors , Terpenes/pharmacology , 3T3-L1 Cells , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Mice , Molecular Dynamics Simulation , Molecular Structure , PPAR gamma/antagonists & inhibitors , PPAR gamma/metabolism , Receptors, Formyl Peptide/genetics , Receptors, Formyl Peptide/metabolism , Receptors, Lipoxin/genetics , Receptors, Lipoxin/metabolism , Structure-Activity Relationship , Terpenes/chemistry , Terpenes/isolation & purification
18.
Respirology ; 26(3): 233-240, 2021 03.
Article in English | MEDLINE | ID: mdl-33078507

ABSTRACT

BACKGROUND AND OBJECTIVE: Cigarette smoking is one of the most prevalent causes of preventable deaths worldwide, leading to chronic diseases, including chronic obstructive pulmonary disease (COPD). Cigarette smoke is known to induce significant transcriptional modifications throughout the respiratory tract. However, it is largely unknown how genetic profiles influence the smoking-related transcriptional changes and how changes in gene expression translate into altered alveolar epithelial repair responses. METHODS: We performed a candidate-based acute cigarette smoke-induced eQTL study, investigating the association between SNP and differential gene expression of FPR family members in bronchial epithelial cells isolated 24 h after smoking and after 48 h without smoking. The effects FPR1 on lung epithelial integrity and repair upon damage in the presence and absence of cigarette smoke were studied in CRISPR-Cas9-generated lung epithelial knockout cells. RESULTS: One significant (FDR < 0.05) inducible eQTL (rs3212855) was identified that induced a >2-fold change in gene expression. The minor allele of rs3212855 was associated with significantly higher gene expression of FPR1, FPR2 and FPR3 upon smoking. Importantly, the minor allele of rs3212855 was also associated with lower lung function. Alveolar epithelial FPR1 knockout cells were protected against CSE-induced reduction in repair capacity upon wounding. CONCLUSION: We identified a novel smoking-related inducible eQTL that is associated with a smoke-induced increase in the expression of FPR1, FPR2 and FPR3, and with lowered lung function. in vitro FPR1 down-regulation protects against smoke-induced reduction in lung epithelial repair.


Subject(s)
Epithelial Cells/physiology , Pulmonary Disease, Chronic Obstructive , Receptors, Formyl Peptide , Smoking/adverse effects , Humans , Lung/physiology , Pulmonary Disease, Chronic Obstructive/genetics , Receptors, Formyl Peptide/genetics
19.
Allergol Immunopathol (Madr) ; 49(5): 57-63, 2021.
Article in English | MEDLINE | ID: mdl-34476923

ABSTRACT

BACKGROUND AND OBJECTIVE: Osteoarthritis is the most common chronic osteoarthrosis disease. There are complex factors that lead to osteoarthritis. Therefore, it is essential to investigate the molecular mechanism of osteoarthritis, especially the mechanism of articular cartilage degeneration. In this study, the mechanism of FPR1 (formyl peptide receptor 1) in LPS (lipopolysaccharide) induced chondrogenic cell ATDC5 was investigated. MATERIALS AND METHODS: We employed real-time quantitative polymerase chain reaction (RT-qPCR) and western blot assay to analyze the expression level of FPR1 in ATDC5 cell lines induced by LPS at 0, 2.5, 5, and 10 µg/mL concentrations. Then we constructed the FPR1 knockdown plasmid to transfect the LPS-ATDC5. MTT assay was used to test cell viability in control, LPS, LPS+shNC and LPS+shFPR1 groups. ELISA and RT-qPCR assay were employed to examine the TNF-α (tumor necrosis factor-α)Í¿IL-6 and IL-1ß expression level. Flow cytometry and western blot assay were employed to analyze the apoptosis of LPS-ATDC5. Finally, we utilized the western blot assay to text related protein expression level of MAPK (mitogen-activated protein kinase) signaling pathway. RESULTS: In this study, we found the expression level of FPR1 was increased in LPS-ATDC5, downregulation of FPR1 improves the survival rate and alleviates inflammatory response of LPS-ATDC5. Meanwhile, downregulation of FPR1 alleviates apoptosis of LPS-ATDC5. Finally, downregulation of FPR1 inhibits the MAPK signal pathway. CONCLUSION: Present study revealed that FPR1 was highly expressed in LPS-induced chondrocytes ATDC5, and the downregulation of FPR1 abated the inflammatory response and apoptosis of LPS-ATDC5 cells by regulating the MAPK signaling pathway.


Subject(s)
MicroRNAs , Osteoarthritis , Animals , Apoptosis , Down-Regulation , Inflammation , Lipopolysaccharides , Mice , Receptors, Formyl Peptide/genetics , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism
20.
Genomics ; 112(4): 2778-2783, 2020 07.
Article in English | MEDLINE | ID: mdl-32209380

ABSTRACT

Formyl peptide receptors (FPRs) were firstly detected in immune cells where they act as key mediators of leukocyte chemotaxis, promoting the host defense against pathogens. Recently, three paralogs were reported in Homo sapiens (FPR1-3) and seven paralogs in Mus musculus (FPR1, FPRrs1-4, FPRrs6 and FPRrs7), but information from other mammalian lineages is scarce, including ambiguities in the current nomenclature system (e.g. absence of an orthologous relation between human and mouse FPR3). Here, we explored the FPR gene repertoire across 175 mammalian genomes using integrative phylogenetic and synteny analyses to describe the evolutionary history of FPRs in all mammalian orders. FPRs present a well conserved synteny but showed dynamic episodes of duplication events specific to several mammalian orders (Chiroptera, Perissodactyla, Primates and Rodentia), with up to 11 paralogs in some cases. Despite FPRs could be expressed in a panoply of tissues, there is a suggestion that they maintain an exclusive immunological function. However, we observed that species with social behavior have higher repertoire of FPRs in contrast with species with solitary lifestyle. Such evidence suggests a strict relationship between the optimization of the immunological system (by FPR duplication patterns) and the mammalian social behavior.


Subject(s)
Gene Duplication , Mammals/genetics , Receptors, Formyl Peptide/genetics , Social Behavior , Animals , Humans , Phylogeny , Receptors, Formyl Peptide/classification
SELECTION OF CITATIONS
SEARCH DETAIL