Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.829
Filter
Add more filters

Publication year range
1.
Nature ; 626(8001): 1116-1124, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38355802

ABSTRACT

Transposable elements (TEs) are a major constituent of human genes, occupying approximately half of the intronic space. During pre-messenger RNA synthesis, intronic TEs are transcribed along with their host genes but rarely contribute to the final mRNA product because they are spliced out together with the intron and rapidly degraded. Paradoxically, TEs are an abundant source of RNA-processing signals through which they can create new introns1, and also functional2 or non-functional chimeric transcripts3. The rarity of these events implies the existence of a resilient splicing code that is able to suppress TE exonization without compromising host pre-mRNA processing. Here we show that SAFB proteins protect genome integrity by preventing retrotransposition of L1 elements while maintaining splicing integrity, via prevention of the exonization of previously integrated TEs. This unique dual role is possible because of L1's conserved adenosine-rich coding sequences that are bound by SAFB proteins. The suppressive activity of SAFB extends to tissue-specific, giant protein-coding cassette exons, nested genes and Tigger DNA transposons. Moreover, SAFB also suppresses LTR/ERV elements in species in which they are still active, such as mice and flies. A significant subset of splicing events suppressed by SAFB in somatic cells are activated in the testis, coinciding with low SAFB expression in postmeiotic spermatids. Reminiscent of the division of labour between innate and adaptive immune systems that fight external pathogens, our results uncover SAFB proteins as an RNA-based, pattern-guided, non-adaptive defence system against TEs in the soma, complementing the RNA-based, adaptive Piwi-interacting RNA pathway of the germline.


Subject(s)
DNA Transposable Elements , Introns , RNA Precursors , RNA Splicing , RNA, Messenger , Animals , Humans , Male , Mice , DNA Transposable Elements/genetics , Drosophila melanogaster/genetics , Exons/genetics , Genome/genetics , Introns/genetics , Organ Specificity/genetics , Piwi-Interacting RNA/genetics , Piwi-Interacting RNA/metabolism , RNA Precursors/genetics , RNA Precursors/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Spermatids/cytology , Spermatids/metabolism , RNA Splicing/genetics , Testis , Meiosis
2.
Am J Hum Genet ; 111(6): 1125-1139, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38759652

ABSTRACT

Sperm production and function require the correct establishment of DNA methylation patterns in the germline. Here, we examined the genome-wide DNA methylation changes during human spermatogenesis and its alterations in disturbed spermatogenesis. We found that spermatogenesis is associated with remodeling of the methylome, comprising a global decline in DNA methylation in primary spermatocytes followed by selective remethylation, resulting in a spermatids/sperm-specific methylome. Hypomethylated regions in spermatids/sperm were enriched in specific transcription factor binding sites for DMRT and SOX family members and spermatid-specific genes. Intriguingly, while SINEs displayed differential methylation throughout spermatogenesis, LINEs appeared to be protected from changes in DNA methylation. In disturbed spermatogenesis, germ cells exhibited considerable DNA methylation changes, which were significantly enriched at transposable elements and genes involved in spermatogenesis. We detected hypomethylation in SVA and L1HS in disturbed spermatogenesis, suggesting an association between the abnormal programming of these regions and failure of germ cells progressing beyond meiosis.


Subject(s)
DNA Methylation , Genome, Human , Spermatogenesis , Humans , Spermatogenesis/genetics , Male , Spermatids/metabolism , Spermatocytes/metabolism , DNA Transposable Elements/genetics , Spermatozoa/metabolism , Meiosis/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
3.
Development ; 151(18)2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39222051

ABSTRACT

Male infertility can be caused by chromosomal abnormalities, mutations and epigenetic defects. Epigenetic modifiers pre-program hundreds of spermatogenic genes in spermatogonial stem cells (SSCs) for expression later in spermatids, but it remains mostly unclear whether and how those genes are involved in fertility. Here, we report that Wfdc15a, a WFDC family protease inhibitor pre-programmed by KMT2B, is essential for spermatogenesis. We found that Wfdc15a is a non-canonical bivalent gene carrying both H3K4me3 and facultative H3K9me3 in SSCs, but is later activated along with the loss of H3K9me3 and acquisition of H3K27ac during meiosis. We show that WFDC15A deficiency causes defective spermiogenesis at the beginning of spermatid elongation. Notably, depletion of WFDC15A causes substantial disturbance of the testicular protease-antiprotease network and leads to an orchitis-like inflammatory response associated with TNFα expression in round spermatids. Together, our results reveal a unique epigenetic program regulating innate immunity crucial for fertility.


Subject(s)
Homeostasis , Spermatids , Spermatogenesis , Male , Animals , Spermatogenesis/genetics , Mice , Spermatids/metabolism , Testis/metabolism , Histones/metabolism , Peptide Hydrolases/metabolism , Peptide Hydrolases/genetics , Epigenesis, Genetic , Infertility, Male/genetics , Mice, Inbred C57BL , Meiosis/genetics , Adult Germline Stem Cells/metabolism , Mice, Knockout , Immunity, Innate/genetics , Spermatogonia/metabolism
5.
Genome Res ; 33(12): 2060-2078, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38129075

ABSTRACT

In mammals, the adult testis is the tissue with the highest diversity in gene expression. Much of that diversity is attributed to germ cells, primarily meiotic spermatocytes and postmeiotic haploid spermatids. Exploiting a newly developed cell purification method, we profiled the transcriptomes of such postmitotic germ cells of mice. We used a de novo transcriptome assembly approach and identified thousands of novel expressed transcripts characterized by features distinct from those of known genes. Novel loci tend to be short in length, monoexonic, and lowly expressed. Most novel genes have arisen recently in evolutionary time and possess low coding potential. Nonetheless, we identify several novel protein-coding genes harboring open reading frames that encode proteins containing matches to conserved protein domains. Analysis of mass-spectrometry data from adult mouse testes confirms protein production from several of these novel genes. We also examine overlap between transcripts and repetitive elements. We find that although distinct families of repeats are expressed with differing temporal dynamics during spermatogenesis, we do not observe a general mode of regulation wherein repeats drive expression of nonrepetitive sequences in a cell type-specific manner. Finally, we observe many fairly long antisense transcripts originating from canonical gene promoters, pointing to pervasive bidirectional promoter activity during spermatogenesis that is distinct and more frequent compared with somatic cells.


Subject(s)
Promoter Regions, Genetic , Spermatogenesis , Transcriptome , Animals , Male , Mice , Spermatogenesis/genetics , RNA, Untranslated/genetics , Testis/metabolism , Spermatocytes/metabolism , Gene Expression Profiling/methods , Spermatids/metabolism
6.
Development ; 150(9)2023 05 01.
Article in English | MEDLINE | ID: mdl-37082969

ABSTRACT

Unique chromatin remodeling factors orchestrate dramatic changes in nuclear morphology during differentiation of the mature sperm head. A crucial step in this process is histone-to-protamine exchange, which must be executed correctly to avoid sperm DNA damage, embryonic lethality and male sterility. Here, we define an essential role for the histone methyltransferase DOT1L in the histone-to-protamine transition. We show that DOT1L is abundantly expressed in mouse meiotic and postmeiotic germ cells, and that methylation of histone H3 lysine 79 (H3K79), the modification catalyzed by DOT1L, is enriched in developing spermatids in the initial stages of histone replacement. Elongating spermatids lacking DOT1L fail to fully replace histones and exhibit aberrant protamine recruitment, resulting in deformed sperm heads and male sterility. Loss of DOT1L results in transcriptional dysregulation coinciding with the onset of histone replacement and affecting genes required for histone-to-protamine exchange. DOT1L also deposits H3K79me2 and promotes accumulation of elongating RNA Polymerase II at the testis-specific bromodomain gene Brdt. Together, our results indicate that DOT1L is an important mediator of transcription during spermatid differentiation and an indispensable regulator of male fertility.


Subject(s)
Histones , Spermatids , Animals , Male , Mice , Cell Differentiation/genetics , Chromatin Assembly and Disassembly , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Protamines/genetics , Protamines/metabolism , Semen/metabolism , Spermatids/metabolism
7.
Development ; 150(7)2023 04 01.
Article in English | MEDLINE | ID: mdl-36975404

ABSTRACT

Spermatogenic cells express more alternatively spliced RNAs than most whole tissues; however, the regulation of these events remains unclear. Here, we have characterized the function of a testis-specific IQ motif-containing H gene (Iqch) using a mutant mouse model. We found that Iqch is essential for the specific expression of RNA isoforms during spermatogenesis. Using immunohistochemistry of the testis, we noted that Iqch was expressed mainly in the nucleus of spermatocyte and spermatid, where IQCH appeared juxtaposed with SRRM2 and ERSP1 in the nuclear speckles, suggesting that interactions among these proteins regulate alternative splicing (AS). Using RNA-seq, we found that mutant Iqch produces alterations in gene expression, including the clear downregulation of testis-specific lncRNAs and protein-coding genes at the spermatid stage, and AS modifications - principally increased intron retention - resulting in complete male infertility. Interestingly, we identified previously unreported spliced transcripts in the wild-type testis, while mutant Iqch modified the expression and use of hundreds of RNA isoforms, favouring the expression of the canonical form. This suggests that Iqch is part of a splicing control mechanism, which is essential in germ cell biology.


Subject(s)
RNA Isoforms , Testis , Animals , Mice , Male , Testis/metabolism , RNA Isoforms/metabolism , Spermatogenesis/genetics , Spermatids/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism
8.
Development ; 150(21)2023 11 01.
Article in English | MEDLINE | ID: mdl-37800308

ABSTRACT

Actin-related proteins (Arps) are classified according to their similarity to actin and are involved in diverse cellular processes. ACTL7B is a testis-specific Arp, and is highly conserved in rodents and primates. ACTL7B is specifically expressed in round and elongating spermatids during spermiogenesis. Here, we have generated an Actl7b-null allele in mice to unravel the role of ACTL7B in sperm formation. Male mice homozygous for the Actl7b-null allele (Actl7b-/-) were infertile, whereas heterozygous males (Actl7b+/-) were fertile. Severe spermatid defects, such as detached acrosomes, disrupted membranes and flagella malformations start to appear after spermiogenesis step 9 in Actl7b-/- mice, finally resulting in spermatogenic arrest. Abnormal spermatids were degraded and levels of autophagy markers were increased. Co-immunoprecipitation with mass spectrometry experiments identified an interaction between ACTL7B and the LC8 dynein light chains DYNLL1 and DYNLL2, which are first detected in step 9 spermatids and mislocalized when ACTL7B is absent. Our data unequivocally establish that mutations in ACTL7B are directly related to male infertility, pressing for additional research in humans.


Subject(s)
Actins , Dyneins , Animals , Humans , Male , Mice , Actins/metabolism , Cytoplasmic Dyneins/metabolism , Dyneins/genetics , Dyneins/metabolism , Semen/metabolism , Spermatids/metabolism , Spermatogenesis/genetics , Spermatozoa/metabolism , Testis/metabolism
9.
PLoS Genet ; 19(12): e1011081, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38048317

ABSTRACT

Haploid males of hymenopteran species produce gametes through an abortive meiosis I followed by meiosis II that can either be symmetric or asymmetric in different species. Thus, one spermatocyte could give rise to two spermatids with either equal or unequal amounts of cytoplasm. It is currently unknown what molecular features accompany these postmeiotic sperm cells especially in species with asymmetric meiosis II such as bees. Here we present testis single-cell RNA sequencing datasets from the honeybee (Apis mellifera) drones of 3 and 14 days after emergence (3d and 14d). We show that, while 3d testes exhibit active, ongoing spermatogenesis, 14d testes only have late-stage spermatids. We identify a postmeiotic bifurcation in the transcriptional roadmap during spermatogenesis, with cells progressing toward the annotated spermatids (SPT) and small spermatids (sSPT), respectively. Despite an overall similarity in their transcriptomic profiles, sSPTs express the fewest genes and the least RNA content among all the sperm cell types. Intriguingly, sSPTs exhibit a relatively high expression level for Hymenoptera-restricted genes and a high mutation load, suggesting that the special meiosis II during spermatogenesis in the honeybee is accompanied by phylogenetically young gene activities.


Subject(s)
Semen , Spermatogenesis , Bees/genetics , Male , Animals , Spermatogenesis/genetics , Spermatids/metabolism , Testis , Spermatocytes/metabolism , Meiosis/genetics
10.
Proc Natl Acad Sci U S A ; 120(11): e2221762120, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36881620

ABSTRACT

Spermatozoa have a streamlined shape to swim through the oviduct to fertilize oocytes. To become svelte spermatozoa, spermatid cytoplasm must be eliminated in several steps including sperm release, which is part of spermiation. Although this process has been well observed, the molecular mechanisms that underlie it remain unclear. In male germ cells, there are membraneless organelles called nuage, which are observed by electron microscopy in various forms of dense material. Reticulated body (RB) and chromatoid body remnant (CR) are two types of nuage in spermatids, but the functions of both are unknown. Using CRISPR/Cas9 technology, we deleted the entire coding sequence of testis-specific serine kinase substrate (TSKS) in mice and demonstrate that TSKS is essential for male fertility through the formation of both RB and CR, prominent sites of TSKS localization. Due to the lack of TSKS-derived nuage (TDN), the cytoplasmic contents cannot be eliminated from spermatid cytoplasm in Tsks knockout mice, resulting in excess residual cytoplasm with an abundance of cytoplasmic materials and inducing an apoptotic response. In addition, ectopic expression of TSKS in cells results in formation of amorphous nuage-like structures; dephosphorylation of TSKS helps to induce nuage, while phosphorylation of TSKS blocks the formation. Our results indicate that TSKS and TDN are essential for spermiation and male fertility by eliminating cytoplasmic contents from the spermatid cytoplasm.


Subject(s)
Cytoskeletal Proteins , Germ Cell Ribonucleoprotein Granules , Phosphoproteins , Spermatids , Animals , Male , Mice , Cytoplasm , Cytosol , Mice, Knockout , Semen , Cytoskeletal Proteins/genetics , Phosphoproteins/genetics
11.
Dev Biol ; 512: 13-25, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38703942

ABSTRACT

Drosophila melanogaster is an ideal model organism for investigating spermatogenesis due to its powerful genetics, conserved genes and visible morphology of germ cells during sperm production. Our previous work revealed that ocnus (ocn) knockdown resulted in male sterility, and CG9920 was identified as a significantly downregulated protein in fly abdomen after ocn knockdown, suggesting a role of CG9920 in male reproduction. In this study, we found that CG9920 was highly expressed in fly testes. CG9920 knockdown in fly testes caused male infertility with no mature sperms in seminal vesicles. Immunofluorescence staining showed that depletion of CG9920 resulted in scattered spermatid nuclear bundles, fewer elongation cones that did not migrate to the anterior region of the testis, and almost no individualization complexes. Transmission electron microscopy revealed that CG9920 knockdown severely disrupted mitochondrial morphogenesis during spermatogenesis. Notably, we found that CG9920 might not directly interact with Ocn, but rather was inhibited by STAT92E, which itself was indirectly affected by Ocn. We propose a possible novel pathway essential for spermatogenesis in D. melanogaster, whereby Ocn indirectly induces CG9920 expression, potentially counteracting its inhibition by the JAK-STAT signaling pathway.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Mitochondria , Spermatogenesis , Testis , Animals , Spermatogenesis/genetics , Spermatogenesis/physiology , Male , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Mitochondria/metabolism , Testis/metabolism , Morphogenesis/genetics , Signal Transduction , Infertility, Male/genetics , Infertility, Male/metabolism , Gene Knockdown Techniques , STAT Transcription Factors/metabolism , Spermatids/metabolism
12.
J Cell Sci ; 136(7)2023 04 01.
Article in English | MEDLINE | ID: mdl-36825599

ABSTRACT

SUN domain proteins are conserved proteins of the nuclear envelope and key components of the LINC complexes (for 'linkers of the nucleoskeleton and the cytoskeleton'). Previous studies have demonstrated that the testis-specific SUN domain protein SUN4 (also known as SPAG4) is a vital player in the directed shaping of the spermatid nucleus. However, its molecular properties relating to this crucial function have remained largely unknown, and controversial data for the organization and orientation of SUN4 within the spermatid nuclear envelope have been presented so far. Here, we have re-evaluated this issue in detail and show robust evidence that SUN4 is integral to the inner nuclear membrane, sharing a classical SUN domain protein topology. The C-terminal SUN domain of SUN4 localizes to the perinuclear space, whereas the N-terminus is directed to the nucleoplasm, interacting with the spermiogenesis-specific lamin B3. We found that SUN4 forms heteromeric assemblies with SUN3 in vivo and regulates SUN3 expression. Together, our results contribute to a better understanding of the specific function of SUN4 at the spermatid nucleo-cytoplasmic junction and the process of sperm-head formation.


Subject(s)
Nuclear Envelope , Spermatids , Humans , Male , Membrane Proteins/metabolism , Nuclear Envelope/metabolism , Semen/metabolism , Spermatids/metabolism , Nuclear Proteins/metabolism , Lamin Type B
13.
Development ; 149(18)2022 09 15.
Article in English | MEDLINE | ID: mdl-35993297

ABSTRACT

Round spermatid injection (ROSI) results in a lower birth rate than intracytoplasmic sperm injection, which has hampered its clinical application. Inefficient development of ROSI embryos has been attributed to epigenetic abnormalities. However, the chromatin-based mechanism that underpins the low birth rate in ROSI remains to be determined. Here, we show that a repressive histone mark, H3K27me3, persists from mouse round spermatids into zygotes in ROSI and that round spermatid-derived H3K27me3 is associated with less accessible chromatin and impaired gene expression in ROSI embryos. These loci are initially marked by H3K27me3 but undergo histone modification remodelling in spermiogenesis, resulting in reduced H3K27me3 in normal spermatozoa. Therefore, the absence of epigenetic remodelling, presumably mediated by histone turnover during spermiogenesis, leads to dysregulation of chromatin accessibility and transcription in ROSI embryos. Thus, our results unveil a molecular logic, in which chromatin states in round spermatids impinge on chromatin accessibility and transcription in ROSI embryos, highlighting the importance of epigenetic remodelling during spermiogenesis in successful reproduction.


Subject(s)
Histones , Spermatids , Animals , Chromatin/genetics , Chromatin/metabolism , Histones/genetics , Histones/metabolism , Male , Mice , Oocytes/metabolism , Paternal Inheritance , Semen/metabolism , Spermatids/metabolism
14.
Development ; 149(16)2022 08 15.
Article in English | MEDLINE | ID: mdl-35950913

ABSTRACT

Profilin 4 (Pfn4) is expressed during spermiogenesis and localizes to the acrosome-acroplaxome-manchette complex. Here, we generated PFN4-deficient mice, with sperm displaying severe impairment in manchette formation. Interestingly, HOOK1 staining suggests that the perinuclear ring is established; however, ARL3 staining is disrupted, suggesting that lack of PFN4 does not interfere with the formation of the perinuclear ring and initial localization of HOOK1, but impedes microtubular organization of the manchette. Furthermore, amorphous head shape and flagellar defects were detected, resulting in reduced sperm motility. Disrupted cis- and trans-Golgi networks and aberrant production of proacrosomal vesicles caused impaired acrosome biogenesis. Proteomic analysis showed that the proteins ARF3, SPECC1L and FKBP1, which are involved in Golgi membrane trafficking and PI3K/AKT pathway, are more abundant in Pfn4-/- testes. Levels of PI3K, AKT and mTOR were elevated, whereas AMPK level was reduced, consistent with inhibition of autophagy. This seems to result in blockage of autophagic flux, which could explain the failure in acrosome formation. In vitro fertilization demonstrated that PFN4-deficient sperm is capable of fertilizing zona-free oocytes, suggesting a potential treatment for PFN4-related human infertility.


Subject(s)
Acrosome , Profilins , Spermatids , Spermatogenesis , Acrosome/metabolism , Animals , Male , Mice , Phosphatidylinositol 3-Kinases/metabolism , Profilins/genetics , Profilins/metabolism , Proteomics , Proto-Oncogene Proteins c-akt/metabolism , Semen , Sperm Motility , Spermatids/metabolism , Spermatogenesis/genetics , Spermatozoa
15.
Development ; 149(12)2022 06 15.
Article in English | MEDLINE | ID: mdl-35588208

ABSTRACT

As one of the post-transcriptional regulatory mechanisms, uncoupling of transcription and translation plays an essential role in development and adulthood physiology. However, it remains elusive how thousands of mRNAs get translationally silenced while stability is maintained for hours or even days before translation. In addition to oocytes and neurons, developing spermatids display significant uncoupling of transcription and translation for delayed translation. Therefore, spermiogenesis represents an excellent in vivo model for investigating the mechanism underlying uncoupled transcription and translation. Through full-length poly(A) deep sequencing, we discovered dynamic changes in poly(A) length through deadenylation and re-polyadenylation. Deadenylation appeared to be mediated by microRNAs (miRNAs), and transcripts with shorter poly(A) tails tend to be sequestered into ribonucleoprotein (RNP) granules for translational repression and stabilization. In contrast, re-polyadenylation might allow for translocation of the translationally repressed transcripts from RNP granules to polysomes. Overall, our data suggest that miRNA-dependent poly(A) length control represents a previously unreported mechanism underlying uncoupled translation and transcription in haploid male mouse germ cells.


Subject(s)
MicroRNAs , Poly A , Animals , Haploidy , Male , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Poly A/metabolism , Protein Biosynthesis , RNA, Messenger/metabolism , Spermatids/metabolism
16.
Development ; 149(12)2022 06 15.
Article in English | MEDLINE | ID: mdl-35616329

ABSTRACT

The perinuclear theca (PT) is a cytoskeletal element encapsulating the sperm nucleus; however, the physiological roles of the PT in sperm are largely uncertain. Here, we reveal that ACTRT1, ACTRT2, ACTL7A and ACTL9 proteins interact to form a multimeric complex and localize to the subacrosomal region of spermatids. Furthermore, we engineered Actrt1-knockout (KO) mice to define the functions of ACTRT1. Despite normal sperm count and motility, Actrt1-KO males were severely subfertile owing to a deficiency in fertilization. Loss of ACTRT1 caused a high incidence of malformed heads and detachment of acrosomes from sperm nuclei, caused by loosened acroplaxome structure during spermiogenesis. Furthermore, Actrt1-KO sperm showed reduced ACTL7A and PLCζ protein content as a potential cause of fertilization defects. Moreover, we reveal that ACTRT1 anchors developing acrosomes to the nucleus, likely by interacting with the inner acrosomal membrane protein SPACA1 and the nuclear envelope proteins PARP11 and SPATA46. Loss of ACTRT1 weakened the interaction between ACTL7A and SPACA1. Our study and recent findings of ACTL7A/ACTL9-deficient sperm together reveal that the sperm PT-specific ARP complex mediates the acrosome-nucleus connection.


Subject(s)
Acrosome , Infertility, Male , Acrosome/metabolism , Animals , Humans , Infertility, Male/genetics , Infertility, Male/metabolism , Male , Membrane Proteins/metabolism , Mice , Mice, Knockout , Microfilament Proteins/metabolism , Spermatids/metabolism , Spermatogenesis/genetics , Spermatozoa/metabolism
17.
Nucleic Acids Res ; 51(5): 2319-2332, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36806949

ABSTRACT

During mammalian spermatogenesis, the paternal genome is extensively remodelled via replacement of histones with protamines forming the highly compact mature sperm nucleus. Compaction occurs in post-meiotic spermatids and is accompanied by extensive double strand break (DSB) formation. We investigate the epigenomic and genomic context of mouse spermatid DSBs, identifying primary sequence motifs, secondary DNA structures and chromatin contexts associated with this damage. Consistent with previously published results we find spermatid DSBs positively associated with short tandem repeats and LINE elements. We further show spermatid DSBs preferentially occur in association with (CA)n, (NA)n and (RY)n repeats, in predicted Z-DNA, are not associated with G-quadruplexes, are preferentially found in regions of low histone mark coverage and engage the remodelling/NHEJ factor BRD4. Locations incurring DSBs in spermatids also show distinct epigenetic profiles throughout later developmental stages: regions retaining histones in mature sperm, regions susceptible to oxidative damage in mature sperm, and fragile two-cell like embryonic stem cell regions bound by ZSCAN4 all co-localise with spermatid DSBs and with each other. Our results point to a common 'vulnerability code' unifying several types of DNA damage occurring on the paternal genome during reproduction, potentially underpinned by torsional changes during sperm chromatin remodelling.


Subject(s)
Histones , Nuclear Proteins , Male , Mice , Animals , Histones/genetics , Histones/metabolism , Nuclear Proteins/metabolism , Semen/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Chromatin/genetics , Chromatin/metabolism , Spermatids/metabolism , Spermatogenesis/genetics , DNA Damage , Mammals/genetics
18.
Semin Cell Dev Biol ; 127: 110-120, 2022 07.
Article in English | MEDLINE | ID: mdl-34930663

ABSTRACT

Development of a syncytial germline for gamete formation requires complex regulation of cytokinesis and cytoplasmic remodeling. Recently, several uncovered cellular events have been investigated in the Caenorhabditis elegans (C. elegans) germline. In these cellular processes, the factors involved in contractility are highly conserved with those of mitosis and meiosis. However, the underlying regulatory mechanisms are far more complicated than previously thought, likely due to the single syncytial germline structure. In this review, we highlight how the proteins involved in contractility ensure faithful cell division in different cellular contexts and how they contribute to maintaining intercellular bridge stability. In addition, we discuss the current understanding of the cellular events of cytokinesis and cytoplasmic remodeling during the development of the C. elegans germline, including progenitor germ cells, germ cells, and spermatocytes. Comparisons are made with relevant systems in Drosophila melanogaster (D. melanogaster) and other animal models.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans Proteins/metabolism , Cytokinesis , Drosophila melanogaster/metabolism , Germ Cells/metabolism , Male , Meiosis , Spermatids
19.
J Biol Chem ; 299(4): 103058, 2023 04.
Article in English | MEDLINE | ID: mdl-36841478

ABSTRACT

In rodents, sphingomyelins (SMs) species with very-long-chain polyunsaturated fatty acid (VLCPUFA) are required for normal spermatogenesis. Data on the expression of enzymes with roles in their biosynthesis and turnover during germ cell differentiation and on possible effects on such expression of testosterone (Tes), known to promote this biological process, were lacking. Here we quantified, in isolated pachytene spermatocytes (PtS), round spermatids (RS), and later spermatids (LS), the mRNA levels from genes encoding ceramide (Cer), glucosylceramide (GlcCer), and SM synthases (Cers3, Gcs, Sms1, and Sms2) and sphingomyelinases (aSmase, nSmase) and assessed products of their activity in cells in culture using nitrobenzoxadiazole (NBD)-labeled substrates and [3H]palmitate as precursor. Transcript levels from Cers3 and Gcs were maximal in PtS. While mRNA levels from Sms1 increased with differentiation in the direction PtS→RS→LS, those from Sms2 increased between PtS and RS but decreased in LS. In turn, the nSmase transcript increased in the PtS→RS→LS order. During incubations with NBD-Cer, spermatocytes produced more GlcCer and SM than did spermatids. In total germ cells cultured for up to 25 h with NBD-SM, not only abundant NBD-Cer but also NBD-GlcCer were formed, demonstrating SM→Cer turnover and Cer recycling. After 20 h with [3H]palmitate, PtS produced [3H]SM and RS formed [3H]SM and [3H]Cer, all containing VLCPUFA, and Tes increased their labeling. In total germ cells, Tes augmented in 5 h the expression of genes with roles in VLCPUFA synthesis, decreased the mRNA from Sms2, and increased that from nSmase. Thus, Tes enhanced or accelerated the metabolic changes occurring to VLCPUFA-SM during germ cell differentiation.


Subject(s)
Spermatogenesis , Spermatozoa , Sphingomyelins , Testosterone , Animals , Male , Rats , Ceramides/metabolism , Spermatids/metabolism , Sphingomyelins/metabolism , Testosterone/metabolism , Spermatozoa/cytology , Spermatozoa/metabolism
20.
N Engl J Med ; 384(10): 936-943, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33704938

ABSTRACT

A complete hydatidiform mole (CHM) is a conceptus with only sperm-derived chromosomes. Here, we report on a CHM with genomic DNA identical to that of the paternal somatic cells. The CHM developed in a woman who had undergone intrauterine implantation of a blastocyst obtained through in vitro injection of a presumed round spermatid into one of her oocytes. The CHM was genetically identical to peripheral white cells of her husband and contained no maternally derived nuclear DNA. We hypothesize that a spermatogonium, rather than a round spermatid, was inadvertently selected for the procedure. The CHM developed into a gestational trophoblastic neoplasia, which resolved after chemotherapy. (Funded by the Japan Society for the Promotion of Science.).


Subject(s)
Hydatidiform Mole/genetics , Spermatids , Spermatogonia , Uterine Neoplasms/genetics , Adult , Female , Fertilization in Vitro/adverse effects , Fertilization in Vitro/methods , Genomic Imprinting , Humans , Hydatidiform Mole/etiology , Hydatidiform Mole/pathology , Male , Pregnancy , Uterine Neoplasms/etiology , Uterine Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL