Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 133
Filter
Add more filters

Publication year range
1.
PLoS Pathog ; 18(12): e1011045, 2022 12.
Article in English | MEDLINE | ID: mdl-36542675

ABSTRACT

Since its recognition in 1994 as the causative agent of human flea-borne spotted fever, Rickettsia felis, has been detected worldwide in over 40 different arthropod species. The cat flea, Ctenocephalides felis, is a well-described biological vector of R. felis. Unique to insect-borne rickettsiae, R. felis can employ multiple routes of infection including inoculation via salivary secretions and potentially infectious flea feces into the skin of vertebrate hosts. Yet, little is known of the molecular interactions governing flea infection and subsequent transmission of R. felis. While the obligate intracellular nature of rickettsiae has hampered the function of large-scale mutagenesis strategies, studies have shown the efficiency of mariner-based transposon systems in Rickettsiales. Thus, this study aimed to assess R. felis genetic mutants in a flea transmission model to elucidate genes involved in vector infection. A Himar1 transposase was used to generate R. felis transformants, in which subsequent genome sequencing revealed a transposon insertion near the 3' end of sca1. Alterations in sca1 expression resulted in unique infection phenotypes. While the R. felis sca1::tn mutant portrayed enhanced growth kinetics compared to R. felis wild-type during in vitro culture, rickettsial loads were significantly reduced during flea infection. As a consequence of decreased rickettsial loads within infected donor fleas, R. felis sca1::tn exhibited limited transmission potential. Thus, the use of a biologically relevant model provides evidence of a defective phenotype associated with R. felis sca1::tn during flea infection.


Subject(s)
Ctenocephalides , Felis , Rickettsia Infections , Rickettsia felis , Rickettsia , Siphonaptera , Animals , Humans , Siphonaptera/genetics , Siphonaptera/microbiology , Rickettsia felis/genetics , Rickettsia Infections/microbiology , Ctenocephalides/genetics , Ctenocephalides/microbiology , Phenotype
2.
Med Vet Entomol ; 36(1): 20-29, 2022 03.
Article in English | MEDLINE | ID: mdl-34455608

ABSTRACT

Fleas are important in public health due to their role as parasites and vectors of pathogens, including Rickettsia. The aim of this study was to evaluate the diversity, abundance and prevalence of fleas and the presence of Rickettsia in the trifinio of north-east Argentina. Fleas from household and synanthropic animals were obtained from urban and periurban areas. They were taxonomically identified and samples of 227 fleas in 86 pools were analysed by polymerase chain reaction targeting the gltA and ompB genes of Rickettsia spp. The study revealed that Ctenocephalides felis felis was dominant on dogs, cats and opossums, with higher prevalence in the periurban area. The Shannon-Wiener and Morisita-Horn indices expressed differences in the diversity and similarity values of the absolute abundances of the species between the areas compared. DNA amplifications revealed 30.8% C. f. felis pools positive for Rickettsia spp. Phylogenetic analysis showed that the haplotype obtained was identical to Rickettsia asembonensis from Peru and Brazil. This is the first detection in Argentina of R. asembonensis that infects C. f. felis, and we emphasize the importance of conducting research from a 'One Health' perspective on the role of opossums and rodents in the integration of the transmission cycles of rickettsial bacteria.


Subject(s)
Ctenocephalides , Dog Diseases , Felis , Flea Infestations , Rickettsia felis , Rickettsia , Siphonaptera , Animals , Argentina , Ctenocephalides/microbiology , Dog Diseases/parasitology , Dogs , Flea Infestations/epidemiology , Flea Infestations/parasitology , Flea Infestations/veterinary , Phylogeny , Rickettsia/genetics , Rickettsia felis/genetics , Siphonaptera/microbiology
3.
Med Vet Entomol ; 34(4): 498-502, 2020 12.
Article in English | MEDLINE | ID: mdl-32432803

ABSTRACT

Rickettsia are obligate intracellular pathogens transmitted by arthropod vectors. The re-emergence of several rickettsioses imposes severe global health burden. In addition to the well-established rickettsial pathogens, newer rickettsial species and their pathogenic potentials are being uncovered. There are many reports of spotted and typhus fever caused by rickettsiae in India. Hence, in this study we screened the ectoparasites of pet and domestic animals for the presence of rickettsia using polymerase chain reaction. Nine cat flea samples (Ctenocephalides felis felis), that tested positive for the presence of rickettsia were subjected to Multi Locus Sequence Typing. Nucleotide sequencing and Phylogenetic analysis of gltA, ompB and 16rrs genes revealed that the rickettsiae detected in cat fleas was Rickettsia asembonensis. Further studies are required to assess Rickettsia asembonensis pathogenic potential to human and its enzootic maintenance of in various hosts and vectors.


Subject(s)
Rickettsia Infections/transmission , Rickettsia/genetics , Siphonaptera/microbiology , Animals , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/genetics , Bacterial Zoonoses/microbiology , Bacterial Zoonoses/transmission , Ctenocephalides/microbiology , DNA, Bacterial/genetics , India/epidemiology , Insect Vectors/microbiology , Multilocus Sequence Typing/veterinary , Pathology, Molecular , Phylogeny , RNA, Ribosomal, 16S/genetics , Rickettsia/isolation & purification , Rickettsia Infections/microbiology , Rickettsia Infections/veterinary , Rickettsia felis/genetics
4.
Emerg Infect Dis ; 21(10): 1808-15, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26402580

ABSTRACT

Rickettsia felis has been reported to be a cause of fever in sub-Saharan Africa, but this association has been poorly evaluated in Gabon. We assessed the prevalence of this bacterium among children <15 years of age in 4 areas of Gabon; the locations were in urban, semiurban, and rural areas. DNA samples from 410 febrile children and 60 afebrile children were analyzed by quantitative PCR. Overall, the prevalence of R. felis among febrile and afebrile children was 10.2% (42/410 children) and 3.3% (2/60 children), respectively. Prevalence differed among febrile children living in areas that are urban (Franceville, 1.3% [1/77]), semiurban (Koulamoutou, 2.1% [3/141]), and rural (Lastourville, 11.2% [15/134]; Fougamou, 39.7% [23/58]). Furthermore, in a rural area (Fougamou), R. felis was significantly more prevalent in febrile (39.7% [23/58]) than afebrile children (5.0% [1/20]). Additional studies are needed to better understand the pathogenic role of R. felis in this part of the world.


Subject(s)
Fever/etiology , Rickettsia felis/pathogenicity , Adolescent , Child , Child, Preschool , Female , Fever/epidemiology , Gabon/epidemiology , Humans , Infant , Male , Rickettsia felis/genetics
5.
Mol Ecol ; 24(6): 1364-73, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25677805

ABSTRACT

Fleas are acknowledged vectors and reservoirs of various bacteria that present a wide range of pathogenicity. In this study, fleas collected from wild rodents from the Negev desert in southern Israel were tested for RickettsiaDNA by targeting the 16S rRNA (rrs) gene. Thirty-eight Xenopsylla ramesis, 91 Synosternus cleopatrae and 15 Leptopsylla flea pools (a total of 568 fleas) were screened. RickettsiaDNA was detected in 100% of the X. ramesis and in one S. cleopatrae flea pools. None of L. algira flea pools was found positive. All positive flea pools were further characterized by sequencing of five additional genetic loci (gltA, ompB, ompA, htrA and fusA). The molecular identification of the positive samples showed all sequences to be closely related to the 'Rickettsia felis-like' organisms (99-100% similarities in the six loci). To further investigate the association between 'R. felis-like' and X. ramesis fleas, ten additional single X. ramesis adult fleas collected from the wild and five laboratory-maintained X. ramesis imago, five larva pools (2-18 larvae per pool) and two egg pools (18 eggs per pool) were tested for the presence of 'R. felis-like' DNA. All samples were found positive by a specific ompAPCR assay, confirming the close association of this Rickettsia species with X. ramesis in all its life stages. These results suggest a symbiotic association between 'Rickettsia felis-like' and X. ramesis fleas.


Subject(s)
Rickettsia felis/genetics , Symbiosis , Xenopsylla/microbiology , Animals , DNA, Bacterial/genetics , Genes, Bacterial , Israel , RNA, Ribosomal, 16S/genetics , Rodentia/parasitology , Sequence Analysis, DNA
7.
World J Microbiol Biotechnol ; 31(11): 1747-54, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26289162

ABSTRACT

Murine typhus is a zoonosis transmitted by fleas, whose etiological agent is Rickettsia typhi. Rickettsia felis infection can produces similar symptoms. Both are intracellular microorganisms. Therefore, their diagnosis is difficult and their infections can be misdiagnosed. Early diagnosis prevents severity and inappropriate treatment regimens. Serology can't be applied during the early stages of infection because it requires seroconversion. Shell-vial (SV) culture assay is a powerful tool to detect Rickettsia. The aim of the study was to optimize SV using a real-time PCR as monitoring method. Moreover, the study analyzes which antibiotics are useful to isolate these microorganisms from fleas avoiding contamination by other bacteria. For the first purpose, SVs were inoculated with each microorganism. They were incubated at different temperatures and monitored by real-time PCR and classical methods (Gimenez staining and indirect immunofluorescence assay). R. typhi grew at all temperatures. R. felis grew at 28 and 32 °C. Real-time PCR was more sensitive than classical methods and it detected microorganisms much earlier. Besides, the assay sensitivity was improved by increasing the number of SV. For the second purpose, microorganisms and fleas were incubated and monitored in different concentrations of antibiotics. Gentamicin, sufamethoxazole, trimethoprim were useful for R. typhi isolation. Gentamicin, streptomycin, penicillin, and amphotericin B were useful for R. felis isolation. Finally, the optimized conditions were used to isolate R. felis from fleas collected at a veterinary clinic. R. felis was isolated at 28 and 32 °C. However, successful establishment of cultures were not possible probably due to sub-optimal conditions of samples.


Subject(s)
Real-Time Polymerase Chain Reaction/methods , Rickettsia felis/growth & development , Rickettsia felis/isolation & purification , Rickettsia typhi/growth & development , Rickettsia typhi/isolation & purification , Animals , Anti-Bacterial Agents/pharmacology , Chlorocebus aethiops , Early Diagnosis , Rickettsia Infections/diagnosis , Rickettsia Infections/microbiology , Rickettsia felis/drug effects , Rickettsia felis/genetics , Rickettsia typhi/drug effects , Rickettsia typhi/genetics , Sensitivity and Specificity , Siphonaptera/microbiology , Temperature , Typhus, Endemic Flea-Borne/diagnosis , Typhus, Endemic Flea-Borne/microbiology , Vero Cells
8.
BMC Infect Dis ; 14: 682, 2014 Dec 16.
Article in English | MEDLINE | ID: mdl-25510419

ABSTRACT

BACKGROUND: Rickettsia felis is a recently described flea-borne spotted fever group Rickettsia that is an emerging human pathogen. Although there is information on the organism from around the world, there is no information on the organism in China. METHODS: We used a commercial ELISA to detect antibodies reactive against R. felis in blood samples and developed a PCR to detect the gltA of the organism in blood samples and external parasites. RESULTS: We found reactive antibodies in people (16%; 28/180), dogs (47%; 128/271) and cats (21%; 19/90) and positive PCRs with DNA from people (0.1%; 1/822), dogs (0.8%; 8/1,059), mice (10%; 1/10), ticks (Rhipicephalus sanguineus; 10%; 15/146), lice (Linognathus setosus; 16%; 6/37), fleas (Ctenocephalides felis felis; 95%; 57/60) and mosquitoes (Anopheles sinensis, Culex pipiens pallens; 6%; 25/428), but not from cats (0/135) or canine fecal swabs (0/43). CONCLUSIONS: This is the first report of R. felis in China where there is serological and/ or PCR evidence of the organism in previously reported [people, dogs, cats, ticks (Rhipicephalus sanguineus), fleas (Ctenocephalides felis felis) and mosquitoes (Anopheles sinensis, Culex pipiens pallens)] and novel species [mice and lice (Linognathus setosus)].


Subject(s)
Cat Diseases/epidemiology , Dog Diseases/epidemiology , Rickettsia Infections/epidemiology , Rickettsia felis/isolation & purification , Animals , Antibodies, Bacterial/blood , Base Sequence , Biomarkers/blood , Cat Diseases/diagnosis , Cats , China/epidemiology , Culicidae/microbiology , DNA, Bacterial/analysis , Dog Diseases/diagnosis , Dogs , Enzyme-Linked Immunosorbent Assay , Humans , Mice/microbiology , Molecular Sequence Data , Phthiraptera/microbiology , Polymerase Chain Reaction , Rickettsia Infections/blood , Rickettsia Infections/diagnosis , Rickettsia Infections/veterinary , Rickettsia felis/genetics , Seroepidemiologic Studies , Siphonaptera/microbiology , Ticks/microbiology
9.
Nucleic Acids Res ; 40(7): 3245-58, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22140099

ABSTRACT

Besides their commonly attributed role in the maintenance of low-copy number plasmids, toxin/antitoxin (TA) loci, also called 'addiction modules', have been found in chromosomes and associated to a number of biological functions such as: reduction of protein synthesis, gene regulation and retardation of cell growth under nutritional stress. The recent discovery of TA loci in obligatory intracellular species of the Rickettsia genus has prompted new research to establish whether they work as stress response elements or as addiction systems that might be toxic for the host cell. VapBC2 is a TA locus from R. felis, a pathogen responsible for flea-borne spotted fever in humans. The VapC2 toxin is a PIN-domain protein, whereas the antitoxin, VapB2, belongs to the family of swapped-hairpin ß-barrel DNA-binding proteins. We have used a combination of biophysical and structural methods to characterize this new toxin/antitoxin pair. Our results show how VapB2 can block the VapC2 toxin. They provide a first structural description of the interaction between a swapped-hairpin ß-barrel protein and DNA. Finally, these results suggest how the VapC2/VapB2 molar ratio can control the self-regulation of the TA locus transcription.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Toxins/chemistry , DNA, Bacterial/chemistry , Rickettsia felis/genetics , Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Crystallography, X-Ray , DNA, Bacterial/metabolism , Models, Molecular , Nucleic Acid Conformation , Promoter Regions, Genetic
10.
Trends Parasitol ; 40(4): 324-337, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38458883

ABSTRACT

Ctenocephalides felis, the cat flea, is among the most prevalent and widely dispersed vectors worldwide. Unfortunately, research on C. felis and associated pathogens (Bartonella and Rickettsia spp.) lags behind that of other vectors and vector-borne pathogens. Therefore, we aimed to review fundamental aspects of C. felis as a vector (behavior, epidemiology, phylogenetics, immunology, and microbiome composition) with an emphasis on key techniques and research avenues employed in other vector species. Future laboratory C. felis experimental infections with Bartonella, Rickettsia, and Wolbachia species/strains should examine the vector-pathogen interface utilizing contemporary visualization, transcriptomic, and gene-editing techniques. Further environmental sampling will inform the range and prevalence of C. felis and associated pathogens, improving the accuracy of vector and pathogen modeling to improve infection/infestation risk assessment and diagnostic recommendations.


Subject(s)
Bartonella , Cat Diseases , Ctenocephalides , Felis , Flea Infestations , Rickettsia felis , Rickettsia , Siphonaptera , Animals , Cats , Ctenocephalides/microbiology , Flea Infestations/veterinary , Flea Infestations/epidemiology , Flea Infestations/microbiology , Biology , Rickettsia felis/genetics , Siphonaptera/microbiology
11.
Comp Immunol Microbiol Infect Dis ; 107: 102153, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460359

ABSTRACT

Climate change is causing many vectors of infectious diseases to expand their geographic distribution as well as the pathogens they transmit are also conditioned by temperature for their multiplication. Within this context, it is worth highlighting the significant role that fleas can play as vectors of important pathogenic bacteria. For this purpose, our efforts focused on detecting and identifying a total of 9 bacterial genera (Rickettsia sp.; Bartonella sp.; Yersinia sp.; Wolbachia sp., Mycobacterium sp., Leishmania sp., Borrelia sp., Francisella sp. and Coxiella sp.) within fleas isolated from domestic and peridomestic animals in the southwestern region of Spain (Andalusia). Over a 19-months period, we obtained flea samples from dogs, cats and hedgehogs. A total of 812 fleas was collected for this study. Five different species were morphologically identified, including C. felis, C. canis, S. cuniculi, P. irritans, and A. erinacei. Wolbachia sp. was detected in all five species identified in our study which a total prevalence of 86%. Within Rickettsia genus, two different species, R. felis and R. asembonensis were mainly identified in C. felis and A. erinacei, respectively. On the other hand, our results revealed a total of 131 fleas testing positive for the presence of Bartonella sp., representing a prevalence rate of 16% for this genus identifying two species B. henselae and B. clarridgeiae. Lastly, both Y. pestis and L. infantum were detected in DNA of P. irritans and C. felis, respectively isolated from dogs. With these data we update the list of bacterial zoonotic agents found in fleas in Spain, emphasizing the need to continue conducting future experimental studies to assess and confirm the potential vectorial role of certain synanthropic fleas.


Subject(s)
Bartonella , Ctenocephalides , Felis , Flea Infestations , Rickettsia felis , Rickettsia , Siphonaptera , Animals , Dogs , Siphonaptera/microbiology , Spain/epidemiology , Ctenocephalides/genetics , Rickettsia felis/genetics , Flea Infestations/epidemiology , Flea Infestations/veterinary , Flea Infestations/microbiology , Bartonella/genetics
12.
Am J Trop Med Hyg ; 111(3): 569-574, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39013372

ABSTRACT

Flea-borne spotted fever and flea-borne (murine) typhus are rickettsioses caused by Rickettsia felis and Rickettsia typhi, respectively, and typically present as undifferentiated febrile illnesses. The relative contribution of these agents to flea-borne rickettsioses in California is unclear. We have developed a duplex reverse transcription real-time polymerase chain reaction (RT-rtPCR) assay targeting R. felis- and R. typhi-specific 23S ribosomal RNA single nucleotide polymorphisms to better understand the respective roles of these agents in causing flea-borne rickettsioses in California. This assay was compared with an established duplex R. felis- and R. typhi-ompB rt-PCR assay and was shown to have 1,000-fold and 10-fold greater analytical sensitivity for the detection of R. felis and R. typhi, respectively. Retrospective testing of clinical specimens with both assays established R. typhi as the major etiologic agent of flea-borne rickettsioses in California.


Subject(s)
Polymorphism, Single Nucleotide , RNA, Ribosomal, 23S , Rickettsia Infections , Siphonaptera , Humans , Siphonaptera/microbiology , Animals , Rickettsia Infections/microbiology , Rickettsia Infections/diagnosis , Rickettsia Infections/epidemiology , RNA, Ribosomal, 23S/genetics , Real-Time Polymerase Chain Reaction/methods , Rickettsia typhi/genetics , Rickettsia typhi/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction/methods , Rickettsia felis/genetics , Rickettsia felis/isolation & purification , Sensitivity and Specificity , California/epidemiology , Retrospective Studies
13.
Comp Immunol Microbiol Infect Dis ; 110: 102200, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788400

ABSTRACT

Bed bugs, common blood-feeding pests, have received limited attention regarding their potential involvement in emerging pathogen transmission. This study aimed to investigate the main vector-borne bacteria within bed bugs collected from Tunisian governorates and to genetically characterize the identified species. Molecular screening was conducted on field-collected bed bug samples, targeting zoonotic vector-borne bacteria from the Anaplasmataceae family, as well as the genera Rickettsia, Ehrlichia, Bartonella, and Borrelia. A total of 119 Cimex lectularius specimens were collected and grouped into 14 pools based on sampling Tunisian sites. Using genus-specific PCR assays, DNA of Rickettsia and Ehrlichia spp. was detected in a single pool. Sequencing and BLAST analysis of the obtained partial ompB and dsb sequences from positive samples revealed 100% similarity with those of Ehrlichia canis and Rickettsia felis available in GenBank. Obtained partial sequences showed phylogenetic similarity to R. felis and E. canis isolates found in dogs and ticks from American and European countries. To the best of our knowledge, this study is the first to investigate bed bugs in Tunisia and to report the worldwide identification of R. felis and E. canis DNA in the common bed bug, C. lectularius. These findings highlight the need for further research to explore the potential role of bed bugs in the epidemiology of these vector-borne bacteria.


Subject(s)
Bedbugs , DNA, Bacterial , Ehrlichia canis , Phylogeny , Rickettsia felis , Animals , Bedbugs/microbiology , Rickettsia felis/genetics , Rickettsia felis/isolation & purification , Ehrlichia canis/genetics , Ehrlichia canis/isolation & purification , Tunisia/epidemiology , DNA, Bacterial/genetics , Dogs , Rickettsia Infections/microbiology , Rickettsia Infections/veterinary , Rickettsia Infections/epidemiology , Rickettsia Infections/transmission , Polymerase Chain Reaction , Insect Vectors/microbiology , Ehrlichiosis/microbiology , Ehrlichiosis/veterinary , Ehrlichiosis/epidemiology
14.
Emerg Infect Dis ; 19(11): 1775-83, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24188709

ABSTRACT

This study aimed to compare the epidemiology of Rickettsia felis infection and malaria in France, North Africa, and sub-Saharan Africa and to identify a common vector. Blood specimens from 3,122 febrile patients and from 500 nonfebrile persons were analyzed for R. felis and Plasmodium spp. We observed a significant linear trend (p<0.0001) of increasing risk for R. felis infection. The risks were lowest in France, Tunisia, and Algeria (1%), and highest in rural Senegal (15%). Co-infections with R. felis and Plasmodium spp. and occurrences of R. felis relapses or reinfections were identified. This study demonstrates a correlation between malaria and R. felis infection regarding geographic distribution, seasonality, asymptomatic infections, and a potential vector. R. felis infection should be suspected in these geographical areas where malaria is endemic. Doxycycline chemoprophylaxis against malaria in travelers to sub-Saharan Africa also protects against rickettsioses; thus, empirical treatment strategies for febrile illness for travelers and residents in sub-Saharan Africa may require reevaluation.


Subject(s)
Malaria/epidemiology , Rickettsia Infections/epidemiology , Adolescent , Adult , Africa/epidemiology , Africa South of the Sahara , Africa, Northern , Animals , Child , Child, Preschool , Disease Vectors , Female , France , Geography, Medical , Humans , Incidence , Infant , Malaria/transmission , Male , Middle Aged , Plasmodium/genetics , Prevalence , Rickettsia Infections/transmission , Rickettsia felis/genetics , Young Adult
15.
Zoonoses Public Health ; 70(6): 568-571, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37042290

ABSTRACT

Mosquitoes are generally recognized as the most important vector of many zoonotic pathogens. In this study, seven mosquitoes species were identified (Anopheles pullus, Anopheles sinensis, Anopheles lesteri, Anopheles kleini, Ochlerotatus dorsalis, Aedes koreicus and Culex inatomii) in samples collected from Yingkou City, Liaoning Province, Northeastern China. A novel Rickettsia species was detected in Anopheles sinensis (two of 71, 2.82%) and Anopheles pullus (one of 106, 0.94%) mosquitoes. Genetic analysis indicated that the rrs and ompB genes have highest 99.60% and 97.88%-98.14% identities to Rickettsia felis, an emerging human pathogen of global concern mainly harboured by fleas, mosquitoes and booklice. The gltA sequences of these strains have 99.72% of nucleotide similarity with Rickettsia endosymbiont of Medetera jacula. The groEL sequences have 98.37% similarity to both Rickettsia tillamookensis and Rickettsia australis. The htrA sequences have 98.77% similarity to Rickettsia lusitaniae. In the phylogenetic tree based on concatenated nucleotide sequences of rrs, gltA, groEL, ompB and htrA genes, these strains are closely related to R. felis. Herein, we name it 'Candidatus Rickettsia yingkouensis'. Its human pathogenicity to humans and animals is still to be determined.


Subject(s)
Aedes , Anopheles , Rickettsia felis , Rickettsia , Animals , Humans , Rickettsia felis/genetics , Phylogeny , Mosquito Vectors , Rickettsia/genetics , China
16.
Acta Trop ; 243: 106923, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37080265

ABSTRACT

Fleas are important ectoparasites and vectors associated with a wide range of pathogenic diseases, posing threats to public health concerns, especially cat fleas that spread worldwide. Understanding the microbial components is essential due to cat fleas are capable of transmitting pathogens to humans, causing diseases like plague and murine typhus. In the present study, metagenomic next-generation sequencing was applied to obtain the complete microbiota and related functions in the gut of Ctenocephalides felis. A total of 1,870 species was taxonomically recognized including 1,407 bacteria, 365 eukaryotes, 69 viruses, and 29 archaea. Proteobacteria was the dominant phylum among the six samples. Pathogens Rickettsia felis, Acinetobacter baumannii, Coxiella burnetii, and Anaplasma phagocytophilum were taxonomically identified and had high abundances in all samples. The resistance gene MexD was predominant in microbial communities of all cat fleas. We also performed epidemiological surveys of pathogens R. felis, A. baumannii, C. burnetii, and A. phagocytophilum among 165 cat fleas collected from seven provinces in China, while only the DNAs of R. felis (38/165, 23.03%) and C. burnetii (2/165, 1.21%) were obtained. The data provide new insight and understanding of flea intestinal microbiota and support novel information for preventing and controlling fleas and their transmitted diseases.


Subject(s)
Cat Diseases , Ctenocephalides , Felis , Flea Infestations , Rickettsia felis , Siphonaptera , Animals , Humans , Mice , Cats , Ctenocephalides/genetics , Flea Infestations/veterinary , Flea Infestations/parasitology , Rickettsia felis/genetics , Bacteria/genetics
17.
Acta Trop ; 248: 107034, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37793492

ABSTRACT

Rickettsia felis is an emerging flea-borne spotted fever pathogen that causes febrile illness in humans. In Vietnam, R. felis was detected in hospitalized patients, but there is no information on its presence in the Vietnamese community. This cross-sectional study aimed to determine the presence of R. felis in humans of the Central Highlands of Vietnam. A total of 158 blood and 213 serum samples were subjected to PCR and IFAT, respectively, to detect the presence of R. felis DNA and antibodies against R. felis. PCR assays detected R. felis DNA in four out of 158 blood samples, accounting for a prevalence of 2.53 % (95 % CI: 0.81 %-6.76 %). Phylogenetic analysis indicated the presence of R. felis and R. felis genotype RF2125 in the communities in the Central Highlands of Vietnam. The result of IFAT identified seven out of 213 serum samples (3.29 %, 95 % CI: 1.45 %-6.93 %) positive for antibodies against R. felis. This study was the first to demonstrate the presence of active R. felis infections in the communities in the Central Highlands of Vietnam utilizing both molecular and serological methods.


Subject(s)
Rickettsia Infections , Rickettsia felis , Rickettsia , Siphonaptera , Animals , Humans , Rickettsia felis/genetics , Rickettsia Infections/microbiology , Phylogeny , Cross-Sectional Studies , Vietnam/epidemiology , Siphonaptera/microbiology , DNA , Rickettsia/genetics
18.
Comp Immunol Microbiol Infect Dis ; 96: 101983, 2023 May.
Article in English | MEDLINE | ID: mdl-37099997

ABSTRACT

Seventy-five flea pools (one to ten fleas per pool) from 51 Andean foxes (Lycalopex culpaeus) and five South American grey foxes or chillas (Lycalopex griseus) from the Mediterranean region of Chile were analyzed for the presence of DNA of Bartonella spp. and Rickettsia spp. through quantitative real-time PCR for the nouG and gltA genes, respectively. Positive samples were further characterized by conventional PCR protocols, targeting gltA and ITS genes for Bartonella, and gltA, ompA, and ompB genes for Rickettsia. Bartonella was detected in 48 % of the Pulex irritans pools (B. rochalimae in three pools, B. berkhoffii in two pools, B. henselae in one pool), and 8 % of the Ctenocephalides felis felis pools (B. rochalimae, one pool). Rickettsia was confirmed in 11 % of P. irritans pools and 92 % of the Ct. felis pools. Characterization confirmed R. felis in all sequenced Rickettsia-positive pools. All Ct. canis pools were negative. A Ct. felis pool from a wild-found domestic ferret (Mustela putorius furo) also resulted positive for R. felis. Although opportunistic, this survey provides the first description of zoonotic pathogens naturally circulating in fleas parasitizing Chilean free-living carnivores.


Subject(s)
Bartonella , Carnivora , Ctenocephalides , Dog Diseases , Flea Infestations , Mustelidae , Rickettsia felis , Rickettsia , Siphonaptera , Dogs , Animals , Siphonaptera/microbiology , Bartonella/genetics , Rickettsia felis/genetics , Foxes , Chile/epidemiology , Ferrets/genetics , Dog Diseases/microbiology , Flea Infestations/epidemiology , Flea Infestations/veterinary , Rickettsia/genetics , Ctenocephalides/genetics , Real-Time Polymerase Chain Reaction/veterinary
19.
Comp Immunol Microbiol Infect Dis ; 92: 101926, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36473364

ABSTRACT

Rickettsia felis is an obligate intracellular gra m-negative bacterium that belongs to the family of Rickettsiaceae. Ctenocephalides felis, cat flea, is the primary vector of the bacteria. The flea is the most common ectoparasite in dogs and associated with flea-borne spotted fever in humans. Information on R. felis and flea species parasitizing on dogs in Vietnam is limited. This study aimed to identify the species of fleas collected from dogs in the Central Highlands of Vietnam and detected the existence of R. felis in these fleas utilizing molecular tools. Morphological identification of 1618 fleas and molecular confirmation revealed the predominance of C. felis orientis parasitizing on dogs in the Central Highlands of Vietnam. Sixty-eight out of 100 fleas collected from household dogs were positive for spotted fever group rickettsiae; whilst R. felis was detected in 97.06 % (66/68) of C. felis orientis and C. felis felis. The results of this study indicate the potentially high risk of R. felis infection to humans and animals.


Subject(s)
Ctenocephalides , Felis , Flea Infestations , Rickettsia Infections , Rickettsia felis , Rickettsia , Siphonaptera , Spotted Fever Group Rickettsiosis , Humans , Animals , Dogs , Siphonaptera/microbiology , Rickettsia felis/genetics , Vietnam/epidemiology , Rickettsia Infections/epidemiology , Rickettsia Infections/veterinary , Rickettsia Infections/microbiology , Flea Infestations/veterinary , Ctenocephalides/microbiology , Spotted Fever Group Rickettsiosis/veterinary
20.
J Microbiol Immunol Infect ; 56(1): 10-19, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36585292

ABSTRACT

Rickettsia felis is an emerging rickettsial agent principally associated with cat fleas (Ctenocephalides felis), formerly discovered in 1990. Since then, clinical cases of R. felis infection have been identified globally by specific DNA sequences in patients with undifferentiated febrile illness, including in Taiwan, but such evidence is limited. R. felis rickettsiosis is self-limiting and easily treated with doxycycline, but its diagnosis remains a challenge. Environmental risk factors for R. felis rickettsiosis have yet to be clearly demonstrated, and its transmission biology is incompletely understood. Cat fleas are naturally infected with R. felis at varying rates, and vector competence in the transmission of R. felis has been demonstrated in animal models, including dogs, which may serve as reservoir hosts. In northern Taiwan, despite ∼20% of cat fleas infesting companion animals consistently found to be infected with R. felis, only a few cases of potential R. felis infection have been identified through a retrospective serological investigation, though without molecular confirmation. Ecological studies have identified divergent R. felis-like organisms in different arthropod hosts, but these strains appear to serve as nonpathogenic endosymbionts. Although its association with disease is limited, we believe cat flea-borne R. felis warrants increased recognition in an aging population due to immunosenescence and the proximity of companion animals to the elderly. Adopting a One Health approach involving collaboration and communication between clinicians, veterinarians, public health practitioners, and environmental scientists will improve our knowledge about this neglected pathogen and promote the prevention and control of vector-borne diseases.


Subject(s)
Cat Diseases , Ctenocephalides , Rickettsia felis , Aged , Animals , Cats , Humans , Cat Diseases/epidemiology , Cat Diseases/microbiology , Ctenocephalides/microbiology , Retrospective Studies , Rickettsia felis/genetics , Rickettsia Infections/veterinary , Rickettsia Infections/epidemiology , Rickettsia Infections/microbiology , Taiwan/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL