Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.814
Filter
Add more filters

Publication year range
1.
Nature ; 632(8026): 858-868, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39048816

ABSTRACT

Alzheimer's disease is the leading cause of dementia worldwide, but the cellular pathways that underlie its pathological progression across brain regions remain poorly understood1-3. Here we report a single-cell transcriptomic atlas of six different brain regions in the aged human brain, covering 1.3 million cells from 283 post-mortem human brain samples across 48 individuals with and without Alzheimer's disease. We identify 76 cell types, including region-specific subtypes of astrocytes and excitatory neurons and an inhibitory interneuron population unique to the thalamus and distinct from canonical inhibitory subclasses. We identify vulnerable populations of excitatory and inhibitory neurons that are depleted in specific brain regions in Alzheimer's disease, and provide evidence that the Reelin signalling pathway is involved in modulating the vulnerability of these neurons. We develop a scalable method for discovering gene modules, which we use to identify cell-type-specific and region-specific modules that are altered in Alzheimer's disease and to annotate transcriptomic differences associated with diverse pathological variables. We identify an astrocyte program that is associated with cognitive resilience to Alzheimer's disease pathology, tying choline metabolism and polyamine biosynthesis in astrocytes to preserved cognitive function late in life. Together, our study develops a regional atlas of the ageing human brain and provides insights into cellular vulnerability, response and resilience to Alzheimer's disease pathology.


Subject(s)
Alzheimer Disease , Astrocytes , Brain , Reelin Protein , Single-Cell Analysis , Transcriptome , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Humans , Astrocytes/metabolism , Astrocytes/pathology , Brain/metabolism , Brain/pathology , Male , Female , Neurons/metabolism , Neurons/pathology , Aged , Choline/metabolism , Interneurons/metabolism , Interneurons/pathology , Signal Transduction , Aged, 80 and over , Cognition , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Extracellular Matrix Proteins/metabolism , Extracellular Matrix Proteins/genetics , Autopsy , Gene Regulatory Networks , Cell Adhesion Molecules, Neuronal/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Serine Endopeptidases/metabolism , Serine Endopeptidases/genetics
2.
Cell ; 158(6): 1335-1347, 2014 Sep 11.
Article in English | MEDLINE | ID: mdl-25201528

ABSTRACT

The apical dendrites of many neurons contain proximal and distal compartments that receive synaptic inputs from different brain regions. These compartments also contain distinct complements of ion channels that enable the differential processing of their respective synaptic inputs, making them functionally distinct. At present, the molecular mechanisms that specify dendritic compartments are not well understood. Here, we report that the extracellular matrix protein Reelin, acting through its downstream, intracellular Dab1 and Src family tyrosine kinase signaling cascade, is essential for establishing and maintaining the molecular identity of the distal dendritic compartment of cortical pyramidal neurons. We find that Reelin signaling is required for the striking enrichment of HCN1 and GIRK1 channels in the distal tuft dendrites of both hippocampal CA1 and neocortical layer 5 pyramidal neurons, where the channels actively filter inputs targeted to these dendritic domains.


Subject(s)
Cell Adhesion Molecules, Neuronal/metabolism , Dendrites/metabolism , Extracellular Matrix Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Serine Endopeptidases/metabolism , Animals , Cell Adhesion Molecules, Neuronal/genetics , Extracellular Matrix Proteins/genetics , G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , Gene Knockdown Techniques , Hippocampus/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Mice , Mice, Inbred C57BL , Mice, Neurologic Mutants , Nerve Tissue Proteins/genetics , Potassium Channels/genetics , Potassium Channels/metabolism , Reelin Protein , Serine Endopeptidases/genetics , Signal Transduction , src-Family Kinases/metabolism
3.
Development ; 151(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38856043

ABSTRACT

The function of medial entorhinal cortex layer II (MECII) excitatory neurons has been recently explored. MECII dysfunction underlies deficits in spatial navigation and working memory. MECII neurons comprise two major excitatory neuronal populations, pyramidal island and stellate ocean cells, in addition to the inhibitory interneurons. Ocean cells express reelin and surround clusters of island cells that lack reelin expression. The influence of reelin expression by ocean cells and interneurons on their own morphological differentiation and that of MECII island cells has remained unknown. To address this, we used a conditional reelin knockout (RelncKO) mouse to induce reelin deficiency postnatally in vitro and in vivo. Reelin deficiency caused dendritic hypertrophy of ocean cells, interneurons and only proximal dendritic compartments of island cells. Ca2+ recording showed that both cell types exhibited an elevation of calcium frequencies in RelncKO, indicating that the hypertrophic effect is related to excessive Ca2+ signalling. Moreover, pharmacological receptor blockade in RelncKO mouse revealed malfunctioning of GABAB, NMDA and AMPA receptors. Collectively, this study emphasizes the significance of reelin in neuronal growth, and its absence results in dendrite hypertrophy of MECII neurons.


Subject(s)
Cell Adhesion Molecules, Neuronal , Dendrites , Entorhinal Cortex , Extracellular Matrix Proteins , Mice, Knockout , Nerve Tissue Proteins , Reelin Protein , Serine Endopeptidases , Animals , Entorhinal Cortex/metabolism , Dendrites/metabolism , Cell Adhesion Molecules, Neuronal/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Serine Endopeptidases/metabolism , Serine Endopeptidases/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Extracellular Matrix Proteins/metabolism , Extracellular Matrix Proteins/genetics , Mice , Interneurons/metabolism , Neurons/metabolism , Calcium Signaling
4.
Cell ; 150(6): 1121-34, 2012 Sep 14.
Article in English | MEDLINE | ID: mdl-22980976

ABSTRACT

We report the results of whole-genome and transcriptome sequencing of tumor and adjacent normal tissue samples from 17 patients with non-small cell lung carcinoma (NSCLC). We identified 3,726 point mutations and more than 90 indels in the coding sequence, with an average mutation frequency more than 10-fold higher in smokers than in never-smokers. Novel alterations in genes involved in chromatin modification and DNA repair pathways were identified, along with DACH1, CFTR, RELN, ABCB5, and HGF. Deep digital sequencing revealed diverse clonality patterns in both never-smokers and smokers. All validated EFGR and KRAS mutations were present in the founder clones, suggesting possible roles in cancer initiation. Analysis revealed 14 fusions, including ROS1 and ALK, as well as novel metabolic enzymes. Cell-cycle and JAK-STAT pathways are significantly altered in lung cancer, along with perturbations in 54 genes that are potentially targetable with currently available drugs.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Smoking/genetics , Smoking/pathology , Carcinoma, Non-Small-Cell Lung/therapy , Chromosome Aberrations , Female , Gene Expression Profiling , Genome-Wide Association Study , High-Throughput Nucleotide Sequencing , Humans , INDEL Mutation , Lung Neoplasms/therapy , Male , Molecular Targeted Therapy , Point Mutation , Reelin Protein
5.
PLoS Genet ; 20(7): e1011348, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39038048

ABSTRACT

Disrupted alternative splicing plays a determinative role in neurological diseases, either as a direct cause or as a driver in disease susceptibility. Transcriptomic profiling of aged human postmortem brain samples has uncovered hundreds of aberrant mRNA splicing events in Alzheimer's disease (AD) brains, associating dysregulated RNA splicing with disease. We previously identified a complex array of alternative splicing combinations across apolipoprotein E receptor 2 (APOER2), a transmembrane receptor that interacts with both the neuroprotective ligand Reelin and the AD-associated risk factor, APOE. Many of the human APOER2 isoforms, predominantly featuring cassette splicing events within functionally important domains, are critical for the receptor's function and ligand interaction. However, a comprehensive repertoire and the functional implications of APOER2 isoforms under both physiological and AD conditions are not fully understood. Here, we present an in-depth analysis of the splicing landscape of human APOER2 isoforms in normal and AD states. Using single-molecule, long-read sequencing, we profiled the entire APOER2 transcript from the parietal cortex and hippocampus of Braak stage IV AD brain tissues along with age-matched controls and investigated several functional properties of APOER2 isoforms. Our findings reveal diverse patterns of cassette exon skipping for APOER2 isoforms, with some showing region-specific expression and others unique to AD-affected brains. Notably, exon 15 of APOER2, which encodes the glycosylation domain, showed less inclusion in AD compared to control in the parietal cortex of females with an APOE ɛ3/ɛ3 genotype. Also, some of these APOER2 isoforms demonstrated changes in cell surface expression, APOE-mediated receptor processing, and synaptic number. These variations are likely critical in inducing synaptic alterations and may contribute to the neuronal dysfunction underlying AD pathogenesis.


Subject(s)
Alternative Splicing , Alzheimer Disease , LDL-Receptor Related Proteins , Reelin Protein , Humans , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , LDL-Receptor Related Proteins/genetics , LDL-Receptor Related Proteins/metabolism , Alternative Splicing/genetics , Protein Isoforms/genetics , Sequence Analysis, RNA , Female , Aged , Brain/metabolism , Brain/pathology , Apolipoproteins E/genetics , Male , Hippocampus/metabolism , Hippocampus/pathology , Aged, 80 and over , RNA Splicing/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism
6.
Nature ; 588(7839): 705-711, 2020 12.
Article in English | MEDLINE | ID: mdl-33299187

ABSTRACT

Recent studies have suggested that lymphatics help to restore heart function after cardiac injury1-6. Here we report that lymphatics promote cardiac growth, repair and cardioprotection in mice. We show that a lymphoangiocrine signal produced by lymphatic endothelial cells (LECs) controls the proliferation and survival of cardiomyocytes during heart development, improves neonatal cardiac regeneration and is cardioprotective after myocardial infarction. Embryos that lack LECs develop smaller hearts as a consequence of reduced cardiomyocyte proliferation and increased cardiomyocyte apoptosis. Culturing primary mouse cardiomyocytes in LEC-conditioned medium increases cardiomyocyte proliferation and survival, which indicates that LECs produce lymphoangiocrine signals that control cardiomyocyte homeostasis. Characterization of the LEC secretome identified the extracellular protein reelin (RELN) as a key component of this process. Moreover, we report that LEC-specific Reln-null mouse embryos develop smaller hearts, that RELN is required for efficient heart repair and function after neonatal myocardial infarction, and that cardiac delivery of RELN using collagen patches improves heart function in adult mice after myocardial infarction by a cardioprotective effect. These results highlight a lymphoangiocrine role of LECs during cardiac development and injury response, and identify RELN as an important mediator of this function.


Subject(s)
Heart/embryology , Lymphatic System/cytology , Lymphatic System/metabolism , Myocardium/cytology , Myocytes, Cardiac/cytology , Regeneration , Signal Transduction , Animals , Animals, Newborn , Apoptosis , Cell Adhesion Molecules, Neuronal/deficiency , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Cell Proliferation , Cell Survival , Cells, Cultured , Endothelial Cells/metabolism , Extracellular Matrix Proteins/deficiency , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Female , Humans , Integrin beta1/metabolism , Mice , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocytes, Cardiac/metabolism , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Organ Size , Organogenesis , Reelin Protein , Serine Endopeptidases/deficiency , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism
7.
Cell ; 143(5): 826-36, 2010 Nov 24.
Article in English | MEDLINE | ID: mdl-21111240

ABSTRACT

The Reelin ligand regulates a Dab1-dependent signaling pathway required for brain lamination and normal dendritogenesis, but the specific mechanisms underlying these actions remain unclear. We find that Stk25, a modifier of Reelin-Dab1 signaling, regulates Golgi morphology and neuronal polarization as part of an LKB1-Stk25-Golgi matrix protein 130 (GM130) signaling pathway. Overexpression of Stk25 induces Golgi condensation and multiple axons, both of which are rescued by Reelin treatment. Reelin stimulation of cultured neurons induces the extension of the Golgi into dendrites, which is suppressed by Stk25 overexpression. In vivo, Reelin and Dab1 are required for the normal extension of the Golgi apparatus into the apical dendrites of hippocampal and neocortical pyramidal neurons. This demonstrates that the balance between Reelin-Dab1 signaling and LKB1-Stk25-GM130 regulates Golgi dispersion, axon specification, and dendrite growth and provides insights into the importance of the Golgi apparatus for cell polarization.


Subject(s)
Cell Adhesion Molecules, Neuronal/metabolism , Extracellular Matrix Proteins/metabolism , Golgi Apparatus/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neurons/cytology , Neurons/metabolism , Protein Serine-Threonine Kinases/metabolism , Serine Endopeptidases/metabolism , Animals , Cell Line , Cell Separation , Cells, Cultured , Hippocampus/metabolism , Humans , Mice , Rats , Reelin Protein
8.
Proc Natl Acad Sci U S A ; 119(37): e2120079119, 2022 09 13.
Article in English | MEDLINE | ID: mdl-36067316

ABSTRACT

The extracellular protein Reelin, expressed by Cajal-Retzius (CR) cells at early stages of cortical development and at late stages by GABAergic interneurons, regulates radial migration and the "inside-out" pattern of positioning. Current models of Reelin functions in corticogenesis focus on early CR cell-derived Reelin in layer I. However, developmental disorders linked to Reelin deficits, such as schizophrenia and autism, are related to GABAergic interneuron-derived Reelin, although its role in migration has not been established. Here we selectively inactivated the Reln gene in CR cells or GABAergic interneurons. We show that CR cells have a major role in the inside-out order of migration, while CR and GABAergic cells sequentially cooperate to prevent invasion of cortical neurons into layer I. Furthermore, GABAergic cell-derived Reelin compensates some features of the reeler phenotype and is needed for the fine tuning of the layer-specific distribution of cortical neurons. In the hippocampus, the inactivation of Reelin in CR cells causes dramatic alterations in the dentate gyrus and mild defects in the hippocampus proper. These findings lead to a model in which both CR and GABAergic cell-derived Reelin cooperate to build the inside-out order of corticogenesis, which might provide a better understanding of the mechanisms involved in the pathogenesis of neuropsychiatric disorders linked to abnormal migration and Reelin deficits.


Subject(s)
Cerebral Cortex , Nerve Tissue Proteins , Neurons , Reelin Protein , Animals , Cell Movement , Cerebral Cortex/cytology , Cerebral Cortex/embryology , GABAergic Neurons/enzymology , Hippocampus/embryology , Hippocampus/enzymology , Interneurons/enzymology , Mice , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/cytology , Neurons/enzymology , Reelin Protein/genetics , Reelin Protein/metabolism
9.
Hum Mol Genet ; 31(5): 665-673, 2022 03 03.
Article in English | MEDLINE | ID: mdl-34508592

ABSTRACT

Autosomal dominant lateral temporal epilepsy (ADLTE) is a genetically heterogeneous neurologic disorder clinically characterized by focal seizures with auditory symptoms and/or aphasia. About 20% of ADLTE families segregate disease-causing heterozygous mutations in RELN, a brain-expressed gene encoding the secreted protein Reelin. Using a cell-based secretion assay, we show that pathogenic RELN mutations abolish or significantly reduce secretion of mutant proteins and that this secretion defect results from impaired trafficking of mutant Reelin along the secretory pathway. Confocal immunofluorescence analysis of transiently transfected cells shows that Reelin mutant proteins are degraded by the autophagy system, as revealed by increased formation of autophagosomes immunoreacting with the autophagy markers p62 and LC3. In addition, LC3 immunoblotting shows a significant increase of autophagy flux due to mutant overexpression. Finally, we show that the secretion defect of mutant proteins can be partially rescued by small-molecule correctors. Altogether, these results suggest that Reelin mutant proteins are not properly secreted and that they are degraded through the autophagy pathway.


Subject(s)
Epilepsy, Temporal Lobe , Nerve Tissue Proteins , Epilepsy, Temporal Lobe/genetics , Humans , Mutant Proteins/genetics , Mutation , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Reelin Protein , Serine Proteases/genetics
10.
Development ; 148(11)2021 06 01.
Article in English | MEDLINE | ID: mdl-34047341

ABSTRACT

Cajal-Retzius neurons (CRs) are among the first-born neurons in the developing cortex of reptiles, birds and mammals, including humans. The peculiarity of CRs lies in the fact they are initially embedded into the immature neuronal network before being almost completely eliminated by cell death at the end of cortical development. CRs are best known for controlling the migration of glutamatergic neurons and the formation of cortical layers through the secretion of the glycoprotein reelin. However, they have been shown to play numerous additional key roles at many steps of cortical development, spanning from patterning and sizing functional areas to synaptogenesis. The use of genetic lineage tracing has allowed the discovery of their multiple ontogenetic origins, migratory routes, expression of molecular markers and death dynamics. Nowadays, single-cell technologies enable us to appreciate the molecular heterogeneity of CRs with an unprecedented resolution. In this Review, we discuss the morphological, electrophysiological, molecular and genetic criteria allowing the identification of CRs. We further expose the various sources, migration trajectories, developmental functions and death dynamics of CRs. Finally, we demonstrate how the analysis of public transcriptomic datasets allows extraction of the molecular signature of CRs throughout their transient life and consider their heterogeneity within and across species.


Subject(s)
Nerve Tissue Proteins/metabolism , Neurons/metabolism , Animals , Cell Adhesion Molecules, Neuronal , Cell Death , Cerebral Cortex/growth & development , Extracellular Matrix Proteins , Hippocampus/growth & development , Humans , Nerve Tissue Proteins/genetics , Neurogenesis/physiology , Neurons/cytology , Reelin Protein , Serine Endopeptidases , Transcriptome
11.
Development ; 148(17)2021 09 01.
Article in English | MEDLINE | ID: mdl-34414407

ABSTRACT

Reelin is a large secreted glycoprotein that regulates neuronal migration, lamination and establishment of dendritic architecture in the embryonic brain. Reelin expression switches postnatally from Cajal-Retzius cells to interneurons. However, reelin function in interneuron development is still poorly understood. Here, we have investigated the role of reelin in interneuron development in the postnatal neocortex. To preclude early cortical migration defects caused by reelin deficiency, we employed a conditional reelin knockout (RelncKO) mouse to induce postnatal reelin deficiency. Induced reelin deficiency caused dendritic hypertrophy in distal dendritic segments of neuropeptide Y-positive (NPY+) and calretinin-positive (Calr+) interneurons, and in proximal dendritic segments of parvalbumin-positive (Parv+) interneurons. Chronic recombinant Reelin treatment rescued dendritic hypertrophy in Relncko interneurons. Moreover, we provide evidence that RelncKO interneuron hypertrophy is due to presynaptic GABABR dysfunction. Thus, GABABRs in RelncKO interneurons were unable to block N-type (Cav2.2) Ca2+ channels that control neurotransmitter release. Consequently, the excessive Ca2+ influx through AMPA receptors, but not NMDA receptors, caused interneuron dendritic hypertrophy. These findings suggest that reelin acts as a 'stop-growth-signal' for postnatal interneuron maturation.


Subject(s)
Cell Adhesion Molecules, Neuronal/metabolism , Dendrites/metabolism , Extracellular Matrix Proteins/metabolism , Interneurons/cytology , Neocortex/growth & development , Nerve Tissue Proteins/metabolism , Serine Endopeptidases/metabolism , Animals , Calbindin 2/metabolism , Calcium/metabolism , Cell Adhesion Molecules, Neuronal/deficiency , Cell Adhesion Molecules, Neuronal/pharmacology , Dendrites/drug effects , Extracellular Matrix Proteins/deficiency , Extracellular Matrix Proteins/pharmacology , Hypertrophy , Interneurons/drug effects , Interneurons/metabolism , Mice , Mice, Knockout , Neocortex/cytology , Neocortex/drug effects , Neocortex/pathology , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/pharmacology , Neuropeptide Y/metabolism , Parvalbumins/metabolism , Receptors, GABA-B/metabolism , Receptors, Glutamate/metabolism , Reelin Protein , Serine Endopeptidases/deficiency , Serine Endopeptidases/pharmacology
12.
Mol Genet Genomics ; 299(1): 55, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771357

ABSTRACT

Neurodevelopmental disorders (NDDs) are a clinically and genetically heterogeneous group of early-onset pediatric disorders that affect the structure and/or function of the central or peripheral nervous system. Achieving a precise molecular diagnosis for NDDs may be challenging due to the diverse genetic underpinnings and clinical variability. In the current study, we investigated the underlying genetic cause(s) of NDDs in four unrelated Pakistani families. Using exome sequencing (ES) as a diagnostic approach, we identified disease-causing variants in established NDD-associated genes in all families, including one hitherto unreported variant in RELN and three recurrent variants in VPS13B, DEGS1, and SPG11. Overall, our study highlights the potential of ES as a tool for clinical diagnosis.


Subject(s)
Exome Sequencing , Genetic Association Studies , Neurodevelopmental Disorders , Pedigree , Reelin Protein , Vesicular Transport Proteins , Child , Child, Preschool , Female , Humans , Male , Cell Adhesion Molecules, Neuronal/genetics , Exome/genetics , Genetic Association Studies/methods , Genetic Predisposition to Disease , Mutation , Neurodevelopmental Disorders/genetics , Pakistan , Vesicular Transport Proteins/genetics , Reelin Protein/genetics
13.
Histopathology ; 84(7): 1199-1211, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38409885

ABSTRACT

AIMS: Intracranial germ cell tumour (IGCT) is a type of rare central nervous system tumour that mainly occurs in children and adolescents, with great variation in its incidence rate and molecular characteristics in patients from different populations. The genetic alterations of IGCT in the Chinese population are still unknown. METHODS AND RESULTS: In this study, 47 patients were enrolled and their tumour specimens were analysed by whole-exome sequencing (WES). We found that KIT was the most significantly mutated gene (15/47, 32%), which mainly occurred in the germinoma group (13/20, 65%), and less frequently in NGGCT (2/27, 7%). Copy number variations (CNVs) of FGF6 and TFE3 only appeared in NGGCT patients (P = 0.003 and 0.032, respectively), while CNVs of CXCR4, RAC2, PDGFA, and FEV only appeared in germinoma patients (P = 0.004 of CXCR4 and P = 0.027 for the last three genes). Compared with a previous Japanese cohort, the somatic mutation rates of RELN and SYNE1 were higher in the Chinese. Prognostic analysis showed that the NF1 mutation was associated with shorter overall survival and progression-free survival in IGCT patients. Clonal evolution analysis revealed an early branched evolutionary pattern in two IGCT patients who underwent changes in the histological subtype or degree of differentiation during disease surveillance. CONCLUSION: This study indicated that Chinese IGCT patients may have distinct genetic characteristics and identified several possible genetic alterations that have the potential to become prognostic biomarkers of NGGCT patients.


Subject(s)
Brain Neoplasms , Exome Sequencing , Neoplasms, Germ Cell and Embryonal , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Male , Young Adult , Asian People/genetics , Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Brain Neoplasms/pathology , China/epidemiology , DNA Copy Number Variations , East Asian People , Mutation , Neoplasms, Germ Cell and Embryonal/genetics , Neoplasms, Germ Cell and Embryonal/pathology , Prognosis , Reelin Protein
14.
Cereb Cortex ; 33(7): 3866-3881, 2023 03 21.
Article in English | MEDLINE | ID: mdl-35989311

ABSTRACT

Protein quality control (PQC) is essential for maintaining protein homeostasis and guarding the accuracy of neurodevelopment. Previously, we found that a conserved EBAX-type CRL regulates the protein quality of SAX-3/ROBO guidance receptors in Caenorhabditis elegans. Here, we report that ZSWIM8, the mammalian homolog of EBAX-1, is essential for developmental stability of mammalian brains. Conditional deletion of Zswim8 in the embryonic nervous system causes global cellular stress, partial perinatal lethality and defective migration of neural progenitor cells. CRISPR-mediated knockout of ZSWIM8 impairs spine formation and synaptogenesis in hippocampal neurons. Mechanistic studies reveal that ZSWIM8 controls protein quality of Disabled 1 (Dab1), a key signal molecule for brain development, thus protecting the signaling strength of Dab1. As a ubiquitin ligase enriched with intrinsically disordered regions (IDRs), ZSWIM8 specifically recognizes IDRs of Dab1 through a "disorder targets misorder" mechanism and eliminates misfolded Dab1 that cannot be properly phosphorylated. Adult survivors of ZSWIM8 CKO show permanent hippocampal abnormality and display severely impaired learning and memory behaviors. Altogether, our results demonstrate that ZSWIM8-mediated PQC is critical for the stability of mammalian brain development.


Subject(s)
Reelin Protein , Ubiquitin , Animals , Female , Pregnancy , Cell Adhesion Molecules, Neuronal/metabolism , Extracellular Matrix Proteins/metabolism , Ligases , Mammals/metabolism , Serine Endopeptidases/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Nerve Tissue Proteins/metabolism
15.
Biol Pharm Bull ; 47(7): 1314-1320, 2024.
Article in English | MEDLINE | ID: mdl-39019611

ABSTRACT

Dab1 is an intracellular adaptor protein essential for brain formation during development. Tyrosine phosphorylation in Dab1 plays important roles in neuronal migration, dendrite development, and synapse formation by affecting several downstream pathways. Reelin is the best-known extracellular protein that induces Dab1 phosphorylation. However, whether other upstream molecule(s) contribute to Dab1 phosphorylation remains largely unknown. Here, we found that EphA4, a member of the Eph family of receptor-type tyrosine kinases, induced Dab1 phosphorylation when co-expressed in cultured cells. Tyrosine residues phosphorylated by EphA4 were the same as those phosphorylated by Reelin in neurons. The autophosphorylation of EphA4 was necessary for Dab1 phosphorylation. We also found that EphA4-induced Dab1 phosphorylation was mediated by the activation of the Src family tyrosine kinases. Interestingly, Dab1 phosphorylation was not observed when EphA4 was activated by ephrin-A5 in cultured cortical neurons, suggesting that Dab1 is localized in a different compartment in them. EphA4-induced Dab1 phosphorylation may occur under limited and/or pathological conditions in the brain.


Subject(s)
Neurons , Receptor, EphA4 , Reelin Protein , src-Family Kinases , Reelin Protein/metabolism , Phosphorylation , Animals , Receptor, EphA4/metabolism , Receptor, EphA4/genetics , src-Family Kinases/metabolism , Neurons/metabolism , Humans , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , HEK293 Cells , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Serine Endopeptidases/metabolism , Serine Endopeptidases/genetics , Cells, Cultured , Ephrin-A5/metabolism , Ephrin-A5/genetics , Mice , Cell Adhesion Molecules, Neuronal/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Extracellular Matrix Proteins/metabolism , Rats
16.
Mol Cell Neurosci ; 124: 103794, 2023 03.
Article in English | MEDLINE | ID: mdl-36435394

ABSTRACT

Reelin, a large secreted glycoprotein, plays an important role in neuronal migration during brain development. The C-terminal region (CTR) of Reelin is involved in the efficient activation of downstream signaling and its loss leads to abnormal hippocampal layer formation. However, the molecular mechanism by which Reelin CTR regulates hippocampal development remains unknown. Here, we showed that the migration of late-born, but not early-born, neurons is impaired in the knock-in mice in which Reelin CTR is deleted (ΔC-KI mice). The phosphorylation of cofilin, an actin-depolymerizing protein, was remarkably decreased in the hippocampus of the ΔC-KI mice. Exogenous expression of pseudo-phosphorylated cofilin rescued the ectopic positioning of neurons in the hippocampus of ΔC-KI mice. These results suggest that Reelin CTR is required for the migration of late-born neurons in the hippocampus and that this event involves appropriate phosphorylation of cofilin.


Subject(s)
Actin Depolymerizing Factors , Extracellular Matrix Proteins , Reelin Protein , Animals , Mice , Actin Depolymerizing Factors/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Hippocampus/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Phosphorylation , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Reelin Protein/metabolism
17.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Article in English | MEDLINE | ID: mdl-33975959

ABSTRACT

Ketamine is a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist that produces rapid antidepressant action in some patients with treatment-resistant depression. However, recent data suggest that ∼50% of patients with treatment-resistant depression do not respond to ketamine. The factors that contribute to the nonresponsiveness to ketamine's antidepressant action remain unclear. Recent studies have reported a role for secreted glycoprotein Reelin in regulating pre- and postsynaptic function, which suggests that Reelin may be involved in ketamine's antidepressant action, although the premise has not been tested. Here, we investigated whether the disruption of Reelin-mediated synaptic signaling alters ketamine-triggered synaptic plasticity and behavioral effects. To this end, we used mouse models with genetic deletion of Reelin or apolipoprotein E receptor 2 (Apoer2), as well as pharmacological inhibition of their downstream effectors, Src family kinases (SFKs) or phosphoinositide 3-kinase. We found that disruption of Reelin, Apoer2, or SFKs blocks ketamine-driven behavioral changes and synaptic plasticity in the hippocampal CA1 region. Although ketamine administration did not affect tyrosine phosphorylation of DAB1, an adaptor protein linked to downstream signaling of Reelin, disruption of Apoer2 or SFKs impaired baseline NMDA receptor-mediated neurotransmission. These results suggest that maintenance of baseline NMDA receptor function by Reelin signaling may be a key permissive factor required for ketamine's antidepressant effects. Taken together, our results suggest that impairments in Reelin-Apoer2-SFK pathway components may in part underlie nonresponsiveness to ketamine's antidepressant action.


Subject(s)
Antidepressive Agents/pharmacology , Behavior, Animal/drug effects , Ketamine/pharmacology , Neuronal Plasticity/drug effects , Reelin Protein/physiology , Animals , LDL-Receptor Related Proteins/physiology , Male , Mice , Neuronal Plasticity/physiology , Phosphatidylinositol 3-Kinases/physiology , Receptors, N-Methyl-D-Aspartate/physiology , Signal Transduction/drug effects , src-Family Kinases/antagonists & inhibitors , src-Family Kinases/physiology
18.
Int J Mol Sci ; 25(2)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38255890

ABSTRACT

Current pharmacological treatments for depression fail to produce adequate remission in a significant proportion of patients. Increasingly, other systems, such as the microbiome-gut-brain axis, are being looked at as putative novel avenues for depression treatment. Dysbiosis and dysregulation along this axis are highly comorbid with the severity of depression symptoms. The endogenous extracellular matrix protein reelin is present in all intestinal layers as well as in myenteric and submucosal ganglia, and its receptors are also present in the gut. Reelin secretion from subepithelial myofibroblasts regulates cellular migration along the crypt-villus axis in the small intestine and colon. Reelin brain expression is downregulated in mood and psychotic disorders, and reelin injections have fast antidepressant-like effects in animal models of depression. This review seeks to discuss the roles of reelin in the gastrointestinal system and propose a putative role for reelin actions in the microbiota-gut-brain axis in the pathogenesis and treatment of depression, primarily reflecting on alterations in gut epithelial cell renewal and in the clustering of serotonin transporters.


Subject(s)
Antidepressive Agents , Brain-Gut Axis , Depression , Enteric Nervous System , Reelin Protein , Animals , Humans , Affect , Antidepressive Agents/therapeutic use , Depression/drug therapy , Depression/metabolism , Enteric Nervous System/metabolism , Reelin Protein/metabolism
19.
Int J Mol Sci ; 25(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38791562

ABSTRACT

We compared the effects of two different high-caloric diets administered to 4-week-old rats for 12 weeks: a diet rich in sugar (30% sucrose) and a cafeteria diet rich in sugar and high-fat foods. We focused on the hippocampus, particularly on the gamma-aminobutyric acid (GABA)ergic system, including the Ca2+-binding proteins parvalbumin (PV), calretinin (CR), calbindin (CB), and the neuropeptides somatostatin (SST) and neuropeptide Y (NPY). We also analyzed the density of cholinergic varicosities, brain-derived neurotrophic factor (BDNF), reelin (RELN), and cyclin-dependent kinase-5 (CDK-5) mRNA levels, and glial fibrillary acidic protein (GFAP) expression. The cafeteria diet reduced PV-positive neurons in the granular layer, hilus, and CA1, as well as NPY-positive neurons in the hilus, without altering other GABAergic populations or overall GABA levels. The high-sugar diet induced a decrease in the number of PV-positive cells in CA3 and an increase in CB-positive cells in the hilus and CA1. No alterations were observed in the cholinergic varicosities. The cafeteria diet also reduced the relative mRNA expression of RELN without significant changes in BDNF and CDK5 levels. The cafeteria diet increased the number but reduced the length of the astrocyte processes. These data highlight the significance of determining the mechanisms mediating the observed effects of these diets and imply that the cognitive impairments previously found might be related to both the neuroinflammation process and the reduction in PV, NPY, and RELN expression in the hippocampal formation.


Subject(s)
Astrocytes , Cyclin-Dependent Kinase 5 , Hippocampus , Neurogenesis , Reelin Protein , Animals , Astrocytes/metabolism , Rats , Reelin Protein/metabolism , Male , Hippocampus/metabolism , Cyclin-Dependent Kinase 5/metabolism , Cyclin-Dependent Kinase 5/genetics , GABAergic Neurons/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Neuropeptide Y/metabolism , Neuropeptide Y/genetics , Rats, Wistar , Glial Fibrillary Acidic Protein/metabolism , Glial Fibrillary Acidic Protein/genetics , Parvalbumins/metabolism
20.
Development ; 147(12)2020 06 15.
Article in English | MEDLINE | ID: mdl-32540847

ABSTRACT

In the developing neocortex, radially migrating neurons stop migration and form layers beneath the marginal zone (MZ). Reelin plays essential roles in these processes via its receptors, apolipoprotein E receptor 2 (ApoER2) and very low density lipoprotein receptor (VLDLR). Although we recently reported that reelin causes neuronal aggregation via ApoER2, which is thought to be important for the subsequent layer formation, it remains unknown what effect reelin exerts via the VLDLR. Here, we found that ectopic reelin overexpression in the Vldlr-mutant mouse cortex causes neuronal aggregation, but without an MZ-like cell-sparse central region that is formed when reelin is overexpressed in the normal cortex. We also found that both the early-born and late-born Vldlr-deficient neurons invade the MZ and exhibit impaired dendrite outgrowth from before birth. Rescue experiments indicate that VLDLR suppresses neuronal invasion into the MZ via a cell-autonomous mechanism, possibly mediated by Rap1, integrin and Akt. These results suggest that VLDLR is not a prerequisite for reelin-induced neuronal aggregation and that the major role of VLDLR is to suppress neuronal invasion into the MZ during neocortical development.


Subject(s)
Cell Adhesion Molecules, Neuronal/metabolism , Extracellular Matrix Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Receptors, LDL/metabolism , Serine Endopeptidases/metabolism , Animals , Cell Adhesion Molecules, Neuronal/genetics , Cerebral Cortex/metabolism , Dendrites/metabolism , Embryo, Mammalian/metabolism , Extracellular Matrix Proteins/genetics , Integrin alpha5/metabolism , LDL-Receptor Related Proteins/deficiency , LDL-Receptor Related Proteins/genetics , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Proto-Oncogene Proteins c-akt/metabolism , Pyramidal Cells/metabolism , Receptors, LDL/deficiency , Receptors, LDL/genetics , Reelin Protein , Serine Endopeptidases/genetics , rap1 GTP-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL