Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 517
Filter
Add more filters

Publication year range
1.
An Acad Bras Cienc ; 96(2): e20230972, 2024.
Article in English | MEDLINE | ID: mdl-38747796

ABSTRACT

There is a marked disparity in the state of knowledge of Holartic x Neotropical species of the freshwater snail family Physidae; the incipiency of data on Neotropical physids reflecting the lower number of dedicated specialists. The gaps in the knowledge on Neotropical physids have led to historical uncertainty about species validity. Revisiting the species is essential to reduce taxonomic impediment and delineating their probable distribution is the first step to attain this purpose. We aimed at critically analyze occurrence records of South American physids, compiled through an intensive search in the literature, biodiversity and molecular databases. We present a provisional characterization of the distribution of this family in South America, considering the probable versus the poorly documented distribution of the species. The critical underrepresentation of South American physids in collections, molecular databases and literature reinforces the role of taxonomic impediment in delaying the advance of the knowledge on species diversity. Malacological collections represented the main source of records, evidencing the relevance of unpublished data associated to specimens to assess distributional information on neglected groups. As most of the species are represented by shells, the reassessment of species identity and distribution must be done, using molecular and anatomical criteria for species delimitation.


Subject(s)
Biodiversity , Animals , South America , Animal Distribution , Gastropoda/classification , Snails/classification
2.
Mol Biol Rep ; 49(1): 393-401, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34797494

ABSTRACT

BACKGROUND: To grasp the processes of spatial genetic structuring in open and connectable marine environments is the principal study goal in molecular biological studies. Comparative seascape genetics using multiple species are a powerful approach to understand the physical geographic and oceanographic effects on genetic variation. Besides, species-specific ecological traits such as dispersal abilities and habitat specificity are important factors for spatial genetic structuring. METHODS AND RESULTS: We focused on the sister marine snail species Tegula kusairo and T. xanthostigma around the Japanese mainland, which have contrasting habitat specificities for wave strength. Tegula kusairo only inhabits sheltered coastal environments, while T. xanthostigma is found mainly on wave-exposed rocky shores facing the open sea. We estimated their genetic diversity indices and levels of population differentiation based on mtDNA. We found that the genetic diversity of T. kusairo was lower than that of T. xanthostigma, while their level of population genetic differentiation was higher than that of T. xanthostigma. Namely, the species specific to weak wave environments had a higher level of population genetic differentiation than the species specific to strong wave action. CONCLUSION: Ecological traits linked not only to dispersal abilities but also to habitat specificity can influence genetic variation in a pair of closely related sister species distributed in the same seascape.


Subject(s)
DNA, Mitochondrial/genetics , Mitochondria/genetics , Snails/classification , Animals , Gene Flow , Genetic Variation , Genetics, Population , Japan , Phylogeny , Phylogeography , Snails/genetics , Species Specificity
3.
J Hist Biol ; 55(4): 689-723, 2022 12.
Article in English | MEDLINE | ID: mdl-36357812

ABSTRACT

Malacologists took notice of tree snails in the genus Liguus during the last decades of the nineteenth century. Since then, Liguus have undergone repeated shifts in identity as members of species, states, shell collections, backyard gardens, and engineered wildernesses. To understand what Liguus are, this paper examines snail enthusiasts, collectors, researchers, and conservationists-collectively self-identified as Liggers-in their varied landscapes. I argue that Liguus, both in the scientific imaginary and in the material landscape, mediated knowledge-making processes that circulated among amateur and professional malacologists across the United States and Cuba during the twentieth century. Beginning with an examination of early Liggers' work in Florida and Cuba, this paper demonstrates how notions of taxonomy and biogeography informed later efforts to understand Liguus hybridization and conservation. A heterogeneous community of Liggers has had varied and at times contradictory commitments informed by shifting physical, social, and scientific landscapes. Genealogizing those commitments illuminates the factors underpinning a decision to undertake the until now little-chronicled large-scale and sustained transplantation of every living Floridian form of Liguus fasciatus into Everglades National Park. The social history of Liggers and Liguus fundamentally blurs distinctions between professional scientists and amateur naturalists. The experiences of a diverse cast of Liggers and their Liguus snails historicize the complex character of human-animal relations and speak to the increasing endangerment of many similarly range-restricted invertebrates.


Subject(s)
Snails , Animals , Humans , Cuba , Florida , United States , Snails/classification
4.
Mol Phylogenet Evol ; 155: 106999, 2021 02.
Article in English | MEDLINE | ID: mdl-33130300

ABSTRACT

East Asia has highly diverse and endemic biota due to its complex geological and climatic history and its diversified topography. The continental and insular distributions of land snail genus Acusta in East Asia provide a good opportunity to compare the evolutionary processes in this group under different biogeographical conditions. In this study, we inferred the evolutionary history of the land snail genus Acusta by a molecular phylogeny and investigated how the palaeogeographic events shaped species diversity and the distribution of the Acusta genus within the island arc. A concatenated dataset generated from sequences of one nuclear (ITS2) and two mitochondrial (16S, COI) gene fragments, include most of nominal taxa of the genus, four related species and one outgroup. We constructed the phylogeny and the evolutionary history of the genus through maximum-likelihood and Bayesian inference methods, using a Bayesian molecular clock and ancestral range estimation. Our results suggested that currently recognized species in Acusta are polyphyletic. The traditionally accepted concept of the affinity of Acusta and Bradybaena is not supported. The hypothesis of colonization via land bridges during the Pleistocene glaciations for the biota of East Asian islands is not supported. Instead, the origin and diversification of the genus Acusta was dated to the late Miocene-Pliocene from an area around North and Northeast China to South China and East Asian islands Three major evolutionary lineages were identified. Two of the major lineages demonstrate distinct evolutionary histories, as sympatric speciation is the major speciation process for the continental clade, while the insular clade originated from founder events. Taiwan functioned as an important source of diversification for species on the East Asian islands possibly through passive dispersal of different mechanisms. The sea level fluctuations caused by the Pleistocene glacial cycles play a role in the subsequent dispersion and diversification of species of the continental clade, such as the more recent range expansion of A. redfieldi from South China to Taiwan and Japan.


Subject(s)
Biodiversity , Phylogeography , Snails/classification , Animals , Bayes Theorem , Calibration , Cell Nucleus/genetics , Asia, Eastern , Genes, Mitochondrial , Islands , Phylogeny , Snails/genetics , Time Factors
5.
Mol Phylogenet Evol ; 157: 107035, 2021 04.
Article in English | MEDLINE | ID: mdl-33285288

ABSTRACT

Cryptic species can present a significant challenge to the application of systematic and biogeographic principles, especially if they are invasive or transmit parasites or pathogens. Detecting cryptic species requires a pluralistic approach in which molecular markers facilitate the detection of coherent taxonomic units that can then be analyzed using various traits (e.g., internal morphology) and crosses. In asexual or self-fertilizing species, the latter criteria are of limited use. We studied a group of cryptic freshwater snails (genus Galba) from the family Lymnaeidae that have invaded almost all continents, reproducing mainly by self-fertilization and transmitting liver flukes to humans and livestock. We aim to clarify the systematics, distribution, and phylogeny of these species with an integrative approach that includes morphology, molecular markers, wide-scale sampling across America, and data retrieved from GenBank (to include Old World samples). Our phylogenetic analysis suggests that the genus Galba originated ca. 22 Myr ago and today comprises six species or species complexes. Four of them show an elongated-shell cryptic phenotype and exhibit wide variation in their genetic diversity, geographic distribution, and invasiveness. The remaining two species have more geographically restricted distributions and exhibit a globose-shell cryptic phenotype, most likely phylogenetically derived from the elongated one. We emphasize that no Galba species should be identified without molecular markers. We also discuss several hypotheses that can explain the origin of cryptic species in Galba, such as convergence and morphological stasis.


Subject(s)
Fresh Water , Geography , Snails/classification , Animals , Calibration , Microsatellite Repeats/genetics , Phenotype , Phylogeny , Snails/genetics , Species Specificity , Time Factors
6.
Mol Phylogenet Evol ; 161: 107153, 2021 08.
Article in English | MEDLINE | ID: mdl-33741537

ABSTRACT

Hemicycla mascaensis and H. diegoi are short-range endemics that occur allopatrically in small areas in the Teno Mountains in the western part of Tenerife (Canary Islands). Both taxa have been recognised as distinct species based on differences in shell morphology and genital anatomy. Preliminary molecular analyses using mitochondrial markers suggested a potential paraphyly of H. diegoi with regard to H. mascaensis. We here use multilocus AFLP data and ddRADseq data as well as distribution data, data on shell morphology and genital anatomy to assess the status of these taxa using phylogenetic analyses, species tree reconstruction and molecular species delimitation based on the multispecies coalescent as implemented in BFD* and BPP in an integrative approach. Our analyses show that, based on the analysis of multilocus data, the two taxa are reciprocally monophyletic. Species delimitation methods, however, tend to recognise all investigated populations as distinct species, albeit neither lending unambiguous support to any of the species hypotheses. The comparison of the anatomy of distal genital organs further suggests differentiation within H. mascaensis. This highlights the need for a balanced weighting of arguments from different lines of evidence to determine species status and calls for cautious interpretations of the results of molecular species delimitation analyses, especially in organisms with low active dispersal capacities and expected distinct population structuring such as land snails. Taking all available evidence into account, we favour to recognise H. mascaensis and H. diegoi as distinct species, acknowledging, though, that the recognition of both taxa as subspecies (with possibly a third yet undescribed) would also be an option as morphological differentiation is within the limits of other land snail species that are traditionally subdivided into subspecies.


Subject(s)
Amplified Fragment Length Polymorphism Analysis , DNA Barcoding, Taxonomic , Phylogeny , Polymorphism, Single Nucleotide/genetics , Snails/anatomy & histology , Snails/genetics , Animals , Mitochondria/genetics , Snails/classification , Spain
7.
Mol Phylogenet Evol ; 155: 107004, 2021 02.
Article in English | MEDLINE | ID: mdl-33157207

ABSTRACT

The complex geological and climatic processes that have shaped the Indo-Australian Archipelago since the Cenozoic likely also gave rise to its species-rich biota. Strictly freshwater organisms might be particularly suitable for understanding the influence of these abiotic factors on their biogeography in such a insular setting as their distribution may reflect past abiotic events at large and small geographical scales. We here investigate the historical biogeography of the Miratestinae, a subfamily of Planorbidae. These freshwater gastropods are widely distributed in the eastern IAA from Australia, New Guinea, the Moluccas, and Sulawesi to the Philippines. The first comprehensive molecular phylogeny of the Miratestinae was inferred based on two mitochondrial and two nuclear genetic markers using maximum likelihood and Bayesian inference. Four species delimitation methods were applied to identify molecular operational taxonomic units (MOTUs). Divergence times were inferred using an uncorrelated lognormal relaxed-clock model by applying a taxon- and marker-specific substitution rate. Ancestral geographic ranges were estimated based on the dated phylogeny using BioGeoBEARS. The species delimitation revealed a total of 23 MOTUs, 16 of which might represent species new to science. The BioGeoBEARS analyses suggest an Australian origin for the Miratestinae at c. 22 Ma and identified jump dispersal to be the main process of colonization. The first colonization events from Australia to the IAA occurred in the Middle-Late Miocene (12-13 Ma), whereas intra-island diversification took mainly place since the Late Miocene-Pliocene. Colonization and diversification events remarkably coincide with major geologic events that shaped the geography of the region. The increasing availability of landmasses along the Sahul Shelf likely promoted stepping-stone dispersal to New Guinea, Sulawesi and the Philippines as early as the islands emerged. Major geological and climatic events such as the amalgamation of the island Sulawesi, the regional aridification in Australia or the uplift of massive mountain ranges in New Guinea likely played a considerable role for intra-island diversification.


Subject(s)
Fresh Water , Phylogeography , Snails/classification , Animals , Australia , Bayes Theorem , Indonesia , New Guinea , Philippines , Phylogeny , Snails/genetics , Species Specificity , Time Factors
8.
Mol Phylogenet Evol ; 158: 107060, 2021 05.
Article in English | MEDLINE | ID: mdl-33383174

ABSTRACT

Most of the present knowledge on animal reproductive mode evolution, and possible factors driving transitions between oviparity and viviparity is based on studies on vertebrates. The species rich door snail (Clausiliidae) subfamily Phaedusinae represents a suitable and unique model for further examining parity evolution, as three different strategies, oviparity, viviparity, and the intermediate mode of embryo-retention, occur in this group. The present study reconstructs the evolution of reproductive strategies in Phaedusinae based on time-calibrated molecular phylogenetics, reproductive mode examinations and ancestral state reconstruction. Our phylogenetic analysis employing multiple mitochondrial and nuclear markers identified a well-supported clade (including the tribes Phaedusini and Serrulinini) that contains species exhibiting various reproductive strategies. This clade evolved from an oviparous most recent common ancestor according to our reconstruction. All non-oviparous taxa are confined to a highly supported subclade, coinciding with the tribe Phaedusini. Both oviparity and viviparity occur frequently in different lineages of this subclade that are not closely related. During Phaedusini diversification, multiple transitions in reproductive strategy must have taken place, which could have been promoted by a high fitness of embryo-retaining species. The evolutionary success of this group might result from the maintenance of various strategies.


Subject(s)
Biological Evolution , Reproduction/genetics , Snails/physiology , Viviparity, Nonmammalian , Animals , Female , Mitochondria/genetics , Oviparity/genetics , Phylogeny , Snails/classification , Viviparity, Nonmammalian/genetics
9.
Mol Phylogenet Evol ; 155: 107000, 2021 02.
Article in English | MEDLINE | ID: mdl-33130297

ABSTRACT

In South Africa, the terrestrial snail genus Gittenedouardia is the most species-rich member of the Cerastidae, where it is primarily distributed in the highly fragmented Afrotemperate and Indian Ocean coastal belt (IOCB) forest biomes. Phylogenetic relationships and cladogenetic events within the genus remain unstudied. In this respect, we reconstructed a dated phylogeny for eight Gittenedouardia species, and two populations identified to genus level using a combined mitochondrial (16S rRNA and COI) DNA sequencing dataset analysed using Bayesian inference and Maximum Likelihood framework. Furthermore, we investigated the population genetic substructure of the three widely distributed species (Gittenedouardia spadicea, G. natalensis and G. arenicola) for the COI locus, while also subsampling these species using the nuclear DNA ITS-2 locus. Phylogenetic results based on the combined mtDNA dataset supported the monophyly of Gittenedouardia and revealed three major clades and deep genetic structure among the three widely distributed species. Divergence-time estimates suggest that diversification within Gittenedouardia occurred during the middle Miocene/late Pliocene, a period characterised by a decrease in precipitation and the contraction of the Afrotemperate and IOCB forest biomes. We used two species delimitation methods, (PTP and STACEY) to infer putative species in G. spadicea, G. natalensis and G. arenicola. The two methods recovered a large number of evolutionary distinct units, with minimal consensus in the exact number of lineages. Our findings suggest the presence of undescribed diversity, necessitating the need for taxonomic revisionary work on Gittenedouardia. We discuss the climatic factors which may have contributed to the observed cladogenesis and compare our results with other studies of forest dwelling faunal taxa.


Subject(s)
Climate , Phylogeny , Snails/classification , Animals , Bayes Theorem , DNA, Mitochondrial/genetics , Databases, Genetic , Electron Transport Complex IV/genetics , Genetic Speciation , Genetics, Population , Geography , Mitochondria/genetics , RNA, Ribosomal, 16S/genetics , Snails/genetics , South Africa , Time Factors
10.
Syst Biol ; 69(6): 1106-1121, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32163159

ABSTRACT

In order to study evolutionary pattern and process, we need to be able to accurately identify species and the evolutionary lineages from which they are derived. Determining the concordance between genetic and morphological variation of living populations, and then directly comparing extant and fossil morphological data, provides a robust approach for improving our identification of lineages through time. We investigate genetic and shell morphological variation in extant species of Penion marine snails from New Zealand, and extend this analysis into deep time using fossils. We find that genetic and morphological variation identify similar patterns and support most currently recognized extant species. However, some taxonomic over-splitting is detected due to shell size being a poor trait for species delimitation, and we identify incorrect assignment of some fossil specimens. We infer that a single evolutionary lineage (Penion sulcatus) has existed for 22 myr, with most aspects of shell shape and shell size evolving under a random walk. However, by removing samples previously classified as the extinct species P. marwicki, we instead detect morphological stasis for one axis of shell shape variation. This result demonstrates how lineage identification can change our perception of evolutionary pattern and process. [Genotyping by sequencing; geometric morphometrics; morphological evolution; Neogastropoda; phenotype; speciation; stasis.].


Subject(s)
Phylogeny , Snails/classification , Animal Shells/anatomy & histology , Animals , Fossils , New Zealand , Snails/anatomy & histology , Snails/genetics
11.
Syst Biol ; 69(3): 413-430, 2020 05 01.
Article in English | MEDLINE | ID: mdl-31504987

ABSTRACT

How species diversification occurs remains an unanswered question in predatory marine invertebrates, such as sea snails of the family Terebridae. However, the anatomical disparity found throughput the Terebridae provides a unique perspective for investigating diversification patterns in venomous predators. In this study, a new dated molecular phylogeny of the Terebridae is used as a framework for investigating diversification of the family through time, and for testing the putative role of intrinsic and extrinsic traits, such as shell size, larval ecology, bathymetric distribution, and anatomical features of the venom apparatus, as drivers of terebrid species diversification. Macroevolutionary analysis revealed that when diversification rates do not vary across Terebridae clades, the whole family has been increasing its global diversification rate since 25 Ma. We recovered evidence for a concurrent increase in diversification of depth ranges, while shell size appeared to have undergone a fast divergence early in terebrid evolutionary history. Our data also confirm that planktotrophy is the ancestral larval ecology in terebrids, and evolutionary modeling highlighted that shell size is linked to larval ecology of the Terebridae, with species with long-living pelagic larvae tending to be larger and have a broader size range than lecithotrophic species. Although we recovered patterns of size and depth trait diversification through time and across clades, the presence or absence of a venom gland (VG) did not appear to have impacted Terebridae diversification. Terebrids have lost their venom apparatus several times and we confirm that the loss of a VG happened in phylogenetically clustered terminal taxa and that reversal is extremely unlikely. Our findings suggest that environmental factors, and not venom, have had more influence on terebrid evolution.


Subject(s)
Aquatic Organisms/classification , Biodiversity , Biological Evolution , Environment , Phylogeny , Snails/classification , Animals
12.
Syst Biol ; 69(5): 944-961, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32061133

ABSTRACT

The Viviparidae, commonly known as River Snails, is a dominant group of freshwater snails with a nearly worldwide distribution that reaches its highest taxonomic and morphological diversity in Southeast Asia. The rich fossil record is indicative of a probable Middle Jurassic origin on the Laurasian supercontinent where the group started to diversify during the Cretaceous. However, it remains uncertain when and how the biodiversity hotspot in Southeast Asia was formed. Here, we used a comprehensive genetic data set containing both mitochondrial and nuclear markers and comprising species representing 24 out of 28 genera from throughout the range of the family. To reconstruct the spatiotemporal evolution of viviparids on a global scale, we reconstructed a fossil-calibrated phylogeny. We further assessed the roles of cladogenetic and anagenetic events in range evolution. Finally, we reconstructed the evolution of shell features by estimating ancestral character states to assess whether the appearance of sculptured shell morphologies was driven by major habitat shifts. The molecular phylogeny supports the monophyly of the three subfamilies, the Bellamyinae, Lioplacinae, and Viviparinae, but challenges the currently accepted genus-level classification in several cases. The almost global distribution of River Snails has been influenced both by comparatively ancient vicariance and more recent founder events. In Southeast Asia, Miocene dispersal was a main factor in shaping the modern species distributions. A recurrent theme across different viviparid taxa is that many species living in lentic waters exhibit sculptured shells, whereas only one strongly sculptured species is known from lotic environments. We show that such shell sculpture is habitat-dependent and indeed evolved several times independently in lentic River Snails. Considerably high transition rates between shell types in lentic habitats probably caused the co-occurrence of morphologically distinct shell types in several lakes. In contrast, directional evolution toward smooth shells in lotic habitats, as identified in the present analyses, explains why sculptured shells are rarely found in these habitats. However, the specific factors that promoted changes in shell morphology require further work. [biogeographical analyses; fossil-calibrated phylogeny; fossil-constrained analyses; Southeast Asia; stochastic character mapping.].


Subject(s)
Animal Distribution , Biodiversity , Ecosystem , Snails/anatomy & histology , Snails/classification , Animal Shells/anatomy & histology , Animals , Biological Evolution
13.
Parasitology ; 148(3): 366-383, 2021 03.
Article in English | MEDLINE | ID: mdl-33100233

ABSTRACT

We investigated the prevalence, morphological characters and molecular classifications of trematode cercariae in freshwater snails randomly collected from 59 sampling localities in Bangkok from May 2018 to March 2019. We used a crushing technique to observe the cercarial stage inside each snail body and amplified the internal transcribed spacer 2 regions of cercarial DNA using polymerase chain reaction methodology. The associated phylogenetic tree was reconstructed using Bayesian inference analyses. A total of 517 of 15 621 examined snails were infected with trematode cercariae, and the infected snails were classified into 11 species of seven families with a 3.31% overall prevalence of the infection. The Bithynia siamensis siamensis snail displayed the highest prevalence of infection (16.16%), whereas the Physella acuta snail exhibited the lowest prevalence (0.08%) of infection. Eight morphological types of cercariae were observed. The highest prevalence of infection was observed in mutabile cercaria (1.86%). Based on molecular investigations, the phylogram revealed eight cercaria types assigned to at least nine digenean trematode families, of which five belong to groups of human intestinal flukes. Although, with the exception of schistosome cercaria, trematode cercariae are not known to directly damage humans, understanding the general biology of trematode cercariae (including diversity, distribution, infection rates and host range) is important and necessary for the prevention and control of parasitic transmission that impacts aquatic cultivations, livestock farming and human health.


Subject(s)
Fresh Water/parasitology , Host-Parasite Interactions , Snails/parasitology , Trematoda , Animals , Cercaria/anatomy & histology , Cercaria/classification , Cercaria/genetics , Cercaria/growth & development , Population Dynamics , Snails/classification , Thailand , Trematoda/anatomy & histology , Trematoda/classification , Trematoda/genetics , Trematoda/growth & development
14.
Parasitol Res ; 120(3): 949-962, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33426572

ABSTRACT

Foodborne zoonotic trematode (FZT) infections are common neglected tropical diseases in Southeast Asia. Their complicated life cycles involve freshwater snails as intermediate hosts. A cross-sectional study was conducted in Yen Bai and Thanh Hoa provinces in North and Central Vietnam, to investigate the diversity of cercariae of potential FZT and to construct the phylogenetic relationship of trematode cercariae based on the Internal Transcribed Spacer 2 (ITS2) region. Among 17 snail species collected from various habitats, 13 were infected by 10 cercarial groups among which parapleurolophocercous, pleurolophocercous, and echinostome cercariae were of zoonotic importance. The monophyletic tree separated cercarial sequences into different groups following the description of the cercariae families in which Haplorchidae, Opisthorchiidae, Echinochasmidae, and Echinostomatidae are important families of FZT. The overall prevalence was different among snail species and habitats and showed a seasonal trend. Parapleurolophocercous and echinostome cercariae emerged as the most common cercariae in snails in Yen Bai, while monostome, echinostome, and megalura cercariae were most common in Thanh Hoa. Using a molecular approach, we identified Parafossarulus striatulus as the first intermediate snail host of Clonorchis sinensis in Thac Ba Lake. Melanoides tuberculata and Bithynia fuchsiana were we identified preferred intermediate snail hosts of a diverse range of trematode species including intestinal flukes (i.e., Haplorchis pumilio and Echinochasmus japonicus) in Yen Bai and Thanh Hoa, respectively.


Subject(s)
Foodborne Diseases/parasitology , Snails/parasitology , Trematoda/isolation & purification , Trematode Infections/parasitology , Zoonoses/parasitology , Animals , Cercaria/classification , Cercaria/genetics , Cercaria/growth & development , Cercaria/isolation & purification , Cross-Sectional Studies , Foodborne Diseases/epidemiology , Fresh Water/parasitology , Phylogeny , Prevalence , Snails/classification , Trematoda/classification , Trematoda/genetics , Trematoda/growth & development , Trematode Infections/epidemiology , Vietnam/epidemiology , Zoonoses/epidemiology , Zoonoses/transmission
15.
BMC Evol Biol ; 20(1): 3, 2020 01 06.
Article in English | MEDLINE | ID: mdl-31906912

ABSTRACT

BACKGROUND: The biodiversity and distributions of terrestrial snails at local and regional scales are influenced by their low vagility and microhabitat specificity. The accessibility of large-bodied species and their characteristically high levels of genetic polymorphism make them excellent ecological and evolutionary models for studies on the phylogeography, phylogenetics, and conservation of organisms in fragmented populations. This study aims to elucidate the biodiversity, systematics, and distributions of genetic lineages within the genus Oreohelix at the northern and western periphery of their range. RESULTS: We found four mitochondrial clades, three of which are putative subspecies of Oreohelix subrudis. One clade was geographically widespread, occurring within numerous sites in Cypress Hills and in the Rocky Mountains, a second was geographically restricted to the Rocky Mountains in Alberta, and a third was restricted to the Cypress Hills region. A fourth clade was the small-bodied species, O. cooperi. ITS2 sequence and screening data revealed three genetic clusters, of which one was O. cooperi. Cluster 1 contained most individuals in COI clade X and some from clade B and cluster 2 was predominantly made up of individuals from COI clades B and B' and a few from clade X. ITS2 alleles were shared in a narrow contact zone between two COI clades, suggestive of hybridization between the two. CONCLUSIONS: A sky island known as Cypress Hills, in southeastern Alberta, Canada, is a biodiversity hotspot for terrestrial land snails in the genus Oreohelix. The observed phylogeographic patterns likely reflect reproductive isolation during the Last Glacial Maximum, followed by secondary contact due to passive, long-range dispersal resulting from low vagility, local adaptation, and complex glacial history.


Subject(s)
Snails/classification , Snails/genetics , Alberta , Animals , Biodiversity , Biological Evolution , DNA, Mitochondrial/genetics , Genetic Variation , Phylogeny , Phylogeography , Reproductive Isolation
16.
BMC Evol Biol ; 20(1): 5, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31918659

ABSTRACT

BACKGROUND: Ecological speciation is a prominent mechanism of diversification but in many evolutionary radiations, particularly in invertebrates, it remains unclear whether supposedly critical ecological traits drove or facilitated diversification. As a result, we lack accurate knowledge on the drivers of diversification for most evolutionary radiations along the tree of life. Freshwater mollusks present an enigmatic example: Putatively adaptive radiations are being described in various families, typically from long-lived lakes, whereas other taxa represent celebrated model systems in the study of ecophenotypic plasticity. Here we examine determinants of shell-shape variation in three nominal species of an ongoing ampullariid radiation in the Malawi Basin (Lanistes nyassanus, L. solidus and Lanistes sp. (ovum-like)) with a common garden experiment and semi-landmark morphometrics. RESULTS: We found significant differences in survival and fecundity among these species in contrasting habitats. Morphological differences observed in the wild persisted in our experiments for L. nyassanus versus L. solidus and L. sp. (ovum-like), but differences between L. solidus and L. sp. (ovum-like) disappeared and re-emerged in the F1 and F2 generations, respectively. These results indicate that plasticity occurred, but that it is not solely responsible for the observed differences. Our experiments provide the first unambiguous evidence for genetic divergence in shell morphology in an ongoing freshwater gastropod radiation in association with marked fitness differences among species under controlled habitat conditions. CONCLUSIONS: Our results indicate that differences in shell morphology among Lanistes species occupying different habitats have an adaptive value. These results also facilitate an accurate reinterpretation of morphological variation in fossil Lanistes radiations, and thus macroevolutionary dynamics. Finally, our work testifies that the shells of freshwater gastropods may retain signatures of adaptation at low taxonomic levels, beyond representing an evolutionary novelty responsible for much of the diversity and disparity in mollusks altogether.


Subject(s)
Animal Shells/anatomy & histology , Fossils , Snails/anatomy & histology , Snails/genetics , Animals , Biological Evolution , Ecosystem , Genetic Speciation , Lakes , Malawi , Models, Biological , Phylogeny , Snails/classification
17.
J Hum Evol ; 140: 102341, 2020 03.
Article in English | MEDLINE | ID: mdl-28917701

ABSTRACT

The Early Pliocene Kanapoi Formation of the Omo-Turkana Basin consists of two fluvial/deltaic sedimentary sequences with an intermediate lacustrine sequence that was deposited in Paleolake Lonyumun, the earliest large lake in the basin. Overall, the geology and vertebrate paleontology of the Kanapoi Formation are well studied, but its freshwater mollusks, despite being a major component of the benthic ecosystem, have not been subjected to in-depth study. Here I present the first treatment of these mollusks, which have been retrieved mainly from the lacustrine but also from the upper fluvial sediments, with a focus on paleoecological implications. Overall, the freshwater mollusk fauna is reasonably diverse and contains the gastropods Bellamya (Viviparidae), Melanoides (Thiaridae), Cleopatra (Paludomidae) and Gabbiella (Bithyniidae), as well as the unionoid bivalves Coelatura, Pseudobovaria (Unionidae), Aspatharia, Iridina (Iridinidae) and Etheria (Etheriidae). Material is typically recrystallized and lithified and its taphonomy suggests deposition in a system with intermediate energy, such as a beach, with post-depositional deformation and abrasion. The mollusk assemblage is indicative of perennial, fresh and well-oxygenated waters in the Kanapoi region. It suggests that Paleolake Lonyumun had largely open shores with limited vegetation and that swampy or ephemeral backwaters were rare. Overall, these findings support earlier paleoecological interpretations based on the fish assemblage of Paleolake Lonyumun at Kanapoi. Moreover, mollusk assemblages from this lake are very similar across the Omo-Turkana Basin (Nachukui, Usno, Mursi and Koobi Fora Formations) suggesting that the lacustrine paleoecological conditions found in the Kanapoi Formation existed throughout the basin.


Subject(s)
Bivalvia/classification , Ecosystem , Fossils , Snails/classification , Animals , Bivalvia/physiology , Fresh Water , Kenya , Paleontology , Snails/physiology
18.
J Hered ; 111(1): 92-102, 2020 02 05.
Article in English | MEDLINE | ID: mdl-31841140

ABSTRACT

Newly arrived species on young or remote islands are likely to encounter less predation and competition than source populations on continental landmasses. The associated ecological release might facilitate divergence and speciation as colonizing lineages fill previously unoccupied niche space. Characterizing the sequence and timing of colonization on islands represents the first step in determining the relative contributions of geographical isolation and ecological factors in lineage diversification. Herein, we use genome-scale data to estimate timing of colonization in Naesiotus snails to the Galápagos islands from mainland South America. We test inter-island patterns of colonization and within-island radiations to understand their contribution to community assembly. Partly contradicting previously published topologies, phylogenetic reconstructions suggest that most Naesiotus species form island-specific clades, with within-island speciation dominating cladogenesis. Galápagos Naesiotus also adhere to the island progression rule, with colonization proceeding from old to young islands and within-island diversification occurring earlier on older islands. Our work provides a framework for evaluating the contribution of colonization and in situ speciation to the diversity of other Galápagos lineages.


Subject(s)
Genetic Speciation , Snails/genetics , Animal Distribution , Animals , Biodiversity , Chronology as Topic , Datasets as Topic , Ecosystem , Ecuador , Phylogeny , Phylogeography , Sequence Analysis, DNA , Snails/classification
19.
Parasitol Res ; 119(10): 3415-3431, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32783072

ABSTRACT

The freshwater snail Bithynia siamensis goniomphalos serves as the first intermediate host of liver fluke Opisthorchis viverrini, a foodborne parasite, of which human infection has persisted in Southeast Asia for decades. The snail Filopaludina martensi martensi has been proposed as a biological control agent against B.s. goniomphalos, but knowledge on the snail ecology and population dynamics between the two species remains rudimentary. This study investigated selected abiotic and biotic factors influencing the distribution and abundance of B.s. goniomphalos and F.m. martensi. Water quality, soils, and snails were collected from 34 localities in Northeast Thailand. Soil properties and snail soft tissue elemental concentrations were analyzed. Experiments were performed to examine interspecific competition. Statistical analysis was conducted to explore the associations between water and soil properties and soft tissue elemental concentrations. The results showed that B.s. goniomphalos had the highest mean dominance in streams and red-yellow podzolic soils, while F.m. martensi snails preferred ponds and latosol soils. Negative correlation in species abundances was found between the two species. Interspecific competition was detected, with B.s. goniomphalos growth rates hampered by the presence of F.m. martensi. Despite the possibility of using F.m. martensi to control B.s. goniomphalos, B.s. goniomphalos exhibited a greater adaptability to different water and soil properties, suggesting that the species could colonize a wide range of environmental conditions. This study provides further insights into the ecology of the two snail species, underscoring the importance of considering abiotic factors when assessing the possible biological control agent to control O. viverrini transmission.


Subject(s)
Biological Control Agents , Opisthorchiasis/prevention & control , Opisthorchiasis/transmission , Opisthorchis/physiology , Snails/physiology , Animals , Fresh Water/parasitology , Humans , Opisthorchiasis/epidemiology , Snails/classification , Snails/parasitology , Soil/chemistry , Soil/parasitology , Thailand/epidemiology
20.
BMC Evol Biol ; 19(1): 82, 2019 03 21.
Article in English | MEDLINE | ID: mdl-30898091

ABSTRACT

BACKGROUND: Species diversity is determined by both local environmental conditions that control differentiation and extinction and the outcome of large-scale processes that affect migration. The latter primarily comprises climatic change and dynamic landscape alteration. In the past few million years, both Southeast Asia and Eastern Africa experienced drastic climatic and geological oscillations: in Southeast Asia, especially in China, the Tibetan Plateau significantly rose up, and the flow of the Yangtze River was reversed. In East Africa, lakes and rivers experienced frequent range expansions and regressions due to the African mega-droughts. To test how such climatic and geological histories of both regions relate to their respective regional species and genetic diversity, a large scale comparative phylogeographic study is essential. Bellamya, a species rich freshwater snail genus that is widely distributed across China and East Africa, represents a suitable model system to address this question. We sequenced mitochondrial and nuclear DNA for members of the genus from China and used published sequences from Africa and some other locations in Asia to investigate their phylogeny and distribution of genetic diversity. RESULTS: Our phylogenetic analysis revealed two monophyletic groups, one in China and one in East Africa. Within the Chinese group, Bellamya species show little genetic differentiation. In contrast, we observe fairly deep divergence among the East African lakes with almost every lake possessing its unique clade. Our results show that strong divergence does not necessarily depend on intrinsic characteristics of a species, but rather is related to the landscape dynamics of a region. CONCLUSION: Our phylogenetic results suggest that the Bellamya in China and East Africa are independent phylogenetic clades with different evolutionary trajectories. The different climate and geological histories likely contributed to the diverging evolutionary patterns. Repeated range expansions and regressions of lakes likely contributed to the great divergence of Bellamya in East Africa, while reversal of the river courses and intermingling of different lineages had an opposite effect on Bellamya diversification in China.


Subject(s)
Biodiversity , Phylogeography , Snails/classification , Africa, Eastern , Animals , China , DNA, Mitochondrial/genetics , Haplotypes/genetics , Lakes , Phylogeny , Polymorphism, Genetic , Rivers , Snails/anatomy & histology , Snails/genetics , Snails/ultrastructure , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL