Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 251
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Article in English | MEDLINE | ID: mdl-35101918

ABSTRACT

Metabolites exuded by primary producers comprise a significant fraction of marine dissolved organic matter, a poorly characterized, heterogenous mixture that dictates microbial metabolism and biogeochemical cycling. We present a foundational untargeted molecular analysis of exudates released by coral reef primary producers using liquid chromatography-tandem mass spectrometry to examine compounds produced by two coral species and three types of algae (macroalgae, turfing microalgae, and crustose coralline algae [CCA]) from Mo'orea, French Polynesia. Of 10,568 distinct ion features recovered from reef and mesocosm waters, 1,667 were exuded by producers; the majority (86%) were organism specific, reflecting a clear divide between coral and algal exometabolomes. These data allowed us to examine two tenets of coral reef ecology at the molecular level. First, stoichiometric analyses show a significantly reduced nominal carbon oxidation state of algal exometabolites than coral exometabolites, illustrating one ecological mechanism by which algal phase shifts engender fundamental changes in the biogeochemistry of reef biomes. Second, coral and algal exometabolomes were differentially enriched in organic macronutrients, revealing a mechanism for reef nutrient-recycling. Coral exometabolomes were enriched in diverse sources of nitrogen and phosphorus, including tyrosine derivatives, oleoyl-taurines, and acyl carnitines. Exometabolites of CCA and turf algae were significantly enriched in nitrogen with distinct signals from polyketide macrolactams and alkaloids, respectively. Macroalgal exometabolomes were dominated by nonnitrogenous compounds, including diverse prenol lipids and steroids. This study provides molecular-level insights into biogeochemical cycling on coral reefs and illustrates how changing benthic cover on reefs influences reef water chemistry with implications for microbial metabolism.


Subject(s)
Anthozoa/metabolism , Dissolved Organic Matter/analysis , Seaweed/metabolism , Animals , Anthozoa/genetics , Anthozoa/growth & development , Carbon/metabolism , Coral Reefs , Ecosystem , Marine Biology/methods , Metabolomics/methods , Nitrogen/metabolism , Nutrients , Phosphorus/metabolism , Polynesia , Seawater/chemistry , Seaweed/genetics , Seaweed/growth & development
2.
Physiol Plant ; 176(4): e14503, 2024.
Article in English | MEDLINE | ID: mdl-39191702

ABSTRACT

Worldwide, where the demand for novel and greener solutions for sustainable agricultural production is increasing, the use of eco-friendly products such as seaweed-derived biostimulants as pre-sowing treatment represent a promising and important approach for the future. Cystoseira barbata, a brown seaweed species abundant in the Mediterranean Region, was collected from the Marmara Sea and subjected to water, alkali, and acidic extractions, and the biostimulant activity of these extracts was tested on wheat (Triticum durum cv. Saricanak-98) using different rates through application to the seeds or germination medium (substrate) applications. The different extracts were characterized by mineral, total phenolic, free amino acid, mannitol, polysaccharide, antioxidant concentrations and hormone-like activity. The effects of the extracts on growth parameters, root morphology, esterase activity, and mineral nutrient concentrations of wheat seedlings were investigated. Our results suggest that the substrate application was more effective in enhancing the seedling performance compared to the seed treatment. High rates of seaweed extracts applied to substrates increased the shoot length and fresh weight of wheat seedlings by up to 20 and 25%, respectively. The substrate applications enhanced the root fresh weights of wheat seedlings by up to 25% when compared to control plants. Among the biostimulant extract applications, the water extract at the highest rate yielded the most promising results in terms of the measured parameters. Cystoseira barbata extracts with different compositions can be used as effective biostimulants to boost seedling growth. The local seaweed biomass affected by mucilage problems, has great potential as a bioeconomy resource and can contribute to sustainable practices for agriculture.


Subject(s)
Seaweed , Seedlings , Triticum , Triticum/growth & development , Triticum/drug effects , Triticum/physiology , Seedlings/drug effects , Seedlings/growth & development , Seaweed/growth & development , Germination/drug effects , Phaeophyceae/growth & development , Phaeophyceae/physiology , Phaeophyceae/drug effects , Antioxidants/metabolism , Seeds/drug effects , Seeds/growth & development , Plant Roots/growth & development , Plant Roots/drug effects , Plant Extracts/pharmacology
3.
PLoS Biol ; 18(2): e3000641, 2020 02.
Article in English | MEDLINE | ID: mdl-32058997

ABSTRACT

Ex situ seed banking was first conceptualized and implemented in the early 20th century to maintain and protect crop lines. Today, ex situ seed banking is important for the preservation of heirloom strains, biodiversity conservation and ecosystem restoration, and diverse research applications. However, these efforts primarily target microalgae and terrestrial plants. Although some collections include macroalgae (i.e., seaweeds), they are relatively few and have yet to be connected via any international, coordinated initiative. In this piece, we provide a brief introduction to macroalgal germplasm banking and its application to conservation, industry, and mariculture. We argue that concerted effort should be made globally in germline preservation of marine algal species via germplasm banking with an overview of the technical advances for feasibility and ensured success.


Subject(s)
Seaweed , Seed Bank , Aquaculture , Conservation of Natural Resources , Ecosystem , Food Supply , Genetic Variation , Germ Cells, Plant/growth & development , International Cooperation , Seaweed/classification , Seaweed/genetics , Seaweed/growth & development
4.
Proc Natl Acad Sci U S A ; 117(5): 2551-2559, 2020 02 04.
Article in English | MEDLINE | ID: mdl-31911467

ABSTRACT

The Neoproterozoic Era records the transition from a largely bacterial to a predominantly eukaryotic phototrophic world, creating the foundation for the complex benthic ecosystems that have sustained Metazoa from the Ediacaran Period onward. This study focuses on the evolutionary origins of green seaweeds, which play an important ecological role in the benthos of modern sunlit oceans and likely played a crucial part in the evolution of early animals by structuring benthic habitats and providing novel niches. By applying a phylogenomic approach, we resolve deep relationships of the core Chlorophyta (Ulvophyceae or green seaweeds, and freshwater or terrestrial Chlorophyceae and Trebouxiophyceae) and unveil a rapid radiation of Chlorophyceae and the principal lineages of the Ulvophyceae late in the Neoproterozoic Era. Our time-calibrated tree points to an origin and early diversification of green seaweeds in the late Tonian and Cryogenian periods, an interval marked by two global glaciations with strong consequent changes in the amount of available marine benthic habitat. We hypothesize that unicellular and simple multicellular ancestors of green seaweeds survived these extreme climate events in isolated refugia, and diversified in benthic environments that became increasingly available as ice retreated. An increased supply of nutrients and biotic interactions, such as grazing pressure, likely triggered the independent evolution of macroscopic growth via different strategies, including true multicellularity, and multiple types of giant-celled forms.


Subject(s)
Chlorophyta/growth & development , Evolution, Molecular , Seaweed/growth & development , Chlorophyta/classification , Ecosystem , Phylogeny , Seaweed/classification
5.
Sensors (Basel) ; 23(22)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38005584

ABSTRACT

In this paper, we introduce a method for automated seaweed growth monitoring by combining a low-cost RGB and stereo vision camera. While current vision-based seaweed growth monitoring techniques focus on laboratory measurements or above-ground seaweed, we investigate the feasibility of the underwater imaging of a vertical seaweed farm. We use deep learning-based image segmentation (DeeplabV3+) to determine the size of the seaweed in pixels from recorded RGB images. We convert this pixel size to meters squared by using the distance information from the stereo camera. We demonstrate the performance of our monitoring system using measurements in a seaweed farm in the River Scheldt estuary (in The Netherlands). Notwithstanding the poor visibility of the seaweed in the images, we are able to segment the seaweed with an intersection of the union (IoU) of 0.9, and we reach a repeatability of 6% and a precision of the seaweed size of 18%.


Subject(s)
Aquaculture , Seaweed , Netherlands , Seaweed/growth & development , Aquaculture/instrumentation , Aquaculture/methods
6.
J Phycol ; 58(2): 198-207, 2022 04.
Article in English | MEDLINE | ID: mdl-35092031

ABSTRACT

The UN Decade of Ecosystem Restoration is a response to the urgent need to substantially accelerate and upscale ecological restoration to secure Earth's sustainable future. Globally, restoration commitments have focused overwhelmingly on terrestrial forests. In contrast, despite a strong value proposition, efforts to restore seaweed forests lag far behind other major ecosystems and continue to be dominated by small-scale, short-term academic experiments. However, seaweed forest restoration can match the scale of damage and threat if moved from academia into the hands of community groups, industry, and restoration practitioners. Connecting two rapidly growing sectors in the Blue Economy-seaweed cultivation and the restoration industry-can transform marine forest restoration into a commercial-scale enterprise that can make a significant contribution to global restoration efforts.


Subject(s)
Conservation of Natural Resources , Ecosystem , Forests , Seaweed , Seaweed/growth & development
7.
Molecules ; 27(4)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35209184

ABSTRACT

Seaweeds can play a vital role in plant growth promotion. Two concentrations (5 and 10 mg/mL) of soluble polysaccharides extracted from the green macroalgae Ulva fasciata and Ulva lactuca were tested on Zea mays L. The carbohydrate and protein contents, and antioxidant activities (phenols, ascorbic, peroxidase, and catalase) were measured, as well as the protein banding patterns. The soluble polysaccharides at 5 mg/mL had the greatest effect on the base of all of the parameters. The highest effects of soluble polysaccharides on the Zea mays were 38.453, 96.76, 4, 835, 1.658, 7.462, and 38615.19, mg/mL for carbohydrates, proteins, phenol, µg ascorbic/mL, mg peroxidase/g dry tissue, and units/g tissue of catalase, respectively. The total number of protein bands (as determined by SDS PAGE) was not changed, but the density of the bands was correlated to the treatments. The highest band density and promoting effect were correlated to 5 mg/mL soluble polysaccharide treatments extracted from Ulva fasciata in Zea mays, which can be used as a biofertilizer.


Subject(s)
Biological Products/chemistry , Polysaccharides/chemistry , Seaweed/chemistry , Zea mays/chemistry , Biological Products/isolation & purification , Biological Products/pharmacology , Chemical Phenomena , Chromatography, High Pressure Liquid , Photosynthesis , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Pigments, Biological/chemistry , Polysaccharides/isolation & purification , Polysaccharides/pharmacology , Seaweed/growth & development , Solubility , Spectrum Analysis , Structure-Activity Relationship , Water , Zea mays/growth & development
8.
Mar Drugs ; 19(3)2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33808736

ABSTRACT

To exploit the nutraceutical and biomedical potential of selected seaweed-derived polymers in an economically viable way, it is necessary to analyze and understand their quality and yield fluctuations throughout the seasons. In this study, the seasonal polysaccharide yield and respective quality were evaluated in three selected seaweeds, namely the agarophyte Gracilaria gracilis, the carrageenophyte Calliblepharis jubata (both red seaweeds) and the alginophyte Sargassum muticum (brown seaweed). It was found that the agar synthesis of G. gracilis did not significantly differ with the seasons (27.04% seaweed dry weight (DW)). In contrast, the carrageenan content in C. jubata varied seasonally, being synthesized in higher concentrations during the summer (18.73% DW). Meanwhile, the alginate synthesis of S. muticum exhibited a higher concentration (36.88% DW) during the winter. Therefore, there is a need to assess the threshold at which seaweed-derived polymers may have positive effects or negative impacts on human nutrition. Furthermore, this study highlights the three polymers, along with their known thresholds, at which they can have positive and/or negative health impacts. Such knowledge is key to recognizing the paradigm governing their successful deployment and related beneficial applications in humans.


Subject(s)
Agar/metabolism , Alginates/metabolism , Carrageenan/biosynthesis , Gracilaria/metabolism , Sargassum/metabolism , Seasons , Seaweed/metabolism , Agar/adverse effects , Alginates/adverse effects , Carrageenan/adverse effects , Gracilaria/growth & development , Humans , Nutritive Value , Risk Assessment , Sargassum/growth & development , Seaweed/growth & development
9.
Philos Trans A Math Phys Eng Sci ; 378(2181): 20190355, 2020 Oct 02.
Article in English | MEDLINE | ID: mdl-32862815

ABSTRACT

Climate warming influences structure and function of Arctic benthic ecosystems. Assessing the response of these systems to perturbations requires long-term studies addressing key ecological processes related to recolonization and succession of species. Based on unique time-series (1980-2017), this study addresses successional patterns of hard-bottom benthos in two fjords in NW Svalbard after a pulse perturbation in 1980 and during a period of rapid climate warming. Analysis of seafloor photographs revealed different return rates of taxa, and variability in species densities, through time. It took 13 and 24 years for the community compositions of cleared and control transects to converge in the two fjords. Nearly two decades after the study initiation, an increase in filamentous and foliose macroalgae was observed with a subsequent reorganization in the invertebrate community. Trait analyses showed a decrease in body size and longevity of taxa in response to the pulse perturbation and a shift towards small/medium size and intermediate longevity following the macroalgae takeover. The observed slow recovery rates and abrupt shifts in community structure document the vulnerability of Arctic coastal ecosystems to perturbations and continued effects of climate warming. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.


Subject(s)
Ecosystem , Global Warming , Animals , Aquatic Organisms/classification , Aquatic Organisms/growth & development , Arctic Regions , Biomass , Hydrozoa/classification , Hydrozoa/growth & development , Norway , Oceans and Seas , Polyplacophora/classification , Polyplacophora/growth & development , Seaweed/classification , Seaweed/growth & development
10.
Mar Drugs ; 18(11)2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33207613

ABSTRACT

The introduction of exotic organisms in marine ecosystems can lead to economic and ecological losses. Globally, seaweeds represent a significant part of these non-indigenous species (NIS), with 407 introduced algal species. Furthermore, the presence of NIS seaweeds has been reported as a major concern worldwide since the patterns of their potential invasion mechanisms and vectors are not yet fully understood. Currently, in the Iberian Peninsula, around 50 NIS seaweeds have been recorded. Some of these are also considered invasive due to their overgrowth characteristic and competition with other species. However, invasive seaweeds are suitable for industrial applications due to their high feedstock. Hence, seaweeds' historical use in daily food diet, allied to research findings, showed that macroalgae are a source of nutrients and bioactive compounds with nutraceutical properties. The main goal of this review is to evaluate the records of NIS seaweeds in the Iberian Peninsula and critically analyze the potential of invasive seaweeds application in the food industry.


Subject(s)
Food Handling , Food Supply , Nutritive Value , Seaweed/growth & development , Food-Processing Industry , Humans
11.
Mar Drugs ; 18(9)2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32824959

ABSTRACT

Carrageenan, the foremost constituent of extracellular matrix of some rhodophyta, is a galactan backbone with a different number of sulphate groups attached. Variations of degree of sulphation are associated with different types of carrageenans, which vary according to seaweed life cycles, and have consequences for the exploitation of this raw material. In this work, we used three well-recognised stages of development thalli and two stages of cystocarp maturation to analyse genes that encode addition and elimination of sulphate groups to cell-wall galactan of the red seaweed Grateloupia imbricata. Expressions of carbohydrate sulfotransferase and galactose-6 sulfurylase and genes encoding stress proteins such as cytochrome P450 and WD40, were examined. Results showed that transcript expression of carbohydrate sulfotransferase occurs at all stage of thalli development. Meanwhile galactose-6 sulfurylase expressions displayed different roles, which could be related to a temporal regulation of cystocarp maturation. Cytochrome P450 and WD40 are related to the disclosure and maturation of cystocarps of G. imbricata. Our conclusion is that differential expression of genes encoding proteins involved in the sulphation and desulphation of galactan backbone is associated with alterations in thalli development and cystocarp maturation in the red seaweed Grateloupia imbricata. Exploitation of industry-valued carrageenan will depend on insight into gene mechanisms of red seaweeds.


Subject(s)
Carrageenan/biosynthesis , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Plant Proteins/genetics , Rhodophyta/genetics , Seaweed/genetics , Plant Proteins/metabolism , Rhodophyta/growth & development , Rhodophyta/metabolism , Seaweed/growth & development , Seaweed/metabolism
12.
BMC Genomics ; 20(1): 975, 2019 Dec 12.
Article in English | MEDLINE | ID: mdl-31830918

ABSTRACT

BACKGROUND: Alginate is an important cell wall component and mannitol is a soluble storage carbon substance in the brown seaweed Saccharina japonica. Their contents vary with kelp developmental periods and harvesting time. Alginate and mannitol regulatory networks and molecular mechanisms are largely unknown. RESULTS: With WGCNA and trend analysis of 20,940 known genes and 4264 new genes produced from transcriptome sequencing of 30 kelp samples from different stages and tissues, we deduced that ribosomal proteins, light harvesting complex proteins and "imm upregulated 3" gene family are closely associated with the meristematic growth and kelp maturity. Moreover, 134 and 6 genes directly involved in the alginate and mannitol metabolism were identified, respectively. Mannose-6-phosphate isomerase (MPI2), phosphomannomutase (PMM1), GDP-mannose 6-dehydrogenase (GMD3) and mannuronate C5-epimerase (MC5E70 and MC5E122) are closely related with the high content of alginate in the distal blade. Mannitol accumulation in the basal blade might be ascribed to high expression of mannitol-1-phosphate dehydrogenase (M1PDH1) and mannitol-1-phosphatase (M1Pase) (in biosynthesis direction) and low expression of mannitol-2-dehydrogenase (M2DH) and Fructokinase (FK) (in degradation direction). Oxidative phosphorylation and photosynthesis provide ATP and NADH for mannitol metabolism whereas glycosylated cycle and tricarboxylic acid (TCA) cycle produce GTP for alginate biosynthesis. RNA/protein synthesis and transportation might affect alginate complex polymerization and secretion processes. Cryptochrome (CRY-DASH), xanthophyll cycle, photosynthesis and carbon fixation influence the production of intermediate metabolite of fructose-6-phosphate, contributing to high content of mannitol in the basal blade. CONCLUSIONS: The network of co-responsive DNA synthesis, repair and proteolysis are presumed to be involved in alginate polymerization and secretion, while upstream light-responsive reactions are important for mannitol accumulation in meristem of kelp. Our transcriptome analysis provides new insights into the transcriptional regulatory networks underlying the biosynthesis of alginate and mannitol during S. japonica developments.


Subject(s)
Gene Expression Profiling/methods , Gene Regulatory Networks , Laminaria/growth & development , Seaweed/growth & development , Algal Proteins/genetics , Alginates/metabolism , Gene Expression Regulation, Developmental , High-Throughput Nucleotide Sequencing , Laminaria/genetics , Mannitol/metabolism , Meristem/genetics , Meristem/growth & development , Oxidative Phosphorylation , Seaweed/genetics , Sequence Analysis, RNA
13.
Opt Express ; 27(13): 18620-18627, 2019 Jun 24.
Article in English | MEDLINE | ID: mdl-31252802

ABSTRACT

A laboratory experiment was conducted to obtain a floating algae index (FAI) of the floating macroalgae (Ulva prolifera), corresponding to various values of biomass per unit area (BPA). A piecewise empirical model was used to fit the statistical relationships between BPA and FAI, corresponding to FAI ≤ 0.2 (BPA ≤ 1.81kg/m2) and FAI ˃ 0.2 (BPA ˃ 1.81 kg/m2). Spectral mixing derived results show that a linear relationship between FAI and BPA is maintained when the BPA of endmembers is less than 1.81 kg/m2. However, when the BPA of the endmembers exceeds 1.81 kg/m2, there is substantial uncertainty in the optical remote estimation of biomass. Although the MODIS-derived FAI of Ulva prolifera is often less than 0.2, it is very difficult to determine whether the FAI results from low BPA (≤ 1.81kg/m2) of the endmembers, or from a low area ratio including high BPA (˃ 1.81 kg/m2), due to pixel mixing. If it is assumed that the unit biomass distribution of pure endmembers is a standard Gaussian distribution, then the uncertainty in the biomass estimation of Ulva prolifera from MODIS data can be expressed. This results in the uncertainty of ~36% in total biomass estimation, ~43% of which was contributed by a few pixels (10% of total pixels) with high FAI (˃ 0.05). The uncertainty in BPA caused by high FAI (˃ 0.05) pixels is about 7.2 times that for low FAI (≤ 0.05) pixels. In future research, the spatial distribution characteristics of the FAI of pure endmembers need to be considered in order to improve the accuracy of optical remote estimation of floating Ulva prolifera.


Subject(s)
Biomass , Oceans and Seas , Satellite Imagery , Seaweed/growth & development , Ulva/growth & development , Uncertainty , Computer Simulation , Scattering, Radiation , Statistics as Topic
14.
Opt Express ; 27(4): 4528-4548, 2019 Feb 18.
Article in English | MEDLINE | ID: mdl-30876071

ABSTRACT

Several algorithms have been proposed to detect floating macroalgae blooms in the global ocean. However, some of them are difficult or even impossible to routinely apply by non-experts because of performing a sophisticated atmospheric correction scheme or due to the mismatch in spectral bands from one sensor to another. Here, a generic, simple and effective method, referred to as the Floating Green Tide Index (FGTI), was proposed to detect floating green macroalgae blooms (GMB). The FGTI was defined as the difference between greenness and wetness features extracted from digital number (DN) observation through Tasseled Cap Transformation analysis, providing the advantage of bypassing the atmospheric correction procedure. Through cross-index and cross-sensor comparisons, the FGTI showed similar performance to the existing VB-FAH (Virtual-Baseline Floating macroAlgae Height) and FAI (Floating Algae Index) algorithms but proved more robust than the traditional NDVI (Normalized Difference Vegetation Index) in terms of response to perturbations by environmental conditions, viewing geometry, sun glint, and thin cloud contamination. Given the requirement for spectral bands in the current and planned satellite sensors, the FGTI design can easily be extended to any satellite sensor, and therefore provide an excellent data resource for studying GMB in any part of the global ocean.


Subject(s)
Chlorophyta/growth & development , Environmental Monitoring/methods , Remote Sensing Technology , Seaweed/growth & development , Algorithms , Chlorophyta/chemistry , Pacific Ocean , Seaweed/chemistry , Water Pollutants/analysis
15.
J Exp Biol ; 222(Pt 4)2019 02 25.
Article in English | MEDLINE | ID: mdl-30679240

ABSTRACT

The resistance of macroalgae to damage by hydrodynamic forces depends on the mechanical properties of their tissues. Although factors such as water-flow environment, algal growth rate and damage by herbivores have been shown to influence various material properties of macroalgal tissues, the interplay of these factors as they change seasonally and affect algal mechanical performance has not been worked out. We used the perennial kelp Egregia menziesii to study how the material properties of the rachis supporting a frond changed seasonally over a 2 year period, and how those changes correlated with seasonal patterns of the environment, growth rate and herbivore load. Rachis tissue became stiffer, stronger and less extensible with age (distance from the meristem). Thus, slowly growing rachises were stiffer, stronger and tougher than rapidly growing ones. Growth rates were highest in spring and summer when upwelling and long periods of daylight occurred. Therefore, rachis tissue was most resistant to damage in the winter, when waves were large as a result of seasonal storms. Herbivory was greatest during summer, when rachis growth rates were high. Unlike other macroalgae, E. menziesii did not respond to herbivore damage by increasing rachis tissue strength, but rather by growing in width so that the cross-sectional area of the wounded rachis was increased. The relative timing of environmental factors that affect growth rates (e.g. upwelling supply of nutrients, daylight duration) and of those that can damage macroalgae (e.g. winter storms, summer herbivore outbreaks) can influence the material properties and thus the mechanical performance of macroalgae.


Subject(s)
Herbivory , Kelp/physiology , Seaweed/physiology , Water Movements , Biomechanical Phenomena , Kelp/growth & development , Seasons , Seaweed/growth & development
16.
Appl Microbiol Biotechnol ; 103(8): 3297-3316, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30847543

ABSTRACT

The ungenerous release of metals from different industrial, agricultural, and anthropogenic sources has resulted in heavy metal pollution. Metals with a density larger than 5 g cm-3 have been termed as heavy metals and have been stated to be potentially toxic to human and animals. Algae are known to be pioneer organisms with the potential to grow under extreme conditions including heavy metal-polluted sites. They have evolved efficient defense strategies to combat the toxic effects exerted by heavy metal ions. Most of the algal strains are reported to accumulate elevated metal ion concentration in cellular organelles. With respect to that, this review focuses on understanding the various strategies used by algal system for heavy metal resistance. Additionally, the application of this metal resistance in biosynthesis of metal nanoparticles and metal oxide nanoparticles has been investigated in details. We thereby conclude that algae serve as an excellent system for understanding metal uptake and accumulation. This thereby assists in the design and development of low-cost approaches for large-scale synthesis of nanoparticles and bioremediation approach, providing ample opportunities for future work.


Subject(s)
Environmental Pollutants/metabolism , Metal Nanoparticles , Metals, Heavy/metabolism , Microalgae/metabolism , Seaweed/metabolism , Adsorption , Biodegradation, Environmental , Biological Transport, Active , Biomass , Biotransformation , Environmental Pollutants/toxicity , Metal Nanoparticles/chemistry , Metals, Heavy/toxicity , Microalgae/drug effects , Microalgae/growth & development , Seaweed/drug effects , Seaweed/growth & development
17.
Environ Monit Assess ; 191(7): 430, 2019 Jun 12.
Article in English | MEDLINE | ID: mdl-31190173

ABSTRACT

Seagrass beds are important marine ecosystems that provide significant ecological services. The global decline of seagrass beds is becoming severe due to the increasing pressure of human-induced factors and changing climatic conditions. Restoration of seagrasses is an evolving science that started in 1939. In this study, we report a remarkably successful restoration activity carried out in the Gulf of Mannar (GoM), Southeast India. This is the first wide-scale effort in Indian waters. After the initial experimentation, manual transplantation of seagrass sprigs was carried out near Vaan and Koswari islands in GoM. Transplantation was performed with PVC quadrats and jute twines in areas of 800 m2 in both the islands during February to May 2014. An increase from 16.4 ± 0.3 to 32.3 ± 0.6% in Vaan and from 15.1 ± 0.2 to 35.1 ± 0.9% in Koswari was observed in seagrass percentage cover during the period from June 2014 to May 2016. Area cover, shoot density, macrofaunal density and fish density increased at the restoration sites after the transplantation. Bottom trawling was found to be the most serious threat to the seagrass beds in these islands. This method of transplantation can be replicated in other areas of degraded seagrass in India to carry out wide-scale restoration of seagrasses.


Subject(s)
Environmental Monitoring/methods , Environmental Restoration and Remediation/methods , Seaweed/growth & development , Animals , Climate Change , Ecosystem , Fishes/growth & development , Humans , India , Indian Ocean , Indian Ocean Islands
18.
J Environ Sci (China) ; 82: 132-144, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31133258

ABSTRACT

Algal phytoremediation represents a practical green solution for treating anaerobically digested piggery effluent (ADPE). The potential and viability of combining microalgae and macroalgae cultivation for the efficient treatment of ADPE were evaluated in this study. Bioprospecting the ability of different locally isolated macroalgae species illustrated the potential of Cladophora sp. to successfully grow and treat ADPE with up to 150 mg/L NH4+ with a biomass productivity of (0.13 ±â€¯0.02) g/(L·day) and ammonium removal rate of (10.23 ±â€¯0.18) mg/(L·day) NH4+. When grown by itself, the microalgae consortium used in this study consisting of Chlorella sp. and Scenedesmus sp. was found to grow and treat undiluted ADPE (up to 525 mg/L NH4+) with an average ammonium removal rate of 25 mg/(L·day) NH4+ and biomass productivity of (0.012 ±â€¯0.0001) g/(L·day). Nevertheless, when combined together, despite the different cultivation systems (attached and non-attached) evaluated, microalgae and macroalgae were unable to co-exist together and treat ADPE as their respective growth were inversely related to each other due to direct competition for nutrients and available resources as well as the negative physical interaction between both algal groups.


Subject(s)
Animal Husbandry , Microalgae/physiology , Seaweed/physiology , Waste Disposal, Fluid/methods , Biodegradation, Environmental , Microalgae/growth & development , Microalgae/metabolism , Seaweed/growth & development , Seaweed/metabolism , Wastewater
19.
Ecol Lett ; 21(2): 190-196, 2018 02.
Article in English | MEDLINE | ID: mdl-29164789

ABSTRACT

Latitudinal and elevational temperature gradients (LTG and ETG) play central roles in biogeographical theory, underpinning predictions of large-scale patterns in organismal thermal stress, species' ranges and distributional responses to climate change. Yet an enormous fraction of Earth's taxa live exclusively in habitats where foundation species modify temperatures. We examine little-explored implications of this widespread trend using a classic model system for understanding heat stresses - rocky intertidal shores. Through integrated field measurements and laboratory trials, we demonstrate that thermal buffering by centimetre-thick mussel and seaweed beds eliminates differences in stress-inducing high temperatures and associated mortality risk that would otherwise arise over 14° of latitude and ~ 1 m of shore elevation. These results reveal the extent to which physical effects of habitat-formers can overwhelm broad-scale thermal trends, suggesting a need to re-evaluate climate change predictions for many species. Notably, inhabitant populations may exhibit deceptive resilience to warming until refuge-forming taxa become imperiled.


Subject(s)
Climate Change , Seaweed , Temperature , Ecosystem , Hot Temperature , Seaweed/growth & development
20.
Proc Biol Sci ; 285(1880)2018 06 13.
Article in English | MEDLINE | ID: mdl-29875294

ABSTRACT

There is a long history of examining the impacts of nutrient pollution and pH on coral reefs. However, little is known about how these two stressors interact and influence coral reef ecosystem functioning. Using a six-week nutrient addition experiment, we measured the impact of elevated nitrate (NO-3) and phosphate (PO3-4) on net community calcification (NCC) and net community production (NCP) rates of individual taxa and combined reef communities. Our study had four major outcomes: (i) NCC rates declined in response to nutrient addition in all substrate types, (ii) the mixed community switched from net calcification to net dissolution under medium and high nutrient conditions, (iii) nutrients augmented pH variability through modified photosynthesis and respiration rates, and (iv) nutrients disrupted the relationship between NCC and aragonite saturation state documented in ambient conditions. These results indicate that the negative effect of NO-3 and PO3-4 addition on reef calcification is likely both a direct physiological response to nutrients and also an indirect response to a shifting pH environment from altered NCP rates. Here, we show that nutrient pollution could make reefs more vulnerable to global changes associated with ocean acidification and accelerate the predicted shift from net accretion to net erosion.


Subject(s)
Anthozoa/growth & development , Coral Reefs , Nitrates/analysis , Phosphates/analysis , Seawater/chemistry , Seaweed/growth & development , Water Pollution, Chemical/adverse effects , Animals , Biota/physiology , Carbonates/chemistry , Eutrophication , Hawaii , Silicon Dioxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL