Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.313
Filter
Add more filters

Publication year range
1.
Cell ; 176(6): 1356-1366.e10, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30799038

ABSTRACT

Operons are a hallmark of bacterial genomes, where they allow concerted expression of functionally related genes as single polycistronic transcripts. They are rare in eukaryotes, where each gene usually drives expression of its own independent messenger RNAs. Here, we report the horizontal operon transfer of a siderophore biosynthesis pathway from relatives of Escherichia coli into a group of budding yeast taxa. We further show that the co-linearly arranged secondary metabolism genes are expressed, exhibit eukaryotic transcriptional features, and enable the sequestration and uptake of iron. After transfer, several genetic changes occurred during subsequent evolution, including the gain of new transcription start sites that were sometimes within protein-coding sequences, acquisition of polyadenylation sites, structural rearrangements, and integration of eukaryotic genes into the cluster. We conclude that the genes were likely acquired as a unit, modified for eukaryotic gene expression, and maintained by selection to adapt to the highly competitive, iron-limited environment.


Subject(s)
Eukaryota/genetics , Gene Transfer, Horizontal/genetics , Operon/genetics , Bacteria/genetics , Escherichia coli/genetics , Eukaryotic Cells , Evolution, Molecular , Gene Expression Regulation, Bacterial/genetics , Genes, Bacterial/genetics , Genome, Bacterial/genetics , Genome, Fungal/genetics , Saccharomycetales/genetics , Siderophores/genetics
2.
Cell ; 175(2): 311-312, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30290138

ABSTRACT

Siderophores are small molecules produced by bacteria that bind ferric iron in the surrounding environment with extraordinary affinity. A new study provides evidence that a simple animal host, Caenorhabditis elegans, co-opts siderophores to promote its own iron acquisition and growth.


Subject(s)
Enterobactin , Siderophores , Adenosine Triphosphate , Animals , Bacteria , Iron
3.
Cell ; 175(2): 571-582.e11, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30146159

ABSTRACT

Elucidating the benefits of individual microbiota-derived molecules in host animals is important for understanding the symbiosis between humans and their microbiota. The bacteria-secreted enterobactin (Ent) is an iron scavenging siderophore with presumed negative effects on hosts. However, the high prevalence of Ent-producing commensal bacteria in the human gut raises the intriguing question regarding a potential host mechanism to beneficially use Ent. We discovered an unexpected and striking role of Ent in supporting growth and the labile iron pool in C. elegans. We show that Ent promotes mitochondrial iron uptake and does so, surprisingly, by binding to the ATP synthase α subunit, which acts inside of mitochondria and independently of ATP synthase. We also demonstrated the conservation of this mechanism in mammalian cells. This study reveals a distinct paradigm for the "iron tug of war" between commensal bacteria and their hosts and an important mechanism for mitochondrial iron uptake and homeostasis.


Subject(s)
Enterobactin/physiology , Iron/metabolism , Siderophores/physiology , Adenosine Triphosphate/metabolism , Animals , Bacterial Proton-Translocating ATPases/metabolism , Bacterial Proton-Translocating ATPases/physiology , Biological Transport , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Enterobactin/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/physiology , HEK293 Cells , Humans , Iron/physiology , Mitochondria/metabolism
4.
Annu Rev Biochem ; 86: 799-823, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28426241

ABSTRACT

Iron is essential for the survival of most bacteria but presents a significant challenge given its limited bioavailability. Furthermore, the toxicity of iron combined with the need to maintain physiological iron levels within a narrow concentration range requires sophisticated systems to sense, regulate, and transport iron. Most bacteria have evolved mechanisms to chelate and transport ferric iron (Fe3+) via siderophore receptor systems, and pathogenic bacteria have further lowered this barrier by employing mechanisms to utilize the host's hemoproteins. Once internalized, heme is cleaved by both oxidative and nonoxidative mechanisms to release iron. Heme, itself a lipophilic and toxic molecule, presents a significant challenge for transport into the cell. As such, pathogenic bacteria have evolved sophisticated cell surface signaling and transport systems to obtain heme from the host. In this review, we summarize the structure and function of the heme-sensing and transport systems of pathogenic bacteria and the potential of these systems as antimicrobial targets.


Subject(s)
Bacterial Proteins/antagonists & inhibitors , Cell Membrane/drug effects , Heme/antagonists & inhibitors , Iron/metabolism , Pseudomonas aeruginosa/drug effects , Receptors, Cell Surface/antagonists & inhibitors , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biological Transport/drug effects , Cell Membrane/metabolism , Cell Wall/drug effects , Cell Wall/metabolism , Gene Expression , Heme/metabolism , Metalloporphyrins/chemical synthesis , Metalloporphyrins/pharmacology , Models, Molecular , Protein Conformation , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/growth & development , Pseudomonas aeruginosa/metabolism , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Siderophores/antagonists & inhibitors , Siderophores/biosynthesis , Staphylococcus aureus/genetics , Staphylococcus aureus/growth & development , Staphylococcus aureus/metabolism
5.
Nature ; 632(8023): 39-49, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39085542

ABSTRACT

In this Review, we explore natural product antibiotics that do more than simply inhibit an active site of an essential enzyme. We review these compounds to provide inspiration for the design of much-needed new antibacterial agents, and examine the complex mechanisms that have evolved to effectively target bacteria, including covalent binders, inhibitors of resistance, compounds that utilize self-promoted entry, those that evade resistance, prodrugs, target corrupters, inhibitors of 'undruggable' targets, compounds that form supramolecular complexes, and selective membrane-acting agents. These are exemplified by ß-lactams that bind covalently to inhibit transpeptidases and ß-lactamases, siderophore chimeras that hijack import mechanisms to smuggle antibiotics into the cell, compounds that are activated by bacterial enzymes to produce reactive molecules, and antibiotics such as aminoglycosides that corrupt, rather than merely inhibit, their targets. Some of these mechanisms are highly sophisticated, such as the preformed ß-strands of darobactins that target the undruggable ß-barrel chaperone BamA, or teixobactin, which binds to a precursor of peptidoglycan and then forms a supramolecular structure that damages the membrane, impeding the emergence of resistance. Many of the compounds exhibit more than one notable feature, such as resistance evasion and target corruption. Understanding the surprising complexity of the best antimicrobial compounds provides a roadmap for developing novel compounds to address the antimicrobial resistance crisis by mining for new natural products and inspiring us to design similarly sophisticated antibiotics.


Subject(s)
Anti-Bacterial Agents , Bacteria , Biological Products , Animals , Humans , Aminoglycosides/pharmacology , Aminoglycosides/chemistry , Aminoglycosides/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Bacteria/drug effects , Bacteria/enzymology , Bacteria/metabolism , beta Lactam Antibiotics/chemistry , beta Lactam Antibiotics/pharmacology , beta-Lactamase Inhibitors/chemistry , beta-Lactamase Inhibitors/pharmacology , Biological Products/chemistry , Biological Products/pharmacology , Biological Products/metabolism , Drug Design , Drug Resistance, Bacterial/drug effects , Peptidyl Transferases/antagonists & inhibitors , Prodrugs/pharmacology , Prodrugs/chemistry , Prodrugs/metabolism , Siderophores/metabolism , Siderophores/chemistry , Siderophores/pharmacology
6.
PLoS Biol ; 22(6): e3002616, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38865418

ABSTRACT

The gastrointestinal tract is densely colonized by a polymicrobial community known as the microbiota which serves as primary line of defence against pathogen invasion. The microbiota can limit gut-luminal pathogen growth at different stages of infection. This can be traced to specific commensal strains exhibiting direct or indirect protective functions. Although these mechanisms hold the potential to develop new approaches to combat enteric pathogens, they remain far from being completely described. In this study, we investigated how a mouse commensal Escherichia coli can outcompete Salmonella enterica serovar Typhimurium (S. Tm). Using a salmonellosis mouse model, we found that the commensal E. coli 8178 strain relies on a trojan horse trap strategy to limit S. Tm expansion in the inflamed gut. Combining mutants and reporter tools, we demonstrated that inflammation triggers the expression of the E. coli 8178 antimicrobial microcin H47 toxin which, when fused to salmochelin siderophores, can specifically alter S. Tm growth. This protective function was compromised upon disruption of the E. coli 8178 tonB-dependent catecholate siderophore uptake system, highlighting a previously unappreciated crosstalk between iron intake and microcin H47 activity. By identifying the genetic determinants mediating S. Tm competition, our work not only provides a better mechanistic understanding of the protective function displayed by members of the gut microbiota but also further expands the general contribution of microcins in bacterial antagonistic relationships. Ultimately, such insights can open new avenues for developing microbiota-based approaches to better control intestinal infections.


Subject(s)
Escherichia coli , Inflammation , Salmonella typhimurium , Siderophores , Animals , Escherichia coli/metabolism , Escherichia coli/genetics , Siderophores/metabolism , Mice , Salmonella typhimurium/pathogenicity , Salmonella typhimurium/metabolism , Inflammation/metabolism , Inflammation/microbiology , Mice, Inbred C57BL , Bacteriocins/metabolism , Bacteriocins/pharmacology , Gastrointestinal Microbiome , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Salmonella Infections/microbiology , Salmonella Infections/metabolism , Female , Iron/metabolism , Symbiosis , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/metabolism
7.
Proc Natl Acad Sci U S A ; 121(3): e2314077121, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38190542

ABSTRACT

The minimal levels of biological-available iron in the environment impose growth limitation on all living organisms. Microbes often secrete high iron-binding-affinity siderophores at high concentrations for scavenging iron from the iron-limited habitats. However, the high prevalence of siderophores released by bacteria into the environment raises an intriguing question whether this chemical cue can be detected by bacterivorous predators. Here, we show that the bacterivorous Caenorhabditis elegans nematode could employ its chemosensory receptor Odr-10 to detect pyoverdine, an iron siderophore secreted by an environmental bacterium, Pseudomonas aeruginosa. This enabled the nematode predator to migrate toward the prey. Our soil microcosm study showed that the detection of pyoverdine and subsequent feeding of P. aeruginosa prey by C. elegans could lead to the expansion of its population. These results showed that siderophores are a prey chemical cue by predators, with key implications in predator-prey interactions.


Subject(s)
Iron , Siderophores , Animals , Caenorhabditis elegans , Cues , Biological Availability , Pseudomonas aeruginosa
8.
Proc Natl Acad Sci U S A ; 121(36): e2403577121, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39190353

ABSTRACT

Evolution can occur over ecological timescales, suggesting a potentially important role for rapid evolution in shaping community trait distributions. However, evidence of concordant eco-evolutionary dynamics often comes from in vitro studies of highly simplified communities, and measures of ecological and evolutionary dynamics are rarely directly comparable. Here, we quantified how ecological species sorting and rapid evolution simultaneously shape community trait distributions by tracking within- and between-species changes in a key trait in a complex bacterial community. We focused on the production of siderophores; bacteria use these costly secreted metabolites to scavenge poorly soluble iron and to detoxify environments polluted with toxic nonferrous metals. We found that responses to copper-imposed selection within and between species were ultimately the same-intermediate siderophore levels were favored-and occurred over similar timescales. Despite being a social trait, this level of siderophore production was selected regardless of whether species evolved in isolation or in a community context. Our study suggests that evolutionary selection can play a pivotal role in shaping community trait distributions within natural, highly complex, bacterial communities. Furthermore, trait evolution may not always be qualitatively affected by interactions with other community members.


Subject(s)
Bacteria , Biological Evolution , Selection, Genetic , Siderophores , Siderophores/metabolism , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Ecosystem , Copper/metabolism , Iron/metabolism
9.
Nature ; 580(7803): 413-417, 2020 04.
Article in English | MEDLINE | ID: mdl-32296173

ABSTRACT

Intracellular replication of the deadly pathogen Mycobacterium tuberculosis relies on the production of small organic molecules called siderophores that scavenge iron from host proteins1. M. tuberculosis produces two classes of siderophore, lipid-bound mycobactin and water-soluble carboxymycobactin2,3. Functional studies have revealed that iron-loaded carboxymycobactin is imported into the cytoplasm by the ATP binding cassette (ABC) transporter IrtAB4, which features an additional cytoplasmic siderophore interaction domain5. However, the predicted ABC exporter fold of IrtAB is seemingly contradictory to its import function. Here we show that membrane-reconstituted IrtAB is sufficient to import mycobactins, which are then reduced by the siderophore interaction domain to facilitate iron release. Structure determination by X-ray crystallography and cryo-electron microscopy not only confirms that IrtAB has an ABC exporter fold, but also reveals structural peculiarities at the transmembrane region of IrtAB that result in a partially collapsed inward-facing substrate-binding cavity. The siderophore interaction domain is positioned in close proximity to the inner membrane leaflet, enabling the reduction of membrane-inserted mycobactin. Enzymatic ATPase activity and in vivo growth assays show that IrtAB has a preference for mycobactin over carboxymycobactin as its substrate. Our study provides insights into an unusual ABC exporter that evolved as highly specialized siderophore-import machinery in mycobacteria.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Bacterial Proteins/metabolism , Mycobacterium smegmatis/metabolism , Siderophores/metabolism , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cryoelectron Microscopy , Crystallography, X-Ray , Models, Molecular , Mycobacterium smegmatis/chemistry , Mycobacterium smegmatis/genetics , Protein Structure, Quaternary , Protein Structure, Tertiary
10.
Proc Natl Acad Sci U S A ; 120(38): e2218281120, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37695900

ABSTRACT

Producing novel enzymes that are catalytically active in vitro and biologically functional in vivo is a key goal of synthetic biology. Previously, we reported Syn-F4, the first de novo protein that meets both criteria. Syn-F4 hydrolyzed the siderophore ferric enterobactin, and expression of Syn-F4 allowed an inviable strain of Escherichia coli (Δfes) to grow in iron-limited medium. Here, we describe the crystal structure of Syn-F4. Syn-F4 forms a dimeric 4-helix bundle. Each monomer comprises two long α-helices, and the loops of the Syn-F4 dimer are on the same end of the bundle (syn topology). Interestingly, there is a penetrated hole in the central region of the Syn-F4 structure. Extensive mutagenesis experiments in a previous study showed that five residues (Glu26, His74, Arg77, Lys78, and Arg85) were essential for enzymatic activity in vivo. All these residues are located around the hole in the central region of the Syn-F4 structure, suggesting a putative active site with a catalytic dyad (Glu26-His74). The complete inactivity of purified proteins with mutations at the five residues supports the putative active site and reaction mechanism. Molecular dynamics and docking simulations of the ferric enterobactin siderophore binding to the Syn-F4 structure demonstrate the dynamic property of the putative active site. The structure and active site of Syn-F4 are completely different from native enterobactin esterase enzymes, thereby demonstrating that proteins designed de novo can provide life-sustaining catalytic activities using structures and mechanisms dramatically different from those that arose in nature.


Subject(s)
Enterobactin , Siderophores , Iron , Iron, Dietary , Catalysis , Electrolytes , Escherichia coli/genetics
11.
Proc Natl Acad Sci U S A ; 120(16): e2221253120, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37043535

ABSTRACT

The outer membrane of gram-negative bacteria prevents many antibiotics from reaching intracellular targets. However, some antimicrobials can take advantage of iron import transporters to cross this barrier. We showed previously that the thiopeptide antibiotic thiocillin exploits the nocardamine xenosiderophore transporter, FoxA, of the opportunistic pathogen Pseudomonas aeruginosa for uptake. Here, we show that FoxA also transports the xenosiderophore bisucaberin and describe at 2.5 Å resolution the crystal structure of bisucaberin bound to FoxA. Bisucaberin is distinct from other siderophores because it forms a 3:2 rather than 1:1 siderophore-iron complex. Mutations in a single extracellular loop of FoxA differentially affected nocardamine, thiocillin, and bisucaberin binding, uptake, and signal transduction. These results show that in addition to modulating ligand binding, the extracellular loops of siderophore transporters are of fundamental importance for controlling ligand uptake and its regulatory consequences, which have implications for the development of siderophore-antibiotic conjugates to treat difficult infections.


Subject(s)
Anti-Bacterial Agents , Siderophores , Siderophores/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Ligands , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Iron/metabolism , Signal Transduction , Pseudomonas aeruginosa/genetics , Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/metabolism
12.
J Biol Chem ; 300(1): 105554, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38072063

ABSTRACT

Uropathogenic Escherichia coli (UPEC) secrete multiple siderophore types to scavenge extracellular iron(III) ions during clinical urinary tract infections, despite the metabolic costs of biosynthesis. Here, we find the siderophore enterobactin (Ent) and its related products to be prominent components of the iron-responsive extracellular metabolome of a model UPEC strain. Using defined Ent biosynthesis and import mutants, we identify lower molecular weight dimeric exometabolites as products of incomplete siderophore catabolism, rather than prematurely released biosynthetic intermediates. In E. coli, iron acquisition from iron(III)-Ent complexes requires intracellular esterases that hydrolyze the siderophore. Although UPEC are equipped to consume the products of completely hydrolyzed Ent, we find that Ent and its derivatives may be incompletely hydrolyzed to yield products with retained siderophore activity. These results are consistent with catabolic inefficiency as means to obtain more than one iron ion per siderophore molecule. This is compatible with an evolved UPEC strategy to maximize the nutritional returns from metabolic investments in siderophore biosynthesis.


Subject(s)
Siderophores , Uropathogenic Escherichia coli , Enterobactin/metabolism , Ferric Compounds/metabolism , Iron/metabolism , Siderophores/metabolism , Uropathogenic Escherichia coli/metabolism
13.
Mol Biol Evol ; 41(4)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38415839

ABSTRACT

Siderophores are crucial for iron-scavenging in microorganisms. While many yeasts can uptake siderophores produced by other organisms, they are typically unable to synthesize siderophores themselves. In contrast, Wickerhamiella/Starmerella (W/S) clade yeasts gained the capacity to make the siderophore enterobactin following the remarkable horizontal acquisition of a bacterial operon enabling enterobactin synthesis. Yet, how these yeasts absorb the iron bound by enterobactin remains unresolved. Here, we demonstrate that Enb1 is the key enterobactin importer in the W/S-clade species Starmerella bombicola. Through phylogenomic analyses, we show that ENB1 is present in all W/S clade yeast species that retained the enterobactin biosynthetic genes. Conversely, it is absent in species that lost the ent genes, except for Starmerella stellata, making this species the only cheater in the W/S clade that can utilize enterobactin without producing it. Through phylogenetic analyses, we infer that ENB1 is a fungal gene that likely existed in the W/S clade prior to the acquisition of the ent genes and subsequently experienced multiple gene losses and duplications. Through phylogenetic topology tests, we show that ENB1 likely underwent horizontal gene transfer from an ancient W/S clade yeast to the order Saccharomycetales, which includes the model yeast Saccharomyces cerevisiae, followed by extensive secondary losses. Taken together, these results suggest that the fungal ENB1 and bacterial ent genes were cooperatively integrated into a functional unit within the W/S clade that enabled adaptation to iron-limited environments. This integrated fungal-bacterial circuit and its dynamic evolution determine the extant distribution of yeast enterobactin producers and cheaters.


Subject(s)
Enterobactin , Evolution, Molecular , Operon , Phylogeny , Enterobactin/metabolism , Enterobactin/genetics , Siderophores/metabolism , Siderophores/genetics , Genes, Fungal , Saccharomycetales/genetics , Saccharomycetales/metabolism , Gene Transfer, Horizontal
14.
PLoS Pathog ; 19(4): e1010942, 2023 04.
Article in English | MEDLINE | ID: mdl-37027441

ABSTRACT

During chronic cystic fibrosis (CF) infections, evolved Pseudomonas aeruginosa antibiotic resistance is linked to increased pulmonary exacerbations, decreased lung function, and hospitalizations. However, the virulence mechanisms underlying worse outcomes caused by antibiotic resistant infections are poorly understood. Here, we investigated evolved aztreonam resistant P. aeruginosa virulence mechanisms. Using a macrophage infection model combined with genomic and transcriptomic analyses, we show that a compensatory mutation in the rne gene, encoding RNase E, increased pyoverdine and pyochelin siderophore gene expression, causing macrophage ferroptosis and lysis. We show that iron-bound pyochelin was sufficient to cause macrophage ferroptosis and lysis, however, apo-pyochelin, iron-bound pyoverdine, or apo-pyoverdine were insufficient to kill macrophages. Macrophage killing could be eliminated by treatment with the iron mimetic gallium. RNase E variants were abundant in clinical isolates, and CF sputum gene expression data show that clinical isolates phenocopied RNase E variant functions during macrophage infection. Together these data show how P. aeruginosa RNase E variants can cause host damage via increased siderophore production and host cell ferroptosis but may also be targets for gallium precision therapy.


Subject(s)
Iron , Pseudomonas Infections , Humans , Iron/metabolism , Siderophores/pharmacology , Siderophores/metabolism , Pseudomonas aeruginosa/metabolism , Virulence , Pseudomonas Infections/drug therapy , Pseudomonas Infections/metabolism
15.
PLoS Pathog ; 19(9): e1011650, 2023 09.
Article in English | MEDLINE | ID: mdl-37747938

ABSTRACT

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, poses a great threat to human health. With the emergence of drug resistant Mtb strains, new therapeutics are desperately needed. As iron is critical to the growth and survival of Mtb, mechanisms through which Mtb acquires host iron represent attractive therapeutic targets. Mtb scavenges host iron via Mtb siderophore-dependent and heme iron uptake pathways. While multiple studies describe the import of heme and ferric-siderophores and the export of apo-siderophores across the inner membrane, little is known about their transport across the periplasm and cell-wall environments. Mtb FecB and FecB2 are predicted periplasmic binding proteins implicated in host iron acquisition; however, their precise roles are not well understood. This study sought to differentiate the roles FecB and FecB2 play in Mtb iron acquisition. The crystallographic structures of Mtb FecB and FecB2 were determined to 2.0 Å and 2.2 Å resolution, respectively, and show distinct ligand binding pockets. In vitro ligand binding experiments for FecB and FecB2 were performed with heme and bacterial siderophores from Mtb and other species, revealing that both FecB and FecB2 bind heme, while only FecB binds the Mtb sideophore ferric-carboxymycobactin (Fe-cMB). Subsequent structure-guided mutagenesis of FecB identified a single glutamate residue-Glu339-that significantly contributes to Fe-cMB binding. A role for FecB in the Mtb siderophore-mediated iron acquisition pathway was corroborated by Mycobacterium smegmatis and Mtb pull-down assays, which revealed interactions between FecB and members of the mycobacterial siderophore export and import machinery. Similarly, pull-down assays with FecB2 confirms its role in heme uptake revealing interactions with a potential inner membrane heme importer. Due to ligand preference and protein partners, our data suggest that Mtb FecB plays a role in siderophore-dependent iron and heme acquisition pathways; in addition, we confirm that Mtb FecB2 is involved in heme uptake.


Subject(s)
Iron , Mycobacterium tuberculosis , Humans , Iron/metabolism , Siderophores/metabolism , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Ligands , Bacterial Proteins/metabolism , Heme/metabolism
16.
Acc Chem Res ; 57(7): 1046-1056, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38483177

ABSTRACT

Siderophores are secondary metabolites utilized by bacteria to acquire iron (Fe), an essential transition metal nutrient. Fe levels in the host environment are tightly regulated and can be further restricted to starve invading bacterial pathogens in a host-defense process known as nutritional immunity. To survive and colonize the Fe-limited host environment, bacteria produce siderophores and express cognate siderophore transport machinery. These active transport pathways present an opportunity for selective and efficient drug delivery into bacterial cells, motivating decades of research on synthetic siderophore-antibiotic conjugates (SACs) as a Trojan-horse strategy for the development of targeted antibiotics.Enterobactin (Ent) is a triscatecholate siderophore produced and utilized by many Gram-negative bacteria, including all Escherichia coli and Salmonella species. Within these species, pathogenic strains cause a variety of human diseases including urinary tract infections, gastroenteritis, and sepsis. Infections caused by these Gram-negative pathogens can be difficult to treat because of the impermeability of the outer membrane (OM). This impermeability can be overcome by utilizing siderophores as drug delivery vectors for targeting Gram-negative pathogens. Ent is a promising delivery vector because it undergoes active transport across the OM mediated by the Ent uptake machinery after scavenging Fe(III) from the extracellular environment. Despite the well-elucidated chemistry and biology of Ent, its use for SAC development was hampered by the lack of an appropriate functional group for cargo attachment. Our laboratory addressed this need by designing and synthesizing monofunctionalized Ent scaffolds. Over the past decade, we have used these scaffolds to explore Ent-based SACs with a variety of drug warheads, including ß-lactam and fluoroquinolone antibiotics, and Pt(IV) prodrugs. Investigations of the antibacterial activities of these conjugates and their cellular fates have informed our design principles and revealed approaches to achieving enhanced antibacterial potency and pathogen-targeted activity. Collectively, our studies of Ent-drug conjugates have provided discoveries, understanding, and invaluable insights for future design and evaluation of SACs.In this Account, we present the story of our work on Ent-drug conjugates that began about ten years ago with the development of monofunctionalized Ent scaffolds and the design and synthesis of various conjugates based on these scaffolds. We describe the antibacterial activity profiles and uptake pathways of Ent-drug conjugates harboring traditional antibiotics and repurposed platinum anticancer agents as well as studies that address cellular targets and fates. Finally, we discuss other applications of monofunctionalized Ent scaffolds, including a siderophore-based immunization strategy. We intend for this Account to inspire further investigations into the fundamental understanding and translational applications of siderophores and siderophore-drug conjugates.


Subject(s)
Enterobactin , Ferric Compounds , Humans , Enterobactin/chemistry , Enterobactin/metabolism , Pharmaceutical Preparations , Anti-Bacterial Agents/chemistry , Siderophores/chemistry , Siderophores/metabolism , Escherichia coli/metabolism
17.
Cell ; 141(6): 1006-17, 2010 Jun 11.
Article in English | MEDLINE | ID: mdl-20550936

ABSTRACT

Intracellular iron homeostasis is critical for survival and proliferation. Lipocalin 24p3 is an iron-trafficking protein that binds iron through association with a bacterial siderophore, such as enterobactin, or a postulated mammalian siderophore. Here, we show that the iron-binding moiety of the 24p3-associated mammalian siderophore is 2,5-dihydroxybenzoic acid (2,5-DHBA), which is similar to 2,3-DHBA, the iron-binding component of enterobactin. We find that the murine enzyme responsible for 2,5-DHBA synthesis, BDH2, is the homolog of bacterial EntA, which catalyzes 2,3-DHBA production during enterobactin biosynthesis. RNA interference-mediated knockdown of BDH2 results in siderophore depletion. Mammalian cells lacking the siderophore accumulate abnormally high amounts of cytoplasmic iron, resulting in elevated levels of reactive oxygen species, whereas the mitochondria are iron deficient. Siderophore-depleted mammalian cells and zebrafish embryos fail to synthesize heme, an iron-dependent mitochondrial process. Our results reveal features of intracellular iron homeostasis that are conserved from bacteria through humans.


Subject(s)
Enterobactin/metabolism , Gentisates/metabolism , Siderophores/metabolism , Amino Acid Sequence , Animals , Escherichia coli Proteins/metabolism , Gentisates/chemistry , Humans , Hydroxybutyrate Dehydrogenase/chemistry , Hydroxybutyrate Dehydrogenase/metabolism , Iron/metabolism , Mice , Molecular Sequence Data , Oxidative Stress , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Sequence Alignment , Zebrafish
18.
Nucleic Acids Res ; 51(19): 10238-10260, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37650633

ABSTRACT

Plant pathogens are challenged by host-derived iron starvation or excess during infection, but the mechanism through which pathogens counteract iron stress is unclear. Here, we found that Fusarium graminearum encounters iron excess during the colonization of wheat heads. Deletion of heme activator protein X (FgHapX), siderophore transcription factor A (FgSreA) or both attenuated virulence. Further, we found that FgHapX activates iron storage under iron excess by promoting histone H2B deubiquitination (H2B deub1) at the promoter of the responsible gene. Meanwhile, FgSreA is shown to inhibit genes mediating iron acquisition during iron excess by facilitating the deposition of histone variant H2A.Z and histone 3 lysine 27 trimethylation (H3K27 me3) at the first nucleosome after the transcription start site. In addition, the monothiol glutaredoxin FgGrx4 is responsible for iron sensing and control of the transcriptional activity of FgHapX and FgSreA via modulation of their enrichment at target genes and recruitment of epigenetic regulators, respectively. Taken together, our findings elucidated the molecular mechanisms for adaptation to iron excess mediated by FgHapX and FgSreA during infection in F. graminearum and provide novel insights into regulation of iron homeostasis at the chromatin level in eukaryotes.


Subject(s)
Fusarium , Histones , Iron , Chromatin , Histones/genetics , Histones/metabolism , Iron/metabolism , Nucleosomes , Siderophores/genetics , Fusarium/metabolism
19.
Drug Resist Updat ; 72: 101034, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38134561

ABSTRACT

Antibacterial drug resistance of gram-negative bacteria (GNB) results in high morbidity and mortality of GNB infection, seriously threaten human health globally. Developing new antibiotics has become the critical need for dealing with drug-resistant bacterial infections. Cefiderocol is an iron carrier cephalosporin that achieves drug accumulation through a unique "Trojan horse" strategy into the bacterial periplasm. It shows high antibacterial activity against multidrug-resistant (MDR) Enterobacteriaceae and MDR non-fermentative bacteria. The application of cefiderocol offers new hope for treating clinical drug-resistant bacterial infections. However, limited clinical data and uncertainties about its resistance mechanisms constrain the choice of its therapeutic use. This review aimed to summarize the clinical applications, drug resistance mechanisms, and co-administration of cefiderocol.


Subject(s)
Cefiderocol , Gram-Negative Bacterial Infections , Humans , Siderophores/pharmacology , Siderophores/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cephalosporins/pharmacology , Cephalosporins/therapeutic use , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacteria , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests
20.
Proc Natl Acad Sci U S A ; 119(42): e2212930119, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36215464

ABSTRACT

Bacterial secondary metabolites are a major source of antibiotics and other bioactive compounds. In microbial communities, these molecules can mediate interspecies interactions and responses to environmental change. Despite the importance of secondary metabolites in human health and microbial ecology, little is known about their roles and regulation in the context of multispecies communities. In a simplified model of the rhizosphere composed of Bacillus cereus, Flavobacterium johnsoniae, and Pseudomonas koreensis, we show that the dynamics of secondary metabolism depend on community species composition and interspecies interactions. Comparative metatranscriptomics and metametabolomics reveal that the abundance of transcripts of biosynthetic gene clusters (BGCs) and metabolomic molecular features differ between monocultures or dual cultures and a tripartite community. In both two- and three-member cocultures, P. koreensis modified expression of BGCs for zwittermicin, petrobactin, and other secondary metabolites in B. cereus and F. johnsoniae, whereas the BGC transcriptional response to the community in P. koreensis itself was minimal. Pairwise and tripartite cocultures with P. koreensis displayed unique molecular features that appear to be derivatives of lokisin, suggesting metabolic handoffs between species. Deleting the BGC for koreenceine, another P. koreensis metabolite, altered transcript and metabolite profiles across the community, including substantial up-regulation of the petrobactin and bacillibactin BGCs in B. cereus, suggesting that koreenceine represses siderophore production. Results from this model community show that bacterial BGC expression and chemical output depend on the identity and biosynthetic capacity of coculture partners, suggesting community composition and microbiome interactions may shape the regulation of secondary metabolism in nature.


Subject(s)
Microbiota , Siderophores , Anti-Bacterial Agents , Benzamides , Humans , Secondary Metabolism , Siderophores/genetics , Siderophores/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL