Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
Add more filters

Publication year range
1.
Plant J ; 115(5): 1277-1297, 2023 09.
Article in English | MEDLINE | ID: mdl-37235696

ABSTRACT

Plant embryogenic calli (ECs) can undergo somatic embryogenesis to regenerate plants. This process is mediated by regulatory factors, such as transcription factors and specifically expressed genes, but the precise molecular mechanisms underlying somatic embryogenesis at the single-cell level remain unclear. In this study, we performed high-resolution single-cell RNA sequencing analysis to determine the cellular changes in the EC of the woody plant species Dimocarpus longan (longan) and clarify the continuous cell differentiation trajectories at the transcriptome level. The highly heterogeneous cells in the EC were divided into 12 putative clusters (e.g., proliferating, meristematic, vascular, and epidermal cell clusters). We determined cluster-enriched expression marker genes and found that overexpression of the epidermal cell marker gene GDSL ESTERASE/LIPASE-1 inhibited the hydrolysis of triacylglycerol. In addition, the stability of autophagy was critical for the somatic embryogenesis of longan. The pseudo-timeline analysis elucidated the continuous cell differentiation trajectories from early embryonic cell division to vascular and epidermal cell differentiation during the somatic embryogenesis of longan. Moreover, key transcriptional regulators associated with cell fates were revealed. We found that ETHYLENE RESPONSIVE FACTOR 6 was characterized as a heat-sensitive factor that negatively regulates longan somatic embryogenesis under high-temperature stress conditions. The results of this study provide new spatiotemporal insights into cell division and differentiation during longan somatic embryogenesis at single-cell resolution.


Subject(s)
Sapindaceae , Transcriptome , Transcriptome/genetics , Sapindaceae/genetics , Gene Expression Profiling , Sequence Analysis, RNA , Embryonic Development , Plant Somatic Embryogenesis Techniques , Gene Expression Regulation, Plant/genetics , Plant Proteins/genetics , Plant Proteins/metabolism
2.
BMC Genomics ; 25(1): 308, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528464

ABSTRACT

BACKGROUND: Flowering at the right time is a very important factor affecting the stable annual yield of longan. However, a lack of knowledge of the regulatory mechanism and key genes of longan flowering restricts healthy development of the longan industry. Therefore, identifying relevant genes and analysing their regulatory mechanism are essential for scientific research and longan industry development. RESULTS: DlLFY (Dimocarpus longan LEAFY) contains a 1167 bp open reading frame and encodes 388 amino acids. The amino acid sequence has a typical LFY/FLO family domain. DlLFY was expressed in all tissues tested, except for the leaf, pericarp, and pulp, with the highest expression occurring in flower buds. Expression of DlLFY was significantly upregulated at the early flower induction stage in "SX" ("Shixia"). The results of subcellular localization and transactivation analysis showed that DlLFY is a typical transcription factor acting as a transcriptional activator. Moreover, overexpression of DlLFY in Arabidopsis promoted early flowering and restrained growth, resulting in reduced plant height and rosette leaf number and area in transgenic plants. DNA affinity purification sequencing (DAP-Seq) analysis showed that 13 flower-related genes corresponding to five homologous genes of Arabidopsis may have binding sites and be putative target genes. Among these five flower-related genes, only AtTFL1 (terminal flower 1) was strongly inhibited in transgenic lines. CONCLUSION: Taken together, these results indicate that DlLFY plays a pivotal role in controlling longan flowering, possibly by interacting with TFL1.


Subject(s)
Arabidopsis , Sapindaceae , Arabidopsis/genetics , Arabidopsis/metabolism , Flowers , Plant Leaves/metabolism , Sapindaceae/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
3.
Plant Physiol ; 191(2): 1122-1137, 2023 02 12.
Article in English | MEDLINE | ID: mdl-36494195

ABSTRACT

As essential organs of reproduction in angiosperms, flowers, and the genetic mechanisms of their development have been well characterized in many plant species but not in the woody tree yellowhorn (Xanthoceras sorbifolium). Here, we focused on the double flower phenotype in yellowhorn, which has high ornamental value. We found a candidate C-class gene, AGAMOUS1 (XsAG1), through bovine serum albumin sequencing and genetics analysis with a Long Interpersed Nuclear Elements 1 (LINE1) transposable element fragment (Xsag1-LINE1-1) inserted into its second intron that caused a loss-of-C-function and therefore the double flower phenotype. In situ hybridization of XsAG1 and analysis of the expression levels of other ABC genes were used to identify differences between single- and double-flower development processes. These findings enrich our understanding of double flower formation in yellowhorn and provide evidence that transposon insertions into genes can reshape plant traits in forest trees.


Subject(s)
Magnoliopsida , Sapindaceae , Phenotype , Sapindaceae/genetics , Magnoliopsida/genetics , DNA Transposable Elements/genetics , Flowers/genetics , Gene Expression Regulation, Plant
4.
Plant Physiol ; 192(3): 1799-1820, 2023 07 03.
Article in English | MEDLINE | ID: mdl-36930572

ABSTRACT

Plant somatic embryogenesis (SE) is an in vitro biological process wherein bipolar structures are induced to form somatic cells and regenerate into whole plants. MicroRNA (miRNA) is an essential player in plant SE. However, the mechanism of microRNA408 (miR408) in SE remains elusive. Here, we used stable transgenic technology in longan (Dimocarpus longan) embryogenic calli to verify the mechanism by which miR408 promotes cell division and differentiation of longan early SE. dlo-miR408-3p regulated riboflavin biosynthesis by targeting nudix hydrolase 23 (DlNUDT23), a previously unidentified gene mediating N6-methyladenosine (m6A) modification and influencing RNA homeostasis and cell cycle gene expression during longan early SE. We showed that DlMIR408 overexpression (DlMIR408-OE) promoted 21-nt miRNA biosynthesis. In DlMIR408-OE cell lines, dlo-miR408-3p targeted and downregulated DlNUDT23, promoted riboflavin biosynthesis, decreased flavin mononucleotide (FMN) accumulation, promoted m6A level, and influenced miRNA homeostasis. DNA replication, glycosylphosphatidylinositol (GPI)-anchor biosynthesis, the pentose phosphate pathway, and taurine and hypotaurine metabolism were also closely associated with riboflavin metabolism. In a riboflavin feeding assay, dlo-miR408-3p and pre-miR408 were upregulated and DlNUDT23 was downregulated, increasing the m6A level and cell division and differentiation in longan globular embryos. When riboflavin biosynthesis was inhibited, dlo-miR408-3p was downregulated and DlNUDT23 was upregulated, which decreased m6A modification and inhibited cell division but did not inhibit cell differentiation. FMN artificial demethylated m6A modification affected the homeostasis of precursor miRNA and miRNA. Our results revealed a mechanism underlying dlo-miR408-3p-activated riboflavin biosynthesis in which DlNUDT23 is targeted, m6A modification is dynamically mediated, and cell division is affected, promoting early SE in plants.


Subject(s)
MicroRNAs , Sapindaceae , Gene Expression Profiling , Sapindaceae/genetics , Sapindaceae/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Riboflavin/metabolism
5.
Int J Mol Sci ; 25(2)2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38255805

ABSTRACT

GATA transcription factors, which are DNA-binding proteins with type IV zinc finger binding domains, have a role in transcriptional regulation in biological organisms. They have an indispensable role in the growth and development of plants, as well as in improvements in their ability to face various environmental stresses. To date, GATAs have been identified in many gene families, but the GATA gene in longan (Dimocarpus longan Lour) has not been studied in previous explorations. Various aspects of genes in the longan GATA family, including their identification and classification, the distribution of their positions on chromosomes, their exon/intron structures, a synteny analysis, their expression at different temperatures, concentration of PEG, early developmental stages of somatic embryos and their expression levels in different tissues, and concentrations of exogenous hormones, were investigated in this study. This study showed that the 22 DlGATAs could be divided into four subfamilies. There were 10 pairs of homologous GATA genes in the synteny analysis of DlGATA and AtGATA. Four segmental replication motifs and one pair of tandem duplication events were present among the DlGATA family members. The cis-acting elements located in promoter regions were also found to be enriched with light-responsive elements, which contained related hormone-responsive elements. In somatic embryos, DlGATA4 is upregulated for expression at the globular embryo (GE) stage. We also found that DlGATA expression was strongly up-regulated in roots and stems. The study demonstrated the expression of DlGATA under hormone (ABA and IAA) treatments in embryogenic callus of longan. Under ABA treatment, DlGATA4 was up-regulated and the other DlGATA genes did not respond significantly. Moreover, as demonstrated with qRT-PCR, the expression of DlGATA genes showed strong up-regulated expression levels under 100 µmol·L-1 concentration IAA treatment. This experiment further studied these and simulated their possible connections with a drought response mechanism, while correlating them with their expression under PEG treatment. Overall, this experiment explored the GATA genes and dug into their evolution, structure, function, and expression profile, thus providing more information for a more in-depth study of the characteristics of the GATA family of genes.


Subject(s)
Sapindaceae , Sapindaceae/genetics , Introns , GATA Transcription Factors/genetics , Hormones
6.
Int J Mol Sci ; 25(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38542248

ABSTRACT

Strigolactones (SLs) were recently defined as a novel class of plant hormones that act as key regulators of diverse developmental processes and environmental responses. Much research has focused on SL biosynthesis and signaling in roots and shoots, but little is known about whether SLs are produced in early developing seeds and about their roles in ovule development after fertilization. This study revealed that the fertilized ovules and early developing pericarp in Xanthoceras sorbifolium produced minute amounts of two strigolactones: 5-deoxystrigol and strigol. Their content decreased in the plants with the addition of exogenous phosphate (Pi) compared to those without the Pi treatment. The exogenous application of an SL analog (GR24) and a specific inhibitor of SL biosynthesis (TIS108) affected early seed development and fruit set. In the Xanthoceras genome, we identified 69 potential homologs of genes involved in SL biological synthesis and signaling. Using RNA-seq to characterize the expression of these genes in the fertilized ovules, 37 genes were found to express differently in the fertilized ovules that were aborting compared to the normally developing ovules. A transcriptome analysis also revealed that in normally developing ovules after fertilization, 12 potential invertase genes were actively expressed. Hexoses (glucose and fructose) accumulated at high concentrations in normally developing ovules during syncytial endosperm development. In contrast, a low ratio of hexose and sucrose levels was detected in aborting ovules with a high strigolactone content. XsD14 virus-induced gene silencing (VIGS) increased the hexose content in fertilized ovules and induced the proliferation of endosperm free nuclei, thereby promoting early seed development and fruit set. We propose that the crosstalk between sugar and strigolactone signals may be an important part of a system that accurately regulates the abortion of ovules after fertilization. This study is useful for understanding the mechanisms underlying ovule abortion, which will serve as a guide for genetic or chemical approaches to promote seed yield in Xanthoceras.


Subject(s)
Heterocyclic Compounds, 3-Ring , Lactones , Ovule , Sapindaceae , Ovule/genetics , Fertilization/genetics , Seeds , Sapindaceae/genetics , Hexoses/metabolism , Gene Expression Regulation, Plant
7.
J Integr Plant Biol ; 66(8): 1561-1570, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38804840

ABSTRACT

The Sapindaceae family, encompassing a wide range of plant forms such as herbs, vines, shrubs, and trees, is widely distributed across tropical and subtropical regions. This family includes economically important crops like litchi, longan, rambutan, and ackee. With the wide application of genomic technologies in recent years, several Sapindaceae plant genomes have been decoded, leading to an accumulation of substantial omics data in this field. This surge in data highlights the pressing need for a unified genomic data center capable of storing, sharing, and analyzing these data. Here, we introduced SapBase, that is, the Sapindaceae Genome Database. SapBase houses seven published plant genomes alongside their corresponding gene structure and functional annotations, small RNA annotations, gene expression profiles, gene pathways, and synteny block information. It offers user-friendly features for gene information mining, co-expression analysis, and inter-species comparative genomic analysis. Furthermore, we showcased SapBase's extensive capacities through a detailed bioinformatic analysis of a MYB gene in litchi. Thus, SapBase could serve as an integrative genomic resource and analysis platform for the scientific exploration of Sapinaceae species and their comparative studies with other plants.


Subject(s)
Genome, Plant , Genomics , Sapindaceae , Sapindaceae/genetics , Databases, Genetic , Molecular Sequence Annotation , Synteny/genetics , Gene Expression Regulation, Plant
8.
Int J Mol Sci ; 25(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38203301

ABSTRACT

B3 family transcription factors play an essential regulatory role in plant growth and development processes. This study performed a comprehensive analysis of the B3 family transcription factor in longan (Dimocarpus longan Lour.), and a total of 75 DlB3 genes were identified. DlB3 genes were unevenly distributed on the 15 chromosomes of longan. Based on the protein domain similarities and functional diversities, the DlB3 family was further clustered into four subgroups (ARF, RAV, LAV, and REM). Bioinformatics and comparative analyses of B3 superfamily expression were conducted in different light and with different temperatures and tissues, and early somatic embryogenesis (SE) revealed its specific expression profile and potential biological functions during longan early SE. The qRT-PCR results indicated that DlB3 family members played a crucial role in longan SE and zygotic embryo development. Exogenous treatments of 2,4-D (2,4-dichlorophenoxyacetic acid), NPA (N-1-naphthylphthalamic acid), and PP333 (paclobutrazol) could significantly inhibit the expression of the DlB3 family. Supplementary ABA (abscisic acid), IAA (indole-3-acetic acid), and GA3 (gibberellin) suppressed the expressions of DlLEC2, DlARF16, DlTEM1, DlVAL2, and DlREM40, but DlFUS3, DlARF5, and DlREM9 showed an opposite trend. Furthermore, subcellular localization indicated that DlLEC2 and DlFUS3 were located in the nucleus, suggesting that they played a role in the nucleus. Therefore, DlB3s might be involved in complex plant hormone signal transduction pathways during longan SE and zygotic embryo development.


Subject(s)
Embryonic Development , Sapindaceae , Sapindaceae/genetics , Zygote , Hormones
9.
Plant J ; 108(4): 1037-1052, 2021 11.
Article in English | MEDLINE | ID: mdl-34519122

ABSTRACT

Rambutan is a popular tropical fruit known for its exotic appearance, has long flexible spines on shells, extraordinary aril growth, desirable nutrition, and a favorable taste. The genome of an elite rambutan cultivar Baoyan 7 was assembled into 328 Mb in 16 pseudo-chromosomes. Comparative genomics analysis between rambutan and lychee revealed that rambutan chromosomes 8 and 12 are collinear with lychee chromosome 1, which resulted in a chromosome fission event in rambutan (n = 16) or a fusion event in lychee (n = 15) after their divergence from a common ancestor 15.7 million years ago. Root development genes played a crucial role in spine development, such as endoplasmic reticulum pathway genes, jasmonic acid response genes, vascular bundle development genes, and K+ transport genes. Aril development was regulated by D-class genes (STK and SHP1), plant hormone and phenylpropanoid biosynthesis genes, and sugar metabolism genes. The lower rate of male sterility of hermaphroditic flowers appears to be regulated by MYB24. Population genomic analyses revealed genes in selective sweeps during domestication that are related to fruit morphology and environment stress response. These findings enhance our understanding of spine and aril development and provide genomic resources for rambutan improvement.


Subject(s)
Fruit/genetics , Gene Regulatory Networks/genetics , Genome, Plant/genetics , Sapindaceae/genetics , Transcriptome , Adaptation, Physiological , Domestication , Flowers/genetics , Flowers/growth & development , Fruit/growth & development , Gene Expression Profiling , Genomics , Glucosides/biosynthesis , Hydrolyzable Tannins , Molecular Sequence Annotation , Photosynthesis , Sapindaceae/growth & development , Species Specificity , Taste
10.
BMC Genomics ; 23(1): 27, 2022 Jan 06.
Article in English | MEDLINE | ID: mdl-34991482

ABSTRACT

BACKGROUND: Handeliodendron Rehder and Eurycorymbus Hand.-Mazz. are the monotypic genera in the Sapindaceae family. The phylogenetic relationship of these endangered species Handeliodendron bodinieri (Lévl.) Rehd. and Eurycorymbus cavaleriei (Lévl.) Rehd. et Hand.-Mazz. with other members of Sapindaceae s.l. is not well resolved. A previous study concluded that the genus Aesculus might be paraphyletic because Handeliodendron was nested within it based on small DNA fragments. Thus, their chloroplast genomic information and comparative genomic analysis with other Sapindaceae species are necessary and crucial to understand the circumscription and plastome evolution of this family. RESULTS: The chloroplast genome sizes of Handeliodendron bodinieri and Eurycorymbus cavaleriei are 151,271 and 158,690 bp, respectively. Results showed that a total of 114 unique genes were annotated in H. bodinieri and E. cavaleriei, and the ycf1 gene contained abundant SSRs in both genomes. Comparative analysis revealed that gene content, PCGs, and total GC content were remarkably similar or identical within 13 genera from Sapindaceae, and the chloroplast genome size of four genera was generally smaller within the family, including Acer, Dipteronia, Aesculus, and Handeliodendron. IR boundaries of the H. bodinieri showed a significant contraction, whereas it presented a notable expansion in E. cavaleriei cp genome. Ycf1, ndhC-trnV-UAC, and rpl32-trnL-UAG-ccsA were remarkably divergent regions in the Sapindaceae species. Analysis of selection pressure showed that there are a few positively selected genes. Phylogenetic analysis based on different datasets, including whole chloroplast genome sequences, coding sequences, large single-copy, small single-copy, and inverted repeat regions, consistently demonstrated that H. bodinieri was sister to the clade consisting of Aesculus chinensis and A. wangii and strongly support Eurycorymbus cavaleriei as sister to Dodonaea viscosa. CONCLUSION: This study revealed that the cp genome size of the Hippocastanoideae was generally smaller compared to the other subfamilies within Sapindaceae, and three highly divergent regions could be used as the specific DNA barcodes within Sapindaceae. Phylogenetic results strongly support that the subdivision of four subfamilies within Sapindaceae, and Handeliodendron is not nested within the genus Aesculus.


Subject(s)
Genome, Chloroplast , Sapindaceae , Animals , Endangered Species , Genomics , Phylogeny , Sapindaceae/genetics
11.
Mol Biol Rep ; 49(2): 917-929, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34741709

ABSTRACT

BACKGROUND: Understanding genetic variation is critical for the protection and maintenance of fragmented and highly disturbed habitats. The Taita Hills of Kenya are the northernmost part of the Eastern Arc Mountains and have been identified as one of the world's top ten biodiversity hotspots. Over the past century the current forests in the Taita Hills have become highly fragmented. In order to appraise the influence of anthropological disturbance and fragmentation on plant species in these mountains, we studied the genetic variation and population structure of Dodonaea viscosa (L.) Jacq. (Sapindaceae), using newly developed microsatellite (SSR) markers, combined with ecological niche modelling analyses (ENMs). METHODS AND RESULTS: We utilized the Illumina paired-end technology to sequence D. viscosa's genome and developed its microsatellite markers. In total, 646,428 sequences were analyzed, and 49,836 SSRs were identified from 42,638 sequences. A total of 18 out of 25 randomly selected primer pairs were designed to test polymorphism among 92 individuals across eight populations. The average observed heterozygosity and expected heterozygosity ranged from 0.119 to 0.982 and from 0.227 to 0.691, respectively. Analysis of molecular variance (AMOVA) revealed 78% variance within populations and only 20% among the eight populations. According to ENM results, D. viscosa's suitable habitats have been gradually reducing since the last glacial maximum (LGM), and the situation will worsen under the extreme pessimist scenario of (representative concentration pathway) RCP 8.5. Moreover, genetic diversity was significantly greater in larger fragments. CONCLUSIONS: In the present study, we successfully developed and tested SSR markers for D. viscosa. Study results indicate that fragmentation would constitute a severe threat to plant forest species. Therefore, urgent conservation management of smaller fragmented patches is necessary to protect this disturbed region and maintain the genetic resources.


Subject(s)
Microsatellite Repeats/genetics , Sapindaceae/genetics , Conservation of Natural Resources , Forests , Genetic Variation/genetics , High-Throughput Nucleotide Sequencing/methods , Kenya , Polymorphism, Genetic/genetics
12.
Int J Mol Sci ; 23(22)2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36430536

ABSTRACT

Strigolactones (SLs), a new class of plant hormones, are implicated in the regulation of various biological processes. However, the related family members and functions are not identified in longan (Dimocarpus longan Lour.). In this study, 23 genes in the CCD, D27, and SMXL family were identified in the longan genome. The phylogenetic relationships, gene structure, conserved motifs, promoter elements, and transcription factor-binding site predictions were comprehensively analysed. The expression profiles indicated that these genes may play important roles in longan organ development and abiotic stress responses, especially during early somatic embryogenesis (SE). Furthermore, GR24 (synthetic SL analogue) and Tis108 (SL biosynthesis inhibitor) could affect longan early SE by regulating the levels of endogenous IAA (indole-3-acetic acid), JA (jasmonic acid), GA (gibberellin), and ABA (abscisic acid). Overexpression of SMXL6 resulted in inhibition of longan SE by regulating the synthesis of SLs, carotenoids, and IAA levels. This study establishes a foundation for further investigation of SL genes and provides novel insights into their biological functions.


Subject(s)
Plant Proteins , Sapindaceae , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Sapindaceae/genetics , Embryonic Development/genetics
13.
Int J Mol Sci ; 23(24)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36555206

ABSTRACT

A major determinant of fruit production in longan (Dimocarpus longan Lour.) is the difficulty of blossoming. In this study, high-throughput microRNA sequencing (miRNA-Seq) was carried out to compare differentially expressed miRNAs (DEmiRNAs) and their target genes between a continuous flowering cultivar 'Sijimi' (SJ), and a unique cultivar 'Lidongben' (LD), which blossoms only once in the season. Over the course of our study, 1662 known miRNAs and 235 novel miRNAs were identified and 13,334 genes were predicted to be the target of 1868 miRNAs. One conserved miRNA and 29 new novel miRNAs were identified as differently expressed; among them, 16 were upregulated and 14 were downregulated. Through the KEGG pathway and cluster analysis of DEmiRNA target genes, three critical regulatory pathways, plant-pathogen interaction, plant hormone signal transduction, and photosynthesis-antenna protein, were discovered to be strongly associated with the continuous flowering trait of the SJ. The integrated correlation analysis of DEmiRNAs and their target mRNAs revealed fourteen important flowering-related genes, including COP1-like, Casein kinase II, and TCP20. These fourteen flowering-related genes were targeted by five miRNAs, which were novel-miR137, novel-miR76, novel-miR101, novel-miR37, and csi-miR3954, suggesting these miRNAs might play vital regulatory roles in flower regulation in longan. Furthermore, novel-miR137 was cloned based on small RNA sequencing data analysis. The pSAK277-miR137 transgenic Arabidopsis plants showed delayed flowering phenotypes. This study provides new insight into molecular regulation mechanisms of longan flowering.


Subject(s)
MicroRNAs , Sapindaceae , Gene Expression Profiling , MicroRNAs/genetics , MicroRNAs/metabolism , Sapindaceae/genetics , Sapindaceae/metabolism , High-Throughput Nucleotide Sequencing , Plants, Genetically Modified/genetics , Gene Expression Regulation, Plant
14.
Plant Mol Biol ; 106(1-2): 67-84, 2021 May.
Article in English | MEDLINE | ID: mdl-33611782

ABSTRACT

KEY MESSAGE: Genes related to the MAPK cascade, ethylene signaling pathway, Pi starvation response, and NAC TFs were differentially expressed between normal and abortive ovules. Receptor-mediated ethylene signal perception and transmission play an important role in regulating fruit and ovule development. Xanthoceras sorbifolium, a small to medium-sized tree endemic to northern China, is an emerging dedicated oilseed crop designed for applications in advanced biofuel, engine oil, and functional food, as well as for pharmaceutical and cosmetic applications. Despite the importance of Xanthoceras seed oil, low seed productivity has constricted commercial exploitation of the species. The abortion of developing seeds (ovules after fertilization) is a major factor limiting fruit and seed production in the plant. To increase fruit and seed yields, a better understanding of the mechanisms underlying the abortion of fertilized ovules is critical. This study revealed differences in nucellus degeneration, endosperm development, and starch grain content between normally and abnormally developing ovules after fertilization. We constructed 6 RNA-sequencing (RNA-seq) libraries from normally and abnormally developing ovules at the onset of their abortion process. Comparative transcriptome analysis between the normal and abnormal ovules identified 818 differentially expressed genes (DEGs). Among DEGs, many genes involved in mitogen-activated protein kinase (MAPK) cascades, ethylene signaling pathway, and NAC transcription factor genes showed up-regulated expression in abnormal ovules. The RNA-seq data were validated using quantitative reverse-transcription PCR. Using virus-induced gene silencing (VIGS) methods, evaluation of an ethylene receptor gene (XsERS) function indicated that the gene was closely related to early development of fruits and seeds. Based on the data presented here, we propose a model for a MAPK-ethylene signaling-NAC2 gene regulatory cascade that plays an important role in the regulation of the ovule abortion process in X. sorbifolium. The present study is imperative for understanding the mechanisms of ovule abortion after fertilization and identifying the critical genes and gene networks involved in determining the fate of ovule development.


Subject(s)
Ethylenes/metabolism , Fertilization/genetics , Gene Expression Regulation, Plant , Ovule/physiology , Sapindaceae/genetics , Sapindaceae/physiology , DNA Fragmentation , Fruit/drug effects , Fruit/genetics , Gene Expression Profiling , Gene Ontology , Gene Silencing , Genes, Plant , Models, Biological , Molecular Sequence Annotation , Ovule/genetics , Phosphorus/deficiency , Phosphorus/pharmacology , Plant Growth Regulators/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors/metabolism , Transcriptome/genetics
15.
BMC Plant Biol ; 21(1): 464, 2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34641783

ABSTRACT

BACKGROUND: Yellowhorn (Xanthoceras sorbifolium), an endemic woody oil-bearing tree, has become economically important and is widely cultivated in northern China for bioactive oil production. However, the regulatory mechanisms of seed development and lipid biosynthesis affecting oil production in yellowhorn are still elusive. MicroRNAs (miRNAs) play crucial roles in diverse aspects of biological and metabolic processes in seeds, especially in seed development and lipid metabolism. It is still unknown how the miRNAs regulate the seed development and lipid biosynthesis in yellowhorn. RESULTS: Here, based on investigations of differences in the seed growth tendency and embryo oil content between high-oil-content and low-oil-content lines, we constructed small RNA libraries from yellowhorn embryos at four seed development stages of the two lines and then profiled small RNA expression using high-throughput sequencing. A total of 249 known miRNAs from 46 families and 88 novel miRNAs were identified. Furthermore, by pairwise comparisons among the four seed development stages in each line, we found that 64 miRNAs (53 known and 11 novel miRNAs) were differentially expressed in the two lines. Across the two lines, 15, 11, 10, and 7 differentially expressed miRNAs were detected at 40, 54, 68, and 81 days after anthesis, respectively. Bioinformatic analysis was used to predict a total of 2654 target genes for 141 differentially expressed miRNAs (120 known and 21 novel miRNAs). Most of these genes were involved in the fatty acid biosynthetic process, regulation of transcription, nucleus, and response to auxin. Using quantitative real-time PCR and an integrated analysis of miRNA and mRNA expression, miRNA-target regulatory modules that may be involved in yellowhorn seed size, weight, and lipid biosynthesis were identified, such as miR172b-ARF2 (auxin response factor 2), miR7760-p3_1-AGL61 (AGAMOUS-LIKE 61), miR319p_1-FAD2-2 (omega-6 fatty acid desaturase 2-2), miR5647-p3_1-DGAT1 (diacylglycerol acyltransferase 1), and miR7760-p5_1-MED15A (Mediator subunit 15a). CONCLUSIONS: This study provides new insights into the important regulatory roles of miRNAs in the seed development and lipid biosynthesis in yellowhorn. Our results will be valuable for dissecting the post-transcriptional and transcriptional regulation of seed development and lipid biosynthesis, as well as improving yellowhorn in northern China.


Subject(s)
Lipid Metabolism/genetics , MicroRNAs/genetics , RNA, Plant/genetics , Sapindaceae/growth & development , Sapindaceae/genetics , Sapindaceae/metabolism , Seeds/growth & development , Seeds/genetics , China , Gene Expression Profiling , Gene Expression Regulation, Plant , Genetic Variation , Genotype
16.
Planta ; 253(2): 41, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33475870

ABSTRACT

MAIN CONCLUSION: A genome-wide analysis of longan miRNA genes was conducted, and full-length pri-miRNA transcripts were cloned. Bioinformatics and expression analyses contributed to the functional characterization of longan miRNA genes. MicroRNAs are important for the post-transcriptional regulation of target genes. However, little is known about the transcription and regulation of miRNA genes in longan (Dimocarpus longan Lour.). In this study, 80 miRNA precursors (pre-miRNA) were predicted, and their secondary structure, size, conservation, and diversity were analyzed. Furthermore, the full-length cDNA sequences of 13 longan primary miRNAs (pri-miRNAs) were amplified by RLM-RACE and SMART-RACE and analyzed, which revealed that longan pri-miRNA transcripts have multiple transcription start sites (TSSs) and the downstream pre-miRNAs are polymorphic. Accordingly, the longan pri-miRNAs and protein-encoding genes may have similar transcriptional specificities. An analysis of the longan miRNA gene promoter elements indicated that the three most abundant cis-acting elements were light-responsive, stress-responsive, and hormone-responsive elements. A quantitative real-time PCR assay elucidated the potential spatial and temporal expression patterns of longan pre-miRNAs during the early stages of somatic embryogenesis (SE) and in different longan organs/tissues. This is the first report regarding the molecular characterization of miRNA genes and their expression profiles in longan. The generated data may serve as a foundation for future research aimed at clarifying the longan miRNA gene functions.


Subject(s)
Gene Expression Regulation, Plant , MicroRNAs , Sapindaceae , Computational Biology , MicroRNAs/genetics , Sapindaceae/genetics
17.
Am J Bot ; 108(7): 1234-1251, 2021 07.
Article in English | MEDLINE | ID: mdl-34219219

ABSTRACT

PREMISE: The economically important, cosmopolitan soapberry family (Sapindaceae) comprises ca. 1900 species in 144 genera. Since the seminal work of Radlkofer, several authors have attempted to overcome challenges presented by the family's complex infra-familial classification. With the advent of molecular systematics, revisions of the various proposed groupings have provided significant momentum, but we still lack a formal classification system rooted in an evolutionary framework. METHODS: Nuclear DNA sequence data were generated for 123 genera (86%) of Sapindaceae using target sequence capture with the Angiosperms353 universal probe set. HybPiper was used to produce aligned DNA matrices. Phylogenetic inferences were obtained using coalescence-based and concatenated methods. The clades recovered are discussed in light of both benchmark studies to identify synapomorphies and distributional evidence to underpin an updated infra-familial classification. KEY RESULTS: Coalescence-based and concatenated phylogenetic trees had identical topologies and node support, except for the placement of Melicoccus bijugatus Jacq. Twenty-one clades were recovered, which serve as the basis for a revised infra-familial classification. CONCLUSIONS: Twenty tribes are recognized in four subfamilies: two tribes in Hippocastanoideae, two in Dodonaeoideae, and 16 in Sapindoideae (no tribes are recognized in the monotypic subfamily Xanthoceratoideae). Within Sapindoideae, six new tribes are described: Blomieae Buerki & Callm.; Guindilieae Buerki, Callm. & Acev.-Rodr.; Haplocoeleae Buerki & Callm.; Stadmanieae Buerki & Callm.; Tristiropsideae Buerki & Callm.; and Ungnadieae Buerki & Callm. This updated classification provides a backbone for further research and conservation efforts on this family.


Subject(s)
Sapindaceae , Biological Evolution , Phylogeny , Sapindaceae/genetics
18.
BMC Genomics ; 21(1): 4, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31898486

ABSTRACT

BACKGROUND: Somatic embryogenesis (SE) is a process of somatic cells that dedifferentiate to totipotent embryonic stem cells and generate embryos in vitro. Longan SE has been established and wildly used as model system for studying embryogenesis in woody plants, SE-related genes had been characterized. In spite of that, a comprehensive overview of SE at a molecular level is still absent. To understand the molecular mechanisms during longan SE, we examined the transcriptome changes by using Illumina HiSeq from the four distinct developmental stages, including non-embryogenic callus (NEC), embryogenic callus (EC), incomplete compact pro-embryogenic cultures (ICpEC), globular embryos (GE). RESULTS: RNA-seq of the four samples generated a total of 243.78 million high quality reads, approximately 81.5% of the data were mapped to longan genome. The cDNA libraries of NEC, EC, ICpEC and GE, generated 22,743, 19,745, 21,144, 21,102 expressed transcripts, 1935, 1710, 1816, 1732 novel transcripts, 2645, 366, 505, 588 unique genes, respectively. Comparative transcriptome analysis showed that a total of 10,642, 4180, 5846 and 1785 genes were differentially expressed in the pairwise comparisons of NEC_vs_EC, EC_vs_ICpEC, EC_vs_GE, ICpEC_vs_GE, respectively. Among them, plant hormones signalling related genes were significantly enriched, especially the auxin and cytokinin signalling components. The transcripts of flavonoid biosynthesis related genes were mainly expressed in NEC, while fatty acid biosynthesis related genes mainly accumulated in early SE. In addition, the extracelluar protein encoding genes LTP, CHI, GLP, AGP, EP1 were related to longan SE. Combined with the FPKM value of longan nine tissues transcription, 27 SE specific or preferential genes (LEC1, LEC1-like, PDF1.3, GH3.6, AGL80, PIN1, BBM, WOX9, WOX2, ABI3, et al.) and 28 NEC preferential genes (LEA5, CNOT3, DC2.15, PR1-1, NsLTP2, DIR1, PIP1, PIP2.1, TIP2-1, POD-P7 and POD5 et al.) were characterized as molecular markers for longan early SE. qRT-PCR validation of SE-related genes showed a high correlation between RNA-seq and qRT-PCR data. CONCLUSION: This study provides new insights into the role of the transcriptome during early SE in longan. Differentially expressed genes reveal that plant hormones signalling, flavonoid and fatty acid biosynthesis, and extracelluar protein related genes were involved in longan early SE. It could serve as a valuable platform resource for further functional studies addressing embryogenesis in woody plants.


Subject(s)
Plant Development/genetics , Plant Growth Regulators/genetics , Sapindaceae/genetics , Transcriptome/genetics , Gene Expression Profiling , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Plant Somatic Embryogenesis Techniques , Sapindaceae/growth & development , Sapindaceae/metabolism
19.
BMC Genomics ; 21(1): 62, 2020 Jan 20.
Article in English | MEDLINE | ID: mdl-31959122

ABSTRACT

BACKGROUND: The APETALA2/ethylene responsive factor (AP2/ERF) superfamily members are transcription factors that regulate diverse developmental processes and stress responses in plants. They have been identified in many plants. However, little is known about the AP2/ERF superfamily in longan (Dimocarpus longan Lour.), which is an important tropical/subtropical evergreen fruit tree that produces a variety of bioactive compounds with rich nutritional and medicinal value. We conducted a genome-wide analysis of the AP2/ERF superfamily and its roles in somatic embryogenesis (SE) and developmental processes in longan. RESULTS: A genome-wide survey of the AP2/ERF superfamily was carried out to discover its evolution and function in longan. We identified 125 longan AP2/ERF genes and classified them into the ERF (101 members), AP2 (19 members), RAV (four members) families, and one Soloist. The AP2 and Soloist genes contained one to ten introns, whereas 87 genes in the ERF and RAV families had no introns. Hormone signaling molecules such as methyl jasmonate (MeJA), abscisic acid (ABA), gibberellin, auxin, and salicylic acid (SA), and stress response cis-acting element low-temperature (55) and defense (49) boxes also were identified. We detected diverse single nucleotide polymorphisms (SNPs) between the 'Hong He Zi' (HHZ) and 'SI JI MI' (SJM) cultivars. The number of insertions and deletions (InDels) was far fewer than SNPs. The AP2 family members exhibited more alternative splicing (AS) events in different developmental processes of longan than members of the other families. Expression pattern analysis revealed that some AP2/ERF members regulated early SE and developmental processes in longan seed, root, and flower, and responded to exogenous hormones such as MeJA, SA, and ABA, and 2,4-D, a synthetic auxin. Protein interaction predictions indicated that the Baby Boom (BBM) transcription factor, which was up-regulated at the transcriptional level in early SE, may interact with the LALF/AGL15 network. CONCLUSIONS: The comprehensive analysis of molecular evolution and expression patterns suggested that the AP2/ERF superfamily may plays an important role in longan, especially in early SE, and in seed, root, flower, and young fruit. This systematic analysis provides a foundation for further functional characterization of the AP2/ERF superfamily with the aim of longan improvement.


Subject(s)
Multigene Family , Plant Proteins/genetics , Sapindaceae/genetics , Transcription Factors/genetics , Alternative Splicing , Evolution, Molecular , Genome, Plant , INDEL Mutation , Nucleotide Motifs , Phylogeny , Plant Growth Regulators/physiology , Plant Proteins/metabolism , Polymorphism, Single Nucleotide , RNA-Seq , Regulatory Elements, Transcriptional , Sapindaceae/embryology , Sapindaceae/growth & development , Sapindaceae/metabolism , Transcription Factors/metabolism
20.
Microb Cell Fact ; 19(1): 180, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32933531

ABSTRACT

BACKGROUND: Epothilone B is a natural product that stabilizes microtubules, similar to paclitaxel (Taxol); therefore, epothilone B and several derivatives have shown obvious antitumour activities. Some of these products are in clinical trials, and one (ixabepilone, BMS) is already on the market, having been approved by the FDA in 2007. The terminal step in epothilone B biosynthesis is catalysed by the cytochrome P450 enzyme EpoK (CYP167A1), which catalyses the epoxidation of the C12-C13 double bond (in epothilone C and D) to form epothilone A and B, respectively. Although redox partners from different sources support the catalytic activity of EpoK in vitro, the conversion rates are low, and these redox partners are not applied to produce epothilone B in heterologous hosts. RESULTS: Schlegelella brevitalea DSM 7029 contains electron transport partners that efficiently support the catalytic activity of EpoK. We screened and identified one ferredoxin, Fdx_0135, by overexpressing putative ferredoxin genes in vivo and identified two ferredoxin reductases, FdR_0130 and FdR_7100, by whole-cell biotransformation of epothilone C to effectively support the catalytic activity of EpoK. In addition, we obtained strain H7029-3, with a high epothilone B yield and found that the proportion of epothilone A + B produced by this strain was 90.93%. Moreover, the whole-cell bioconversion strain 7029-10 was obtained; this strain exhibited an epothilone C conversion rate of 100% in 12 h. Further RT-qPCR experiments were performed to analyse the overexpression levels of the target genes. Gene knock-out experiments showed that the selected ferredoxin (Fdx_0135) and its reductases (FdR_0130 and FdR_7100) might participate in critical physiological processes in DSM 7029. CONCLUSION: Gene overexpression and whole-cell biotransformation were effective methods for identifying the electron transport partners of the P450 enzyme EpoK. In addition, we obtained an epothilone B high-yield strain and developed a robust whole-cell biotransformation system. This strain and system hold promise for the industrial production of epothilone B and its derivatives.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Epothilones/biosynthesis , Ferredoxins/genetics , Ferredoxins/metabolism , Sapindaceae/genetics , Sapindaceae/metabolism , Bacterial Proteins/biosynthesis , Biotransformation , Catalysis , Electron Transport , Gene Knockout Techniques , Genetic Complementation Test , Genome, Bacterial , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL