Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 881
Filter
Add more filters

Publication year range
1.
Mol Cell ; 82(7): 1246-1248, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35395198

ABSTRACT

Claussin et al. (2022) present an elegant approach to replication fork mapping that combines single-molecule resolution with genome-wide coverage to provide unprecedented insight into the robust nature of DNA replication.


Subject(s)
DNA Replication , Replicon , Replicon/genetics
2.
Nature ; 608(7924): 819-825, 2022 08.
Article in English | MEDLINE | ID: mdl-35831508

ABSTRACT

Telomeres, the natural ends of linear chromosomes, comprise repeat-sequence DNA and associated proteins1. Replication of telomeres allows continued proliferation of human stem cells and immortality of cancer cells2. This replication requires telomerase3 extension of the single-stranded DNA (ssDNA) of the telomeric G-strand ((TTAGGG)n); the synthesis of the complementary C-strand ((CCCTAA)n) is much less well characterized. The CST (CTC1-STN1-TEN1) protein complex, a DNA polymerase α-primase accessory factor4,5, is known to be required for telomere replication in vivo6-9, and the molecular analysis presented here reveals key features of its mechanism. We find that human CST uses its ssDNA-binding activity to specify the origins for telomeric C-strand synthesis by bound Polα-primase. CST-organized DNA polymerization can copy a telomeric DNA template that folds into G-quadruplex structures, but the challenges presented by this template probably contribute to telomere replication problems observed in vivo. Combining telomerase, a short telomeric ssDNA primer and CST-Polα-primase gives complete telomeric DNA replication, resulting in the same sort of ssDNA 3' overhang found naturally on human telomeres. We conclude that the CST complex not only terminates telomerase extension10,11 and recruits Polα-primase to telomeric ssDNA4,12,13 but also orchestrates C-strand synthesis. Because replication of the telomere has features distinct from replication of the rest of the genome, targeting telomere-replication components including CST holds promise for cancer therapeutics.


Subject(s)
DNA Replication , Replicon , Shelterin Complex , Telomere , DNA Primase/metabolism , DNA, Single-Stranded/genetics , DNA, Single-Stranded/metabolism , G-Quadruplexes , Humans , Replicon/genetics , Shelterin Complex/genetics , Shelterin Complex/metabolism , Telomerase/metabolism , Telomere/genetics , Telomere/metabolism
3.
PLoS Genet ; 19(7): e1010857, 2023 07.
Article in English | MEDLINE | ID: mdl-37494383

ABSTRACT

Borrelia burgdorferi, a causative agent of Lyme disease, contains the most segmented bacterial genome known to date, with one linear chromosome and over twenty plasmids. How this unusually complex genome is organized, and whether and how the different replicons interact are unclear. We recently demonstrated that B. burgdorferi is polyploid and that the copies of the chromosome and plasmids are regularly spaced in each cell, which is critical for faithful segregation of the genome to daughter cells. Regular spacing of the chromosome is controlled by two separate partitioning systems that involve the protein pairs ParA/ParZ and ParB/Smc. Here, using chromosome conformation capture (Hi-C), we characterized the organization of the B. burgdorferi genome and the interactions between the replicons. We uncovered that although the linear chromosome lacks contacts between the two replication arms, the two telomeres are in frequent contact. Moreover, several plasmids specifically interact with the chromosome oriC region, and a subset of plasmids interact with each other more than with others. We found that Smc and the Smc-like MksB protein mediate long-range interactions on the chromosome, but they minimally affect plasmid-chromosome or plasmid-plasmid interactions. Finally, we found that disruption of the two partition systems leads to chromosome restructuring, correlating with the mis-positioning of chromosome oriC. Altogether, this study revealed the conformation of a complex genome and analyzed the contribution of the partition systems and SMC family proteins to this organization. This work expands the understanding of the organization and maintenance of multipartite bacterial genomes.


Subject(s)
Borrelia burgdorferi , Borrelia burgdorferi/genetics , Plasmids/genetics , Replicon/genetics , Genome, Bacterial , Telomere , Bacterial Proteins/genetics , DNA, Bacterial/genetics
4.
Proc Natl Acad Sci U S A ; 120(26): e2304082120, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37339222

ABSTRACT

A synthetic biology approach toward constructing an RNA-based genome expands our understanding of living things and opens avenues for technological advancement. For the precise design of an artificial RNA replicon either from scratch or based on a natural RNA replicon, understanding structure-function relationships of RNA sequences is critical. However, our knowledge remains limited to a few particular structural elements intensively studied so far. Here, we conducted a series of site-directed mutagenesis studies of yeast narnaviruses ScNV20S and ScNV23S, perhaps the simplest natural autonomous RNA replicons, to identify RNA elements required for maintenance and replication. RNA structure disruption corresponding to various portions of the entire narnavirus genome suggests that pervasive RNA folding, in addition to the precise secondary structure of genome termini, is essential for maintenance of the RNA replicon in vivo. Computational RNA structure analyses suggest that this scenario likely applies to other "narna-like" viruses. This finding implies selective pressure on these simplest autonomous natural RNA replicons to fold into a unique structure that acquires both thermodynamic and biological stability. We propose the importance of pervasive RNA folding for the design of RNA replicons that could serve as a platform for in vivo continuous evolution as well as an interesting model to study the origin of life.


Subject(s)
RNA Viruses , RNA, Viral , RNA, Viral/genetics , RNA, Viral/chemistry , RNA Folding , Genome, Viral/genetics , RNA Viruses/genetics , Base Sequence , Replicon/genetics , Virus Replication
5.
Trends Genet ; 38(10): 987-988, 2022 10.
Article in English | MEDLINE | ID: mdl-35643778

ABSTRACT

Claussin et al. introduce Replicon-seq, a new genome-wide DNA sequencing technology that monitors the progression of individual replisomes at high resolution in vivo.


Subject(s)
DNA Replication , Replicon , DNA , DNA Helicases/metabolism , Replicon/genetics
6.
J Virol ; 97(11): e0122523, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37877718

ABSTRACT

IMPORTANCE: Alphavirus replicons are being developed as self-amplifying RNAs aimed at improving the efficacy of mRNA vaccines. These replicons are convenient for genetic manipulations and can express heterologous genetic information more efficiently and for a longer time than standard mRNAs. However, replicons mimic many aspects of viral replication in terms of induction of innate immune response, modification of cellular transcription and translation, and expression of nonstructural viral genes. Moreover, all replicons used in this study demonstrated expression of heterologous genes in cell- and replicon's origin-specific modes. Thus, many aspects of the interactions between replicons and the host remain insufficiently investigated, and further studies are needed to understand the biology of the replicons and their applicability for designing a new generation of mRNA vaccines. On the other hand, our data show that replicons are very flexible expression systems, and additional modifications may have strong positive impacts on protein expression.


Subject(s)
Alphavirus , Gene Expression Regulation, Viral , Host Microbial Interactions , Replicon , Viral Proteins , Alphavirus/genetics , Alphavirus/metabolism , mRNA Vaccines/genetics , Replicon/genetics , Virus Replication/genetics , RNA, Viral/biosynthesis , RNA, Viral/genetics , Host Microbial Interactions/genetics , Viral Proteins/biosynthesis , Viral Proteins/genetics
7.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Article in English | MEDLINE | ID: mdl-33766889

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) research and antiviral discovery are hampered by the lack of a cell-based virus replication system that can be readily adopted without biosafety level 3 (BSL-3) restrictions. Here, the construction of a noninfectious SARS-CoV-2 reporter replicon and its application in deciphering viral replication mechanisms and evaluating SARS-CoV-2 inhibitors are presented. The replicon genome is replication competent but does not produce progeny virions. Its replication can be inhibited by RdRp mutations or by known SARS-CoV-2 antiviral compounds. Using this system, a high-throughput antiviral assay has also been developed. Significant differences in potencies of several SARS-CoV-2 inhibitors in different cell lines were observed, which highlight the challenges of discovering antivirals capable of inhibiting viral replication in vivo and the importance of testing compounds in multiple cell culture models. The generation of a SARS-CoV-2 replicon provides a powerful platform to expand the global research effort to combat COVID-19.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/virology , High-Throughput Screening Assays/methods , Replicon/drug effects , SARS-CoV-2/drug effects , A549 Cells , Animals , Chlorocebus aethiops , Coronavirus RNA-Dependent RNA Polymerase/genetics , HEK293 Cells , Humans , Replicon/genetics , SARS-CoV-2/genetics , Vero Cells , Virus Replication/drug effects
8.
Int J Mol Sci ; 25(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39125914

ABSTRACT

Multiple drug resistance (MDR) has gained pronounced attention among Enterobacterales. The transfer of multiple antimicrobial resistance genes, frequently carried on conjugative incompatibility F (IncF) plasmids and facilitating interspecies resistance transmission, has been linked to Salmonella spp. and E. coli in broilers. In Egypt, the growing resistance is exacerbated by the limited clinical efficacy of many antimicrobials. In this study, IncF groups were screened and characterized in drug-resistant Salmonella spp. and E. coli isolated from broilers. The antimicrobial resistance profile, PCR-based replicon typing of bacterial isolates pre- and post-plasmid curing, and IncF replicon allele sequence typing were investigated. Five isolates of E. coli (5/31; 16.13%) and Salmonella spp. (5/36; 13.89%) were pan-susceptible to the examined antimicrobial agents, and 85.07% of tested isolates were MDR and extensively drug-resistant (XDR). Twelve MDR and XDR E. coli and Salmonella spp. isolates were examined for the existence of IncF replicons (FII, FIA, and FIB). They shared resistance to ampicillin, ampicillin/sulbactam, amoxicillin/clavulanate, doxycycline, cefotaxime, and colistin. All isolates carried from one to two IncF replicons. The FII-FIA-FIB+ and FII-FIA+FIB- were the predominant replicon patterns. FIB was the most frequently detected replicon after plasmid curing. Three XDR E. coli isolates that were resistant to 12-14 antimicrobials carried a newly FIB replicon allele with four nucleotide substitutions: C99→A, G112→T, C113→T, and G114→A. These findings suggest that broilers are a significant reservoir of IncF replicons with highly divergent IncF-FIB plasmid incompatibility groups circulating among XDR Enterobacterales. Supporting these data with additional comprehensive epidemiological studies involving replicons other than the IncF can provide insights for implementing efficient policies to prevent the spreading of new replicons to humans.


Subject(s)
Alleles , Chickens , Drug Resistance, Multiple, Bacterial , Escherichia coli Infections , Escherichia coli , Plasmids , Poultry Diseases , Replicon , Animals , Chickens/microbiology , Escherichia coli/genetics , Escherichia coli/drug effects , Replicon/genetics , Drug Resistance, Multiple, Bacterial/genetics , Plasmids/genetics , Poultry Diseases/microbiology , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Salmonella/genetics , Salmonella/drug effects
9.
J Virol ; 96(7): e0173621, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35297668

ABSTRACT

Translation of plant plus-strand RNA viral genomes that lack a 5' cap frequently requires the use of cap-independent translation enhancers (CITEs) located in or near the 3' untranslated region (UTR). 3'CITEs are grouped based on secondary structure and ability to interact with different translation initiation factors or ribosomal subunits, which assemble a complex at the 3' end that is nearly always transferred to the 5' end via a long-distance kissing-loop interaction between sequences in the 3'CITE and 5' hairpins. We report here the identification of a novel 3'CITE in coat protein-deficient RNA replicons that are related to umbraviruses. Umbra-like associated RNAs (ulaRNAs), such as citrus yellow vein-associated virus (CYVaV), are a new type of subviral RNA that do not encode movement proteins, coat proteins, or silencing suppressors but can independently replicate using their encoded RNA-dependent RNA polymerase. An extended hairpin structure containing multiple internal loops in the 3' UTR of CYVaV is strongly conserved in the most closely related ulaRNAs and structurally resembles an I-shaped structure (ISS) 3'CITE. However, unlike ISS, the CYVaV structure binds to eIF4G and no long-distance interaction is discernible between the CYVaV ISS-like structure and sequences at or near the 5' end. We also report that the ∼30-nucleotide (nt) 5' terminal hairpin of CYVaV and related ulaRNAs can enhance translation of reporter constructs when associated with either the CYVaV 3'CITE or the 3'CITEs of umbravirus pea enation mosaic virus (PEMV2) and even independent of a 3'CITE. These findings introduce a new type of 3'CITE and provide the first information on translation of ulaRNAs. IMPORTANCE Umbra-like associated RNAs (ulaRNAs) are a recently discovered type of subviral RNA that use their encoded RNA-dependent RNA polymerase for replication but do not encode any coat proteins, movement proteins, or silencing suppressors yet can be found in plants in the absence of any discernible helper virus. We report the first analysis of their translation using class 2 ulaRNA citrus yellow vein-associated virus (CYVaV). CYVaV uses a novel eIF4G-binding I-shaped structure as its 3' cap-independent translation enhancer (3'CITE), which does not connect with the 5' end by a long-distance RNA:RNA interaction that is typical of 3'CITEs. ulaRNA 5' terminal hairpins can also enhance translation in association with cognate 3'CITEs or those of related ulaRNAs and, to a lesser extent, with 3'CITEs of umbraviruses, or even independent of a 3'CITE. These findings introduce a new type of 3'CITE and provide the first information on translation of ulaRNAs.


Subject(s)
Enhancer Elements, Genetic , Tombusviridae , 3' Untranslated Regions/genetics , Enhancer Elements, Genetic/genetics , Eukaryotic Initiation Factor-4G/metabolism , Protein Biosynthesis , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Replicon/genetics , Tombusviridae/genetics
10.
J Virol ; 96(7): e0185821, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35293773

ABSTRACT

Self-amplifying (sa) RNA molecules-"replicons"-derived from the genomes of positive-sense RNA viruses are receiving increasing attention as gene and vaccine delivery vehicles. This is because mRNA forms of genes of interest can be incorporated into them and strongly amplified, thereby enhancing target protein expression. In this report, we demonstrate a nonmonotonic dependence of protein expression on the mass of transfected replicon, in contrast to the usual, monotonic case of non-saRNA transfections. We lipotransfected a variety of cell lines with increasing masses of enhanced yellow fluorescent protein (eYFP) as a reporter gene in sa form and found that there is a "sweet spot" at which protein expression and cell viability are optimum. To control the varying mass of transfected replicon RNA for a given mass of Lipofectamine, the replicons were mixed with a "carrier" RNA that is neither replicated nor translated; the total mass of transfected RNA was kept constant while increasing the fraction of the replicon from zero to one. Fluorescence microscopy studies showed that the optimum protein expression and cell viability are achieved for replicon fractions as small as 1/10 of the total transfected RNA, and these results were quantified by a systematic series of flow cytometry measurements. IMPORTANCE Positive-sense RNA viruses often have a cytotoxic effect on their host cell because of the strength of their RNA replicase proteins, even though only one copy of their genome begins the viral life cycle in each cell. Noninfectious forms of them-replicons-which include just their RNA replication-related genes, are also strongly self-amplifying and cytotoxic. Accordingly, when replicons fused with nonviral genes of interest are transfected into cells to amplify expression of proteins of interest, one needs to keep the replicon "dose" sufficiently low. We demonstrate how to control the number of RNA replicons getting into transfected cells and that there is a sweet spot for the replicon dose that optimizes protein expression and cell viability. Examples are given for the case of Nodamura viral replicons with fluorescent protein reporter genes in a variety of mammalian cell lines, quantified by flow cytometry and live/dead cell assays.


Subject(s)
Protein Biosynthesis , RNA , Replicon , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Line , Genes, Reporter/genetics , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mammals/genetics , Protein Biosynthesis/genetics , RNA/genetics , RNA, Viral/genetics , Replicon/genetics , Transfection
11.
Plant Cell ; 32(7): 2132-2140, 2020 07.
Article in English | MEDLINE | ID: mdl-32327538

ABSTRACT

Gene copy number variation is a predominant mechanism used by organisms to respond to selective pressures from the environment. This often results in unbalanced structural variations that perpetuate as adaptations to sustain life. However, the underlying mechanisms that give rise to gene proliferation are poorly understood. Here, we show a unique result of genomic plasticity in Amaranthus palmeri: a massive, ∼400-kb extrachromosomal circular DNA (eccDNA) that harbors the 5-ENOYLPYRUVYLSHIKIMATE-3-PHOSPHATE SYNTHASE (EPSPS) gene and 58 other genes whose encoded functions traverse detoxification, replication, recombination, transposition, tethering, and transport. Gene expression analysis under glyphosate stress showed transcription of 41 of these 59 genes, with high expression of EPSPS, as well as genes coding for aminotransferases, zinc finger proteins, and several uncharacterized proteins. The genomic architecture of the eccDNA replicon is composed of a complex arrangement of repeat sequences and mobile genetic elements interspersed among arrays of clustered palindromes that may be crucial for stability, DNA duplication and tethering, and/or a means of nuclear integration of the adjacent and intervening sequences. Comparative analysis of orthologous genes in grain amaranth (Amaranthus hypochondriacus) and waterhemp (Amaranthus tuberculatus) suggests that higher order chromatin interactions contribute to the genomic origins of the A. palmeri eccDNA replicon structure.


Subject(s)
Amaranthus/genetics , DNA, Circular/genetics , Glycine/analogs & derivatives , Herbicide Resistance/genetics , Replicon/genetics , Amaranthaceae/genetics , Amaranthus/drug effects , Chromosomes, Plant , DNA, Plant , Gene Amplification , Gene Expression Regulation, Plant , Genome, Plant/genetics , Glycine/pharmacology , Repetitive Sequences, Nucleic Acid , Synteny , Glyphosate
12.
Nucleic Acids Res ; 49(2): 832-846, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33406256

ABSTRACT

The Salmonella genomic island 1 (SGI1) and its variants are mobilized by IncA and IncC conjugative plasmids. SGI1-family elements and their helper plasmids are effective transporters of multidrug resistance determinants. SGI1 exploits the transfer apparatus of the helper plasmid and hijacks its activator complex, AcaCD, to trigger the expression of several SGI1 genes. In this way, SGI1 times its excision from the chromosome to the helper entry and expresses mating pore components that enhance SGI1 transfer. The SGI1-encoded T4SS components and the FlhDC-family activator proved to be interchangeable with their IncC-encoded homologs, indicating multiple interactions between SGI1 and its helpers. As a new aspect of this crosstalk, we report here the helper-induced replication of SGI1, which requires both activators, AcaCD and FlhDCSGI1, and significantly increases the stability of SGI1 when coexists with the helper plasmid. We have identified the oriVSGI1 and shown that S004-repA operon encodes for a translationally coupled leader protein and an IncN2/N3-related RepA that are expressed under the control of the AcaCD-responsive promoter PS004. This replicon transiently maintains SGI1 as a 4-8-copy plasmid, not only stabilizing the island but also contributing to the fast displacement of the helper plasmid.


Subject(s)
Bacterial Proteins/genetics , Chromosomes, Bacterial/genetics , Conjugation, Genetic/genetics , Drug Resistance, Multiple, Bacterial/genetics , Interspersed Repetitive Sequences/genetics , Salmonella typhimurium/genetics , Bacterial Proteins/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism , DNA Replication , Gene Dosage , Gene Expression Regulation, Bacterial/genetics , Genes, Reporter , Integrases/metabolism , Operon/genetics , Phylogeny , Plasmids/genetics , Promoter Regions, Genetic/genetics , Protein Biosynthesis , Recombinases/metabolism , Replicon/genetics , Sequence Alignment , Trans-Activators/genetics , Trans-Activators/metabolism
13.
Biotechnol Lett ; 45(8): 1029-1038, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37266878

ABSTRACT

Self-replicating RNA (repRNA) derived from Venezuelan equine encephalitis (VEE) virus is a promising platform for gene therapy and confers prolonged gene expression due to its self-replicating capability, but repRNA suffers from a suboptimal transgene expression level due to its induction of intracellular innate response which may result in inhibition of translation. To improve transgene expression of repRNA, we introduced point mutations in the non-structural protein 1-4 (nsP1-4) coding region of VEE replicon vectors. As a proof of concept, inflammatory cytokines served as genes of interest and were cloned in their wild type and several mutant replicon vectors, followed by transfection in mammalian cells. Our data show that VEE replicons bearing nsP1GGAC-nsP2T or nsP1GGAC-nsP2AT mutations in the nsP1-4 coding region could significantly reduce the recognition by innate immunity as evidenced by the decreased production of type I interferon, and enhance transgene expression in host cells. Thus, the newly discovered mutant VEE replicon vectors could serve as promising gene expression platforms to advance VEE-derived repRNA-based gene therapies.


Subject(s)
Encephalitis Virus, Venezuelan Equine , Animals , Encephalitis Virus, Venezuelan Equine/genetics , Cell Line , Open Reading Frames , RNA/metabolism , Replicon/genetics , Mutation , Gene Expression , Mammals/genetics
14.
Nanomedicine ; 49: 102655, 2023 04.
Article in English | MEDLINE | ID: mdl-36681171

ABSTRACT

Herein, we provide the first description of a synthetic delivery method for self-replicating replicon RNAs (RepRNA) derived from classical swine fever virus (CSFV) using a Coatsome-replicon vehicle based on Coatsome® SS technologies. This results in an unprecedented efficacy when compared to well-established polyplexes, with up to ∼65 fold-increase of the synthesis of RepRNA-encoded gene of interest (GOI). We demonstrated the efficacy of such Coatsome-replicon vehicles for RepRNA-mediated induction of CD8 T-cell responses in mice. Moreover, we provide new insights on physical properties of the RepRNA, showing that the removal of all CSFV structural protein genes has a positive effect on the translation of the GOI. Finally, we successfully engineered RepRNA constructs encoding a porcine reproductive and respiratory syndrome virus (PRRSV) antigen, providing an example of antigen expression with potential application to combat viral diseases. The versatility and simplicity of modifying and manufacturing these Coatsome-replicon vehicle formulations represents a major asset to tackle foreseeable emerging pandemics.


Subject(s)
Communicable Diseases , RNA , Swine , Mice , Animals , RNA/genetics , Antigens , Communicable Diseases/genetics , Replicon/genetics
15.
Proc Natl Acad Sci U S A ; 117(42): 26366-26373, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33024016

ABSTRACT

Agrobacterium tumefaciens C58 contains four replicons, circular chromosome (CC), linear chromosome (LC), cryptic plasmid (pAt), and tumor-inducing plasmid (pTi), and grows by polar growth from a single growth pole (GP), while the old cell compartment and its old pole (OP) do not elongate. We monitored the replication and segregation of these four genetic elements during polar growth. The three largest replicons (CC, LC, pAt) reside in the OP compartment prior to replication; post replication one copy migrates to the GP prior to division. CC resides at a fixed location at the OP and replicates first. LC does not stay fixed at the OP once the cell cycle begins and replicates from varied locations 20 min later than CC. pAt localizes similarly to LC prior to replication, but replicates before the LC and after the CC. pTi does not have a fixed location, and post replication it segregates randomly throughout old and new cell compartments, while undergoing one to three rounds of replication during a single cell cycle. Segregation of the CC and LC is dependent on the GP and OP identity factors PopZ and PodJ, respectively. Without PopZ, replicated CC and LC do not efficiently partition, resulting in sibling cells without CC or LC. Without PodJ, the CC and LC exhibit abnormal localization to the GP at the beginning of the cell cycle and replicate from this position. These data reveal PodJ plays an essential role in CC and LC tethering to the OP during early stages of polar growth.


Subject(s)
Agrobacterium tumefaciens/genetics , Chromosome Segregation/genetics , Replicon/genetics , Agrobacterium tumefaciens/growth & development , Bacterial Proteins/metabolism , Cell Cycle/genetics , Cell Cycle Proteins/metabolism , Cell Division/genetics , Chromosomes, Bacterial/metabolism
16.
Biochem Biophys Res Commun ; 637: 181-188, 2022 12 31.
Article in English | MEDLINE | ID: mdl-36403481

ABSTRACT

The Chikungunya virus (CHIKV), an enveloped RNA virus that has been identified in over 40 countries and is considered a growing threat to public health worldwide. However, there is no preventive vaccine or specific therapeutic drug for CHIKV infection. To identify a new inhibitor against CHIKV infection, this study constructed a subgenomic RNA replicon expressing the secretory Gaussia luciferase (Gluc) based on the CHIKV SL11131 strain. Transfection of in vitro-transcribed replicon RNA to BHK-21 cells revealed that Gluc activity in culture supernatants was correlated with the intracellular replication of the replicon genome. Through a chemical compound library screen using the Gluc reporter CHIKV replicon, we identified several compounds that suppressed CHIKV infection in Vero cells. Among the hits identified, CP-154,526, a non-peptide antagonist of the corticotropin-releasing factor receptor type-1 (CRF-R1), showed the strongest anti-CHIKV activity and inhibited CHIKV infection in Huh-7 cells. Interestingly, other CRF-R1 antagonists, R121919 and NGD 98-2, also exhibited inhibitory effects on CHIKV infection. Time-of-drug addition and virus entry assays indicated that CP-154,526 suppressed a post-entry step of infection, suggesting that CRF-R1 antagonists acted on a target in the intracellular replication process of CHIKV. Therefore, the Gluc reporter replicon system established in this study would greatly facilitate the development of antiviral drugs against CHIKV infection.


Subject(s)
Arecaceae , Chikungunya Fever , Chikungunya virus , Copepoda , Chlorocebus aethiops , Animals , Chikungunya virus/genetics , Chikungunya Fever/drug therapy , Vero Cells , Corticotropin-Releasing Hormone , Replicon/genetics , Luciferases/genetics , Virus Replication
17.
J Virol ; 95(20): e0190620, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34346768

ABSTRACT

Characterized positive-strand RNA viruses replicate in association with intracellular membranes. Regarding viruses in the genus Potexvirus, the mechanism by which their RNA-dependent RNA polymerase (replicase) associates with membranes is understudied. Here, by membrane flotation analyses of the replicase of Plantago asiatica mosaic potexvirus (PlAMV), we identified a region in the methyltransferase (MET) domain as a membrane association determinant. An amphipathic α-helix was predicted downstream from the core region of the MET domain, and hydrophobic amino acid residues were conserved in the helical sequences in replicases of other potexviruses. Nuclear magnetic resonance (NMR) analysis confirmed the amphipathic α-helical configuration and unveiled a kink caused by a highly conserved proline residue in the α-helix. Substitution of this proline residue and other hydrophobic and charged residues in the amphipathic α-helix abolished PlAMV replication. Ectopic expression of a green fluorescent protein (GFP) fusion with the entire MET domain resulted in the formation of a large perinuclear complex, where virus replicase and RNA colocated during virus infection. Except for the proline substitution, the amino acid substitutions in the α-helix that abolished virus replication also prevented the formation of the large perinuclear complex by the respective GFP-MET fusion. Small intracellular punctate structures were observed for all GFP-MET fusions, and in vitro high-molecular-weight complexes were formed by both replication-competent and -incompetent viral replicons and thus were not sufficient for replication competence. We discuss the roles of the potexvirus-specific, proline-kinked amphipathic helical structure in virus replication and intracellular large complex and punctate structure formation. IMPORTANCE RNA viruses characteristically associate with intracellular membranes during replication. Although virus replicases are assumed to possess membrane-targeting properties, their membrane association domains generally remain unidentified or poorly characterized. Here, we identified a proline-kinked amphipathic α-helix structure downstream from the methyltransferase core domain of PlAMV replicase as a membrane association determinant. This helical sequence, which includes the proline residue, was conserved among potexviruses and related viruses in the order Tymovirales. Substitution of the proline residue, but not the other residues necessary for replication, allowed formation of a large perinuclear complex within cells resembling those formed by PlAMV replicase and RNA during virus replication. Our results demonstrate the role of the amphipathic α-helix in PlAMV replicase in a perinuclear complex formation and virus replication and that perinuclear complex formation by the replicase alone will not necessarily indicate successful virus replication.


Subject(s)
Potexvirus/genetics , Potexvirus/metabolism , Viral Replicase Complex Proteins/genetics , Amino Acid Sequence/genetics , Membrane Proteins/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Plant Diseases/virology , Proline/genetics , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Replicon/genetics , Nicotiana/virology , Viral Proteins/metabolism , Viral Replicase Complex Proteins/metabolism , Virus Replication/genetics
18.
Avian Pathol ; 51(4): 349-360, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35417283

ABSTRACT

Globally, avian colibacillosis is a leading cause of morbidity and mortality in poultry, associated with economic losses and welfare problems. Here, clinical avian pathogenic E. coli isolates (CEC; n = 50) and faecal E. coli isolates from healthy (FEC; n = 187) Australian meat chickens collected between 2006 and 2014 were subjected to antimicrobial susceptibility testing, phylogenetic grouping, plasmid replicon (PR) typing, multilocus sequence typing, and virulence gene (VG) profiling. Extended-spectrum cephalosporin (ESC)- and fluoroquinolone (FQ)-resistant E. coli isolates underwent further genetic characterization. Significant proportions of CEC and FEC were, respectively, susceptible (13/50; 48/187) or MDR (9/50; 26/187) to 20 tested antimicrobials. Phylogenetic groups A and C, and PR types IncFIB and IncFrep were most represented. Five tested CEC-associated VGs were more prevalent in CEC (≥ 90%) than FEC (≤ 58%). Some isolates (CEC n = 3; FEC n = 7) were resistant to ESCs and/or FQs and possessed signature mutations in chromosomal FQ target genes and plasmid-mediated qnrS, blaCMY-2, and blaDHA-1 genes. Sequence type 354 (n = 4), associated with extraintestinal infections in a broad range of hosts, was prevalent among ESC- and/or FQ-resistant FEC. This study confirmed existence of a small reservoir of ESC- and FQ-resistant E. coli in Australian commercial meat chickens despite absence of use in the industry of these drugs. Otherwise, diversity of VGs and PR types in both FEC and CEC populations was identified. We hypothesize that the source of ESC- and FQ-resistant E. coli is external to poultry production facilities.RESEARCH HIGHLIGHTSLow-level resistance to older and newer generation antimicrobial drugs detected.The most common sequence type (ST) associated with FQ resistance was ST354 (4/10).A small proportion of CEC (n = 3) and FEC (n = 7) were resistant to ESCs and/or FQs.


Subject(s)
Escherichia coli Infections , Poultry Diseases , Animals , Anti-Bacterial Agents/pharmacology , Australia/epidemiology , Cephalosporins , Chickens/genetics , Escherichia coli , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Fluoroquinolones , Microbial Sensitivity Tests/veterinary , Phylogeny , Plasmids/genetics , Poultry , Poultry Diseases/epidemiology , Poultry Diseases/genetics , Replicon/genetics , Virulence/genetics , beta-Lactamases/genetics
19.
BMC Vet Res ; 18(1): 421, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36447231

ABSTRACT

BACKGROUND: Antimicrobial resistance (AMR) in bacterial isolates from food producing animals not only challenges the preventive and therapeutic strategies in veterinary medicine, but also threatens public health. Genetic elements placed on both chromosome and plasmids could be involved in AMR. In the present study, the associations of genomic backbone and plasmids with AMR were evaluated. We also provided some primary evidences that which genetic lineages potentially host certain groups of plasmids. RESULTS: In the current study, 72 avian pathogenic Escherichia coli (APEC) strains were examined. Isolates resistant to tetracycline and trimethoprim-sulfamethoxazole (87.5%; each), and harboring blaTEM (61.1%) were dominant. Moreover, phylogroup D was the most prevalent phylogroup in total (23.6%), and among multidrug-resistant (MDR) isolates (14/63). The most prevalent Inc-types were also defined as follows: IncP (65.2%), IncI1 (58.3%), and IncF group (54.1%). Significant associations among phylogroups and AMR were observed such as group C to neomycin (p = 0.002), gentamicin (p = 0.017) and florfenicol (p = 0.036). Furthermore, group D was associated with blaCTX. In terms of associations among Inc-types and AMR, resistance to aminoglycoside antibiotics was considerably linked with IncP (p = 0.012), IncI1 (p = 0.038) and IncA/C (p = 0.005). The blaTEM and blaCTX genes presence were connected with IncI1 (p = 0.003) and IncFIC (p = 0.013), respectively. It was also shown that members of the D phylogroup frequently occured in replicon types FIC (8/20), P (13/47), I1 (13/42), HI2 (5/14) and L/M (3/3). CONCLUSIONS: Accorging to the results, it seems that group D strains have a great potential to host a variety of plasmids (Inc-types) carrying different AMR genes. Thus, based on the results of the current study, phyogroup D could be a potential challenge in dealing with AMR in poultry. There were more strong correlations among Inc-types and AMR compared to phylotypes and AMR. It is suggested that in epidemiological studies on AMR both genomic backbone and major plasmid types should be investigated.


Subject(s)
Escherichia coli Infections , Escherichia coli , Animals , Escherichia coli/genetics , Virulence , Anti-Bacterial Agents/pharmacology , Phylogeny , Drug Resistance, Bacterial/genetics , Escherichia coli Infections/veterinary , Plasmids/genetics , Replicon/genetics , Birds
20.
PLoS Genet ; 15(9): e1008320, 2019 09.
Article in English | MEDLINE | ID: mdl-31513569

ABSTRACT

In all kingdoms of life, DNA is used to encode hereditary information. Propagation of the genetic material between generations requires timely and accurate duplication of DNA by semiconservative replication prior to cell division to ensure each daughter cell receives the full complement of chromosomes. DNA synthesis of daughter strands starts at discrete sites, termed replication origins, and proceeds in a bidirectional manner until all genomic DNA is replicated. Despite the fundamental nature of these events, organisms have evolved surprisingly divergent strategies that control replication onset. Here, we discuss commonalities and differences in replication origin organization and recognition in the three domains of life.


Subject(s)
DNA Replication/genetics , DNA Replication/physiology , Replication Origin/genetics , Biological Evolution , Cell Division/genetics , Chromosomes/genetics , Evolution, Molecular , Replicon/genetics
SELECTION OF CITATIONS
SEARCH DETAIL