Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 133
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 175(6): 1561-1574.e12, 2018 11 29.
Article in English | MEDLINE | ID: mdl-30449620

ABSTRACT

The molecular mediator and functional significance of meal-associated brown fat (BAT) thermogenesis remains elusive. Here, we identified the gut hormone secretin as a non-sympathetic BAT activator mediating prandial thermogenesis, which consequentially induces satiation, thereby establishing a gut-secretin-BAT-brain axis in mammals with a physiological role of prandial thermogenesis in the control of satiation. Mechanistically, meal-associated rise in circulating secretin activates BAT thermogenesis by stimulating lipolysis upon binding to secretin receptors in brown adipocytes, which is sensed in the brain and promotes satiation. Chronic infusion of a modified human secretin transiently elevates energy expenditure in diet-induced obese mice. Clinical trials with human subjects showed that thermogenesis after a single-meal ingestion correlated with postprandial secretin levels and that secretin infusions increased glucose uptake in BAT. Collectively, our findings highlight the largely unappreciated function of BAT in the control of satiation and qualify BAT as an even more attractive target for treating obesity.


Subject(s)
Adipocytes, Brown/metabolism , Adipose Tissue, Brown/metabolism , Eating , Secretin/metabolism , Thermogenesis , Adipocytes, Brown/cytology , Adipose Tissue, Brown/cytology , Animals , HEK293 Cells , Humans , Lipolysis , Mice , Mice, Knockout , Mice, Obese , Secretin/genetics
2.
Mol Pharmacol ; 101(6): 400-407, 2022 06.
Article in English | MEDLINE | ID: mdl-35351821

ABSTRACT

Class B1 G protein-coupled receptors are activated by peptides, with amino-terminal regions critical for biologic activity. Although high resolution structures exist, understanding of key features of the peptide activation domain that drive signaling is limited. In the secretin receptor (SecR) structure, interactions are observed between peptide residues His1 and Ser2 and seventh transmembrane segment (TM7) receptor residue E373. We interrogated these interactions using systematic structure-activity analysis of peptide and receptor. His1 was critical for binding and cAMP responses, but its orientation was not critical, and substitution could independently modify affinity and efficacy. Ser2 was also critical, with all substitutions reducing peptide affinity and functional responses proportionally. Mutation of E373 to conserved acidic Asp (E373D), uncharged polar Gln (E373Q), or charge-reversed basic Arg (E373R) did not alter receptor expression, with all exhibiting secretin-dependent cAMP accumulation. All position 373 mutants displayed reduced binding affinities and cAMP potencies for many peptide analogs, although relative effects of position 1 peptides were similar whereas position 2 peptides exhibited substantial differences. The peptide including basic Lys in position 2 was active at SecR having acidic Glu in position 373 and at E373D while exhibiting minimal activity at those receptors in which an acidic residue is absent in this position (E373Q and E373R). In contrast, the peptide including acidic Glu in position 2 was equipotent with secretin at E373R while being much less potent than secretin at wild-type SecR and E373D. These data support functional importance of a charge-charge interaction between the amino-terminal region of secretin and the top of TM7. SIGNIFICANCE STATEMENT: This work refines our molecular understanding of the activation mechanisms of class B1 G protein-coupled receptors. The amino-terminal region of secretin interacts with the seventh transmembrane segment of its receptor with structural specificity and with a charge-charge interaction helping to drive functional activation.


Subject(s)
Receptors, G-Protein-Coupled , Secretin , Amino Acid Sequence , Mutagenesis , Peptides/chemistry , Receptors, G-Protein-Coupled/metabolism , Receptors, Gastrointestinal Hormone , Secretin/chemistry , Secretin/genetics , Secretin/metabolism , Structure-Activity Relationship
3.
Hepatology ; 74(4): 1845-1863, 2021 10.
Article in English | MEDLINE | ID: mdl-33928675

ABSTRACT

BACKGROUND AND AIMS: Human NAFLD is characterized at early stages by hepatic steatosis, which may progress to NASH when the liver displays microvesicular steatosis, lobular inflammation, and pericellular fibrosis. The secretin (SCT)/secretin receptor (SCTR) axis promotes biliary senescence and liver fibrosis in cholestatic models through down-regulation of miR-125b signaling. We aim to evaluate the effect of disrupting biliary SCT/SCTR/miR-125b signaling on hepatic steatosis, biliary senescence, and liver fibrosis in NAFLD/NASH. APPROACH AND RESULTS: In vivo, 4-week-old male wild-type, Sct-/- and Sctr-/- mice were fed a control diet or high-fat diet (HFD) for 16 weeks. The expression of SCT/SCTR/miR-125b axis was measured in human NAFLD/NASH liver samples and HFD mouse livers by immunohistochemistry and quantitative PCR. Biliary/hepatocyte senescence, ductular reaction, and liver angiogenesis were evaluated in mouse liver and human NAFLD/NASH liver samples. miR-125b target lipogenesis genes in hepatocytes were screened and validated by custom RT2 Profiler PCR array and luciferase assay. Biliary SCT/SCTR expression was increased in human NAFLD/NASH samples and in livers of HFD mice, whereas the expression of miR-125b was decreased. Biliary/hepatocyte senescence, ductular reaction, and liver angiogenesis were observed in human NAFLD/NASH samples as well as HFD mice, which were decreased in Sct-/- and Sctr-/- HFD mice. Elovl1 is a lipogenesis gene targeted by miR-125b, and its expression was also decreased in HFD mouse hepatocytes following Sct or Sctr knockout. Bile acid profile in fecal samples have the greatest changes between wild-type mice and Sct-/- /Sctr-/- mice. CONCLUSION: The biliary SCT/SCTR/miR-125b axis promotes liver steatosis by up-regulating lipid biosynthesis gene Elovl1. Targeting the biliary SCT/SCTR/miR-125b axis may be key for ameliorating phenotypes of human NAFLD/NASH.


Subject(s)
Non-alcoholic Fatty Liver Disease/genetics , Receptors, G-Protein-Coupled/genetics , Receptors, Gastrointestinal Hormone/genetics , Secretin/genetics , Animals , Bile Ducts/cytology , Bile Ducts/metabolism , Cell Line , Cellular Senescence/genetics , Disease Models, Animal , Fatty Acid Elongases/genetics , Fatty Acid Elongases/metabolism , Fatty Acids, Nonesterified , Hepatocytes/metabolism , Humans , Lipogenesis/genetics , Mice , Mice, Knockout , MicroRNAs/genetics , MicroRNAs/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Phenotype , Receptors, G-Protein-Coupled/metabolism , Receptors, Gastrointestinal Hormone/metabolism , Secretin/metabolism , Up-Regulation
4.
FASEB J ; 33(9): 10269-10279, 2019 09.
Article in English | MEDLINE | ID: mdl-31251081

ABSTRACT

Primary biliary cholangitis (PBC) primarily targets cholangiocytes and is characterized by liver fibrosis and biliary proliferation. Activation of the secretin (Sct)/secretin receptor (SR) axis, expressed only by cholangiocytes, increases biliary proliferation, liver fibrosis, and bicarbonate secretion. We evaluated the effectiveness of SR antagonist treatment for early-stage PBC. Male and female dominant-negative TGF-ß receptor II (dnTGF-ßRII) (model of PBC) and wild-type mice at 12 wk of age were treated with saline or the SR antagonist, Sec 5-27, for 1 wk. dnTGF-ßRII mice expressed features of early-stage PBC along with enhanced Sct/SR axis activation and Sct secretion. dnTGF-ßRII mice had increased biliary proliferation or senescence, inflammation, and liver fibrosis. In dnTGF-ßRII mice, there was increased microRNA-125b/TGF-ß1/TGF-ß receptor 1/VEGF-A signaling. Human early-stage PBC patients had an increase in hepatobiliary Sct and SR expression and serum Sct levels. Increased biliary Sct/SR signaling promotes biliary and hepatic damage during early-stage PBC.-Kennedy, L., Francis, H., Invernizzi, P., Venter, J., Wu, N., Carbone, M., Gershwin, M. E., Bernuzzi, F., Franchitto, A., Alvaro, D., Marzioni, M., Onori, P., Gaudio, E., Sybenga, A., Fabris, L., Meng, F., Glaser, S., Alpini, G. Secretin/secretin receptor signaling mediates biliary damage and liver fibrosis in early-stage primary biliary cholangitis.


Subject(s)
Biliary Tract Diseases/pathology , Inflammation/pathology , Liver Cirrhosis, Biliary/complications , Liver Cirrhosis/pathology , Receptor, Transforming Growth Factor-beta Type II/physiology , Receptors, G-Protein-Coupled/metabolism , Receptors, Gastrointestinal Hormone/metabolism , Secretin/metabolism , Animals , Biliary Tract Diseases/etiology , Biliary Tract Diseases/metabolism , Case-Control Studies , Female , Humans , Inflammation/etiology , Inflammation/metabolism , Liver Cirrhosis/etiology , Liver Cirrhosis/metabolism , Liver Cirrhosis, Biliary/metabolism , Liver Cirrhosis, Biliary/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, G-Protein-Coupled/genetics , Receptors, Gastrointestinal Hormone/genetics , Secretin/genetics , Signal Transduction , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism
5.
Biosci Biotechnol Biochem ; 84(5): 936-942, 2020 May.
Article in English | MEDLINE | ID: mdl-31916916

ABSTRACT

Endocrine cells in the gastrointestinal tract secrete multiple hormones to maintain homeostasis in the body. In the present study, we generated intestinal organoids from the duodenum, jejunum, and ileum of Neurogenin 3 (Ngn3)-EGFP mice and examined how enteroendocrine cells (EECs) within organoid cultures resemble native epithelial cells in the gut. Transcriptome analysis of EGFP-positive cells from Ngn3-EGFP organoids showed gene expression pattern comparable to EECs in vivo. We also compared mRNAs of five major hormones, namely, ghrelin (Ghrl), cholecystokinin (Cck), Gip, secretin (Sct), and glucagon (Gcg) in organoids and small intestine along the longitudinal axis and found that expression patterns of these hormones in organoids were similar to those in native tissues. These findings suggest that an intestinal organoid culture system can be utilized as a suitable model to study enteroendocrine cell functions in vitro.


Subject(s)
Duodenum/cytology , Enteroendocrine Cells/metabolism , Ileum/cytology , Jejunum/cytology , Organoids/cytology , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Cells, Cultured , Cholecystokinin/genetics , Cholecystokinin/metabolism , Gastric Inhibitory Polypeptide/genetics , Gastric Inhibitory Polypeptide/metabolism , Ghrelin/genetics , Ghrelin/metabolism , Glucagon/genetics , Glucagon/metabolism , Glucagon-Like Peptide 1/genetics , Glucagon-Like Peptide 1/metabolism , Green Fluorescent Proteins/metabolism , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/genetics , RNA, Messenger/genetics , Secretin/genetics , Secretin/metabolism , Signal Transduction , Transcriptome
6.
J Bacteriol ; 200(5)2018 03 01.
Article in English | MEDLINE | ID: mdl-29084860

ABSTRACT

The ß-barrel assembly machinery (BAM) complex is the core machinery for the assembly of ß-barrel membrane proteins, and inhibition of BAM complex activity is lethal to bacteria. Discovery of integral membrane proteins that are key to pathogenesis and yet do not require assistance from the BAM complex raises the question of how these proteins assemble into bacterial outer membranes. Here, we address this question through a structural analysis of the type 2 secretion system (T2SS) secretin from enteropathogenic Escherichia coli O127:H6 strain E2348/69. Long ß-strands assemble into a barrel extending 17 Å through and beyond the outer membrane, adding insight to how these extensive ß-strands are assembled into the E. coli outer membrane. The substrate docking chamber of this secretin is shown to be sufficient to accommodate the substrate mucinase SteC.IMPORTANCE In order to cause disease, bacterial pathogens inhibit immune responses and induce pathology that will favor their replication and dissemination. In Gram-negative bacteria, these key attributes of pathogenesis depend on structures assembled into or onto the outer membrane. One of these is the T2SS. The Vibrio-type T2SS mediates cholera toxin secretion in Vibrio cholerae, and in Escherichia coli O127:H6 strain E2348/69, the same machinery mediates secretion of the mucinases that enable the pathogen to penetrate intestinal mucus and thereby establish deadly infections.


Subject(s)
Bacterial Outer Membrane Proteins/chemistry , Enteropathogenic Escherichia coli/chemistry , Secretin/chemistry , Type II Secretion Systems/chemistry , Bacterial Outer Membrane Proteins/metabolism , Enteropathogenic Escherichia coli/metabolism , Enteropathogenic Escherichia coli/pathogenicity , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Lipoproteins/chemistry , Microscopy, Electron/methods , Models, Molecular , Polysaccharide-Lyases/metabolism , Protein Binding , Protein Conformation , Protein Translocation Systems/chemistry , Protein Translocation Systems/metabolism , Protein Transport , Secretin/genetics , Secretin/isolation & purification , Type II Secretion Systems/metabolism , Vibrio cholerae/chemistry , Vibrio cholerae/metabolism
7.
J Biol Chem ; 291(10): 5172-84, 2016 Mar 04.
Article in English | MEDLINE | ID: mdl-26740626

ABSTRACT

Amino-terminal regions of secretin-family peptides contain key determinants for biological activity and binding specificity, although the nature of interactions with receptors is unclear. A helix N-capping motif within this region has been postulated to directly contribute to agonist activity while also stabilizing formation of a helix extending toward the peptide carboxyl terminus and docking within the receptor amino terminus. We used cysteine trapping to systematically explore spatial approximations between cysteines replacing each residue in this motif of secretin (sec), Phe(6), Thr(7), and Leu(10), and cysteines incorporated into the extracellular face of the receptor. Each peptide was a full agonist for cAMP, but had a lower binding affinity than natural hormone. These bound to COS cells expressing 61 receptor constructs incorporating cysteines in every position along each extracellular loop (ECL) and adjacent parts of transmembrane (TM) segments. Patterns of covalent labeling were distinct for each probe, with Cys(6)-sec labeling multiple residues in the carboxyl-terminal half of ECL2 and throughout ECL3, Cys(7)-sec predominantly labeling only single residues in the carboxyl-terminal end of ECL2 and the amino-terminal end of ECL3, and Cys(10)-sec not efficiently labeling any of these residues. These spatial constraints were used to refine our model of secretin bound to its receptor, now bringing ECL3 above the amino terminus of the ligand and revealing possible charge-charge interactions between this part of secretin and receptor residues in TM5, TM6, ECL2, and ECL3, which can orient and stabilize the peptide-receptor complex. This was validated by testing predicted approximations by mutagenesis and residue-residue complementation studies.


Subject(s)
Receptors, G-Protein-Coupled/chemistry , Receptors, Gastrointestinal Hormone/chemistry , Secretin/chemistry , Amino Acid Motifs , Amino Acid Sequence , Animals , Binding Sites , CHO Cells , COS Cells , Chlorocebus aethiops , Cricetinae , Cricetulus , Cyclic AMP/metabolism , Cysteine/genetics , Cysteine/metabolism , Humans , Molecular Sequence Data , Protein Binding , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, Gastrointestinal Hormone/genetics , Receptors, Gastrointestinal Hormone/metabolism , Secretin/genetics , Secretin/metabolism
8.
Biochim Biophys Acta ; 1838(7): 1978-84, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24589688

ABSTRACT

We have analyzed the cell wall of the radio-resistant bacterium Deinococcus radiodurans. Unexpectedly, the bacterial envelope appears to be organized in different complexes of high molecular weight. Each complex is composed of several proteins, most of which are coded by genes of unknown function and the majority are constituents of the inner/outer membrane system. One of the most abundant complexes is constituted by the gene DR_0774. This protein is a type of secretin which is a known subunit of the homo-oligomeric channel that represents the main bulk of the type IV piliation family. Finally, a minor component of the pink envelope consists of several inner-membrane proteins. The implications of these findings are discussed.


Subject(s)
Bacterial Proteins/metabolism , Deinococcus/metabolism , Membrane Proteins/metabolism , Bacterial Proteins/genetics , Cell Wall/genetics , Cell Wall/metabolism , Deinococcus/genetics , Membrane Proteins/genetics , Secretin/genetics , Secretin/metabolism
9.
Gastroenterology ; 146(7): 1795-808.e12, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24583060

ABSTRACT

BACKGROUND & AIMS: Proliferating cholangiocytes secrete and respond to neuroendocrine hormones, including secretin. We investigated whether secretin secreted by S cells and cholangiocytes stimulates biliary proliferation in mice. METHODS: Cholestasis was induced in secretin knockout (Sct(-/-)) and wild-type (control) mice by bile duct ligation (BDL). At days 3 and 7 after BDL, control and Sct(-/-) mice received tail-vein injections of morpholinos against microRNA 125b or let7a. One week later, liver tissues and cholangiocytes were collected. Immunohistochemical, immunoblot, luciferase reporter, and real-time polymerase chain reaction assays were performed. Intrahepatic bile duct mass (IBDM) and proliferation were measured. Secretin secretion was measured in conditioned media from cholangiocytes and S cells and in serum and bile. RESULTS: Secretin secretion was increased in supernatants from cholangiocytes and S cells and in serum and bile after BDL in control mice. BDL Sct(-/-) mice had lower IBDM, reduced proliferation, and reduced production of vascular endothelial growth factor (VEGF) A and nerve growth factor (NGF) compared with BDL control. BDL and control mice given morpholinos against microRNA 125b or let7a had increased IBDM. Livers of mice given morpholinos against microRNA 125b had increased expression of VEGFA, and those treated with morpholinos against microRNA let7a had increased expression of NGF. Secretin regulated VEGF and NGF expression that negatively correlated with microRNA 125b and let7a levels in liver tissue. CONCLUSIONS: After liver injury, secretin produced by cholangiocytes and S cells reduces microRNA 125b and let7a levels, resulting in up-regulation of VEGF and NGF. Modulation of cholangiocyte expression of secretin could be a therapeutic approach for biliary diseases.


Subject(s)
Bile Ducts/metabolism , Cell Proliferation , Cholestasis/metabolism , Liver/metabolism , MicroRNAs/metabolism , Secretin/metabolism , Animals , Apoptosis , Bile/metabolism , Bile Ducts/pathology , Cells, Cultured , Cholestasis/genetics , Cholestasis/pathology , Culture Media, Conditioned/metabolism , Disease Models, Animal , Enteroendocrine Cells/metabolism , Liver/pathology , Male , Mice , Mice, Knockout , MicroRNAs/genetics , Morpholinos/administration & dosage , Nerve Growth Factor/metabolism , Secretin/blood , Secretin/deficiency , Secretin/genetics , Signal Transduction , Time Factors , Transfection , Vascular Endothelial Growth Factor A/metabolism
10.
PLoS Genet ; 8(9): e1002983, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23028376

ABSTRACT

Type 3 secretion systems (T3SSs) are essential components of two complex bacterial machineries: the flagellum, which drives cell motility, and the non-flagellar T3SS (NF-T3SS), which delivers effectors into eukaryotic cells. Yet the origin, specialization, and diversification of these machineries remained unclear. We developed computational tools to identify homologous components of the two systems and to discriminate between them. Our analysis of >1,000 genomes identified 921 T3SSs, including 222 NF-T3SSs. Phylogenomic and comparative analyses of these systems argue that the NF-T3SS arose from an exaptation of the flagellum, i.e. the recruitment of part of the flagellum structure for the evolution of the new protein delivery function. This reconstructed chronology of the exaptation process proceeded in at least two steps. An intermediate ancestral form of NF-T3SS, whose descendants still exist in Myxococcales, lacked elements that are essential for motility and included a subset of NF-T3SS features. We argue that this ancestral version was involved in protein translocation. A second major step in the evolution of NF-T3SSs occurred via recruitment of secretins to the NF-T3SS, an event that occurred at least three times from different systems. In rhizobiales, a partial homologous gene replacement of the secretin resulted in two genes of complementary function. Acquisition of a secretin was followed by the rapid adaptation of the resulting NF-T3SSs to multiple, distinct eukaryotic cell envelopes where they became key in parasitic and mutualistic associations between prokaryotes and eukaryotes. Our work elucidates major steps of the evolutionary scenario leading to extant NF-T3SSs. It demonstrates how molecular evolution can convert one complex molecular machine into a second, equally complex machine by successive deletions, innovations, and recruitment from other molecular systems.


Subject(s)
Adaptation, Biological , Cell Movement/genetics , Flagella/genetics , Host-Pathogen Interactions/genetics , Bacterial Physiological Phenomena/genetics , Computational Biology , Eukaryotic Cells , Evolution, Molecular , Phylogeny , Secretin/genetics , Secretin/metabolism
11.
J Lipid Res ; 55(2): 190-200, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24273196

ABSTRACT

Secretin (Sct), a classical gut hormone, is now known to play pleiotropic functions in the body including osmoregulation, digestion, and feeding control. As Sct has long been implicated to regulate metabolism, in this report, we have investigated a potential lipolytic action of Sct. In our preliminary studies, both Sct levels in circulation and Sct receptor (SctR) transcripts in adipose tissue were upregulated during fasting, suggesting a potential physiological relevance of Sct in regulating lipolysis. Using SctR knockout and Sct knockout mice as controls, we show that Sct is able to stimulate lipolysis in vitro in isolated adipocytes dose- and time-dependently, as well as acute lipolysis in vivo. H-89, a protein kinase A (PKA) inhibitor, was found to attenuate lipolytic effects of 1 µM Sct in vitro, while a significant increase in PKA activity upon Sct injection was observed in the adipose tissue in vivo. Sct was also found to stimulate phosphorylation at 660(ser) of hormone sensitive lipase (HSL) and to bring about the translocation of HSL from cytosol to the lipid droplet. In summary, our data demonstrate for the first time the in vivo and in vitro lipolytic effects of Sct, and that this function is mediated by PKA and HSL.


Subject(s)
Adipocytes/metabolism , Lipolysis , Secretin/metabolism , Adipocytes/cytology , Animals , Cyclic AMP-Dependent Protein Kinases/metabolism , Cytosol/metabolism , Epididymis , Gene Expression Regulation , Gene Knockout Techniques , Male , Mice , Phosphorylation , Protein Transport , Receptors, G-Protein-Coupled/deficiency , Receptors, G-Protein-Coupled/genetics , Receptors, Gastrointestinal Hormone/deficiency , Receptors, Gastrointestinal Hormone/genetics , Secretin/deficiency , Secretin/genetics , Starvation/metabolism , Starvation/pathology , Sterol Esterase/chemistry , Sterol Esterase/metabolism
12.
Mol Biol Evol ; 30(5): 1119-30, 2013 May.
Article in English | MEDLINE | ID: mdl-23427277

ABSTRACT

In humans, the secretin-like G protein-coupled receptor (GPCR) family comprises 15 members with 18 corresponding peptide ligand genes. Although members have been identified in a large variety of vertebrate and nonvertebrate species, the origin and relationship of these proteins remain unresolved. To address this issue, we employed large-scale genome comparisons to identify genome fragments with conserved synteny and matched these fragments to linkage groups in reconstructed early gnathostome ancestral chromosomes (GAC). This genome comparison revealed that most receptor and peptide genes were clustered in three GAC linkage groups and suggested that the ancestral forms of five peptide subfamilies (corticotropin-releasing hormone-like, calcitonin-like, parathyroid hormone-like, glucagon-like, and growth hormone-releasing hormone-like) and their cognate receptor families emerged through tandem local gene duplications before two rounds (2R) of whole-genome duplication. These subfamily genes have, then, been amplified by 2R whole-genome duplication, followed by additional local duplications and gene loss prior to the divergence of land vertebrates and teleosts. This study delineates a possible evolutionary scenario for whole secretin-like peptide and receptor family members and may shed light on evolutionary mechanisms for expansion of a gene family with a large number of paralogs.


Subject(s)
Gene Duplication/genetics , Genomics/methods , Peptide Hormones/genetics , Receptors, G-Protein-Coupled/genetics , Secretin/genetics , Evolution, Molecular , Humans
13.
FASEB J ; 27(3): 1191-202, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23233532

ABSTRACT

Genetic variants in the fatty acid (FA) translocase FAT/CD36 associate with abnormal postprandial lipids and influence risk for the metabolic syndrome. CD36 is abundant on apical enterocyte membranes in the proximal small intestine, where it facilitates FA uptake and FA-initiated signaling. We explored whether CD36 signaling influences FA-mediated secretion of cholecystokinin (CCK) and secretin, peptides released by enteroendocrine cells (EECs) in the duodenum/jejunum, which regulate events important for fat digestion and homeostasis. CD36 was immunodetected on apical membranes of secretin- and CCK-positive EECs and colocalized with cytosolic granules. Intragastric lipid administration to CD36 mice released less secretin (-60%) and CCK (-50%) compared with wild-type mice. Likewise, diminished secretin and CCK responses to FA were observed with CD36 intestinal segments in vitro, arguing against influence of alterations in fat absorption. Signaling mechanisms underlying peptide release were examined in STC-1 cells stably expressing human CD36 or a signaling-impaired mutant (CD36K/A). FA stimulation of cells expressing CD36 (vs. vector or CD36K/A) released more secretin (3.5- to 4-fold) and CCK (2- to 3-fold), generated more cAMP (2- to 2.5-fold), and enhanced protein kinase A activation. Protein kinase A inhibition (H-89) blunted secretin (80%) but not CCK release, which was reduced (50%) by blocking of calmodulin kinase II (KN-62). Coculture of STC-1 cells with Caco-2 cells stably expressing CD36 did not alter secretin or CCK release, consistent with a minimal effect of adjacent enterocytes. In summary, CD36 is a major mediator of FA-induced release of CCK and secretin. These peptides contribute to the role of CD36 in fat absorption and to its pleiotropic metabolic effects.


Subject(s)
CD36 Antigens/metabolism , Cholecystokinin/metabolism , Duodenum/metabolism , Enteroendocrine Cells/metabolism , Fatty Acids/metabolism , Jejunum/metabolism , Secretin/metabolism , Animals , CD36 Antigens/genetics , Caco-2 Cells , Cholecystokinin/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , Duodenum/cytology , Enteroendocrine Cells/cytology , Enzyme Activation , Fatty Acids/genetics , Humans , Jejunum/cytology , Mice , Mice, Knockout , Secretin/genetics , Signal Transduction/physiology
14.
Gen Comp Endocrinol ; 209: 50-60, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-24650782

ABSTRACT

The genes encoding the peptide precursors for glucagon (GCG), glucose-dependent insulinotropic peptide (GIP), and ortholog of exendin belong to the same family as shown by sequence similarity. The peptides similar to glucagon encoded by these genes signal through a closely related subfamily of G-protein coupled receptors. A total of five types of genes for receptors for these peptides have been identified, three for the products of GCG (GCGR, GLP1R, and GLP2R) and one each for the products of GIP (GIPR) and the ortholog of exendin (Grlr). Phylogenetic and genomic neighborhood analyses clearly show that these genes originated very early in vertebrate evolution and all were present in the common ancestor of tetrapods and bony fish. Despite their ancient origins, some of these genes are dispensable, with the Glp1r, Gipr, and Grlr being lost on the lineages leading to bony fish, birds, and mammals, respectively. The loss of the genes for these receptors may have been driving forces in the evolution of new functions for these peptides similar to glucagon.


Subject(s)
Evolution, Molecular , Glucagon/genetics , Peptide Hormones/genetics , Receptors, Glucagon/genetics , Receptors, Peptide/genetics , Animals , Gastric Inhibitory Polypeptide/genetics , Humans , Phylogeny , Receptors, Gastrointestinal Hormone/genetics , Secretin/genetics , Sequence Homology , Vertebrates/genetics
15.
Gen Comp Endocrinol ; 209: 82-92, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-24906176

ABSTRACT

The secretin receptor (SCTR) is a member of Class 2 subfamily B1 GPCRs and part of the PAC1/VPAC receptor subfamily. This receptor has long been known in mammals but has only recently been identified in other vertebrates including teleosts, from which it was previously considered to be absent. The ligand for SCTR in mammals is secretin (SCT), an important gastrointestinal peptide, which in teleosts has not yet been isolated, or the gene identified. This study revises the evolutionary model previously proposed for the secretin-GPCRs in metazoan by analysing in detail the fishes, the most successful of the extant vertebrates. All the Actinopterygii genomes analysed and the Chondrichthyes and Sarcopterygii fish possess a SCTR gene that shares conserved sequence, structure and synteny with the tetrapod homologue. Phylogenetic clustering and gene environment comparisons revealed that fish and tetrapod SCTR shared a common origin and diverged early from the PAC1/VPAC subfamily group. In teleosts SCTR duplicated as a result of the fish specific whole genome duplication but in all the teleost genomes analysed, with the exception of tilapia (Oreochromis niloticus), one of the duplicates was lost. The function of SCTR in teleosts is unknown but quantitative PCR revealed that in both sea bass (Dicentrarchus labrax) and tilapia (Oreochromis mossambicus) transcript abundance is high in the gastrointestinal tract suggesting it may intervene in similar processes to those in mammals. In contrast, no gene encoding the ligand SCT was identified in the ray-finned fishes (Actinopterygii) although it was present in the coelacanth (lobe finned fish, Sarcopterygii) and in the elephant shark (holocephalian). The genes in linkage with SCT in tetrapods and coelacanth were also identified in ray-finned fishes supporting the idea that it was lost from their genome. At present SCTR remains an orphan receptor in ray-finned fishes and it will be of interest in the future to establish why SCT was lost and which ligand substitutes for it so that full characterization of the receptor can occur.


Subject(s)
Evolution, Molecular , Fishes/genetics , Genome , Receptors, G-Protein-Coupled/genetics , Receptors, Gastrointestinal Hormone/genetics , Secretin/genetics , Amino Acid Sequence , Animals , Conserved Sequence/genetics , Fishes/metabolism , Molecular Sequence Data , Phylogeny , Receptors, G-Protein-Coupled/classification , Receptors, Gastrointestinal Hormone/classification , Secretin/metabolism , Sequence Homology, Amino Acid , Tissue Distribution
16.
Nat Commun ; 15(1): 4390, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782989

ABSTRACT

Class B G protein-coupled receptors can form dimeric complexes important for high potency biological effects. Here, we apply pharmacological, biochemical, and biophysical techniques to cells and membranes expressing the prototypic secretin receptor (SecR) to gain insights into secretin binding to homo-dimeric and monomeric SecR. Spatial proximity between peptide and receptor residues, probed by disulfide bond formation, demonstrates that the secretin N-terminus moves from adjacent to extracellular loop 3 (ECL3) at wild type SecR toward ECL2 in non-dimerizing mutants. Analysis of fluorescent secretin analogs demonstrates stable engagement of the secretin C-terminal region within the receptor extracellular domain (ECD) for both dimeric and monomeric receptors, while the mid-region exhibits lower mobility while docked at the monomer. Moreover, decoupling of G protein interaction reduces mobility of the peptide mid-region at wild type receptor to levels similar to the mutant, whereas it has no further impact on the monomer. These data support a model of peptide engagement whereby the ability of SecR to dimerize promotes higher conformational dynamics of the peptide-bound receptor ECD and ECLs that likely facilitates more efficient G protein recruitment and activation, consistent with the higher observed functional potency of secretin at wild type SecR relative to the monomeric mutant receptor.


Subject(s)
Protein Binding , Protein Multimerization , Receptors, G-Protein-Coupled , Receptors, Gastrointestinal Hormone , Secretin , Receptors, Gastrointestinal Hormone/metabolism , Receptors, Gastrointestinal Hormone/chemistry , Receptors, Gastrointestinal Hormone/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/genetics , Secretin/metabolism , Secretin/chemistry , Secretin/genetics , Ligands , Animals , Humans , Cricetulus , CHO Cells , Mutation , HEK293 Cells
17.
Sci Rep ; 14(1): 13525, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38866945

ABSTRACT

The traditional nomenclature of enteroendocrine cells (EECs), established in 1977, applied the "one cell - one hormone" dogma, which distinguishes subpopulations based on the secretion of a specific hormone. These hormone-specific subpopulations included S cells for secretin (SCT), K cells for glucose-dependent insulinotropic polypeptide (GIP), N cells producing neurotensin (NTS), I cells producing cholecystokinin (CCK), D cells producing somatostatin (SST), and others. In the past 15 years, reinvestigations into murine and human organoid-derived EECs, however, strongly questioned this dogma and established that certain EECs coexpress multiple hormones. Using the Gut Cell Atlas, the largest available single-cell transcriptome dataset of human intestinal cells, this study consolidates that the original dogma is outdated not only for murine and human organoid-derived EECs, but also for primary human EECs, showing that the expression of certain hormones is not restricted to their designated cell type. Moreover, specific analyses into SCT-expressing cells reject the presence of any cell population that exhibits significantly elevated secretin expression compared to other cell populations, previously referred to as S cells. Instead, this investigation indicates that secretin production is realized jointly by other enteroendocrine subpopulations, validating corresponding observations in murine EECs also for human EECs. Furthermore, our findings corroborate that SCT expression peaks in mature EECs, in contrast, progenitor EECs exhibit markedly lower expression levels, supporting the hypothesis that SCT expression is a hallmark of EEC maturation.


Subject(s)
Enteroendocrine Cells , Gene Expression Profiling , Secretin , Single-Cell Analysis , Humans , Enteroendocrine Cells/metabolism , Secretin/metabolism , Secretin/genetics , Single-Cell Analysis/methods , Mice , Animals , Transcriptome , Cell Differentiation , Organoids/metabolism , Organoids/cytology , Cholecystokinin/metabolism , Cholecystokinin/genetics , Somatostatin/metabolism , Somatostatin/genetics , Single-Cell Gene Expression Analysis
18.
Hum Mol Genet ; 20(5): 1000-7, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21159798

ABSTRACT

Hippocampal neurogenesis is the lifelong production of new neurons in the central nervous system (CNS), and affects many physiological and pathophysiological conditions, including neurobehavioral disorders. The early postnatal stage is the most prominent neurogenesis period; however, the functional role of neurogenesis in this developing stage has not been well characterized. To understand the role of hippocampal neurogenesis in the postnatal developing period, we analyzed secretin, a neuropeptide, which is expressed significantly higher in the development stage. Secretin is a pleiotropic neuropeptide hormone that belongs to the secretin/VIP/glucagon peptide family. Although secretin was originally isolated in the gastrointestinal system, it has been found that secretin itself acts as a neuropeptide in the CNS. Here, we report a new function of secretin as a survival factor for neural progenitor cells in the hippocampus. We found that secretin-deficient mice exhibit decreased numbers of BrdU-labeled new neurons and dramatically increased apoptosis of doublecortin-positive neural progenitor cells in the subgranular zone of the dentate gyrus (DG) during the early postnatal period. Furthermore, we found that reduced survival of neural progenitor cells leads to decreased volume of DG, reduced long-term potentiation and impaired spatial learning ability in adults. Our studies demonstrate that secretin has important implications for neurogenesis in postnatal development, and affects neurobehavioral function in the adult mouse.


Subject(s)
Neurons/cytology , Neurons/metabolism , Secretin/deficiency , Stem Cells/cytology , Stem Cells/metabolism , Animals , Apoptosis , Cell Survival , Dentate Gyrus/cytology , Dentate Gyrus/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Secretin/genetics
19.
FASEB J ; 26(12): 5092-105, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22964305

ABSTRACT

While it is evident that the carboxyl-terminal region of natural peptide ligands bind to the amino-terminal domain of class B GPCRs, how their biologically critical amino-terminal regions dock to the receptor is unclear. We utilize cysteine trapping to systematically explore spatial approximations among residues in the first five positions of secretin and in every position within the receptor extracellular loops (ECLs). Only Cys(2) and Cys(5) secretin analogues exhibited full activity and retained moderate binding affinity (IC(50): 92±4 and 83±1 nM, respectively). When these peptides probed 61 human secretin receptor cysteine-replacement mutants, a broad network of receptor residues could form disulfide bonds consistent with a dynamic ligand-receptor interface. Two distinct patterns of disulfide bond formation were observed: Cys(2) predominantly labeled residues in the amino terminus of ECL2 and ECL3 (relative labeling intensity: Ser(340), 94±7%; Pro(341), 84±9%; Phe(258), 73±5%; Trp(274) 62±8%), and Cys(5) labeled those in the carboxyl terminus of ECL2 and ECL3 (Gln(348), 100%; Ile(347), 73±12%; Glu(342), 59±10%; Phe(351), 58±11%). These constraints were utilized in molecular modeling, providing improved understanding of the structure of the transmembrane bundle and interconnecting loops, the orientation between receptor domains, and the molecular basis of ligand docking. Key spatial approximations between peptide and receptor predicted by this model (H(1)-W(274), D(3)-N(268), G(4)-F(258)) were supported by mutagenesis and residue-residue complementation studies.


Subject(s)
Cysteine/metabolism , Protein Interaction Mapping/methods , Receptors, G-Protein-Coupled/metabolism , Receptors, Gastrointestinal Hormone/metabolism , Secretin/metabolism , Animals , Binding, Competitive , CHO Cells , COS Cells , Chlorocebus aethiops , Cricetinae , Cricetulus , Cysteine/chemistry , Cysteine/genetics , Disulfides/chemistry , Disulfides/metabolism , Humans , Ligands , Models, Molecular , Mutation , Peptides/chemistry , Peptides/metabolism , Phenylalanine/chemistry , Phenylalanine/genetics , Phenylalanine/metabolism , Proline/chemistry , Proline/genetics , Proline/metabolism , Protein Binding , Protein Structure, Tertiary , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/genetics , Receptors, Gastrointestinal Hormone/chemistry , Receptors, Gastrointestinal Hormone/genetics , Secretin/chemistry , Secretin/genetics , Tryptophan/chemistry , Tryptophan/genetics , Tryptophan/metabolism
20.
Gen Comp Endocrinol ; 181: 18-24, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23246720

ABSTRACT

Secretin (Sct), traditionally a gastrointestinal hormone backed by a century long research, is now beginning to be recognized also as a neuroactive peptide. Substantiation by recent evidence on the functional role of Sct in various regions of the brain, especially on its potential neurosecretion from the posterior pituitary, has revealed Sct's physiological actions in regulating water homeostasis. Recent advances in understanding the functional roles of central and peripheral Sct has been made possible by the development of Sct and Sct receptor (SctR) knockout animal models which have led to novel approaches in research on the physiology of this brain-gut peptide. While research on the role of Sct in appetite regulation and fatty acid metabolism has been initiated recently, its role in glucose homeostasis is unclear. This review focuses mainly on the metabolic role of Sct by discussing data from the last century and recent discoveries, with emphasis on the need for revisiting and elucidating the role of Sct in metabolism and energy homeostasis.


Subject(s)
Secretin/metabolism , Animals , Eating/genetics , Eating/physiology , Energy Metabolism/genetics , Energy Metabolism/physiology , Glucose/metabolism , Homeostasis/genetics , Homeostasis/physiology , Humans , Models, Biological , Secretin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL