Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.187
Filter
Add more filters

Publication year range
1.
Cell ; 171(3): 601-614.e13, 2017 Oct 19.
Article in English | MEDLINE | ID: mdl-28942922

ABSTRACT

Faithful chromosome segregation in meiosis requires crossover (CO) recombination, which is regulated to ensure at least one CO per homolog pair. We investigate the failure to ensure COs in juvenile male mice. By monitoring recombination genome-wide using cytological assays and at hotspots using molecular assays, we show that juvenile mouse spermatocytes have fewer COs relative to adults. Analysis of recombination in the absence of MLH3 provides evidence for greater utilization in juveniles of pathways involving structure-selective nucleases and alternative complexes, which can act upon precursors to generate noncrossovers (NCOs) at the expense of COs. We propose that some designated CO sites fail to mature efficiently in juveniles owing to inappropriate activity of these alternative repair pathways, leading to chromosome mis-segregation. We also find lower MutLγ focus density in juvenile human spermatocytes, suggesting that weaker CO maturation efficiency may explain why younger men have a higher risk of fathering children with Down syndrome.


Subject(s)
Aging , Chromosome Segregation , Meiosis , Recombination, Genetic , Spermatocytes/metabolism , Animals , Chromosome Aberrations , DNA Repair , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Spermatocytes/cytology
2.
Cell ; 166(4): 1028-1040, 2016 Aug 11.
Article in English | MEDLINE | ID: mdl-27397506

ABSTRACT

Fluorescence nanoscopy, or super-resolution microscopy, has become an important tool in cell biological research. However, because of its usually inferior resolution in the depth direction (50-80 nm) and rapidly deteriorating resolution in thick samples, its practical biological application has been effectively limited to two dimensions and thin samples. Here, we present the development of whole-cell 4Pi single-molecule switching nanoscopy (W-4PiSMSN), an optical nanoscope that allows imaging of three-dimensional (3D) structures at 10- to 20-nm resolution throughout entire mammalian cells. We demonstrate the wide applicability of W-4PiSMSN across diverse research fields by imaging complex molecular architectures ranging from bacteriophages to nuclear pores, cilia, and synaptonemal complexes in large 3D cellular volumes.


Subject(s)
Cytological Techniques/methods , Microscopy, Fluorescence/methods , Single Molecule Imaging/methods , Animals , Bacteriophages/ultrastructure , COP-Coated Vesicles/ultrastructure , Cytological Techniques/instrumentation , Golgi Apparatus/ultrastructure , Male , Mice , Microscopy, Fluorescence/instrumentation , Single Molecule Imaging/instrumentation , Spermatocytes/ultrastructure , Synaptonemal Complex/ultrastructure
3.
Mol Cell ; 81(23): 4826-4842.e8, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34626567

ABSTRACT

In animals, PIWI-interacting RNAs (piRNAs) silence transposons, fight viral infections, and regulate gene expression. piRNA biogenesis concludes with 3' terminal trimming and 2'-O-methylation. Both trimming and methylation influence piRNA stability. Our biochemical data show that multiple mechanisms destabilize unmethylated mouse piRNAs, depending on whether the piRNA 5' or 3' sequence is complementary to a trigger RNA. Unlike target-directed degradation of microRNAs, complementarity-dependent destabilization of piRNAs in mice and flies is blocked by 3' terminal 2'-O-methylation and does not require base pairing to both the piRNA seed and the 3' sequence. In flies, 2'-O-methylation also protects small interfering RNAs (siRNAs) from complementarity-dependent destruction. By contrast, pre-piRNA trimming protects mouse piRNAs from a degradation pathway unaffected by trigger complementarity. In testis lysate and in vivo, internal or 3' terminal uridine- or guanine-rich tracts accelerate pre-piRNA decay. Loss of both trimming and 2'-O-methylation causes the mouse piRNA pathway to collapse, demonstrating that these modifications collaborate to stabilize piRNAs.


Subject(s)
Argonaute Proteins/metabolism , RNA, Small Interfering/metabolism , Animals , Cell Separation , Drosophila melanogaster , Female , Flow Cytometry , Gene Expression , Gene Silencing , Genetic Techniques , Male , Methylation , Mice , Mice, Inbred C57BL , Mice, Transgenic , Protein Processing, Post-Translational , RNA, Double-Stranded , Spermatocytes/metabolism , Spermatogonia/metabolism , Testis/metabolism
4.
Genes Dev ; 34(9-10): 663-677, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32217666

ABSTRACT

Cell type-specific transcriptional programs that drive differentiation of specialized cell types are key players in development and tissue regeneration. One of the most dramatic changes in the transcription program in Drosophila occurs with the transition from proliferating spermatogonia to differentiating spermatocytes, with >3000 genes either newly expressed or expressed from new alternative promoters in spermatocytes. Here we show that opening of these promoters from their closed state in precursor cells requires function of the spermatocyte-specific tMAC complex, localized at the promoters. The spermatocyte-specific promoters lack the previously identified canonical core promoter elements except for the Inr. Instead, these promoters are enriched for the binding site for the TALE-class homeodomain transcription factors Achi/Vis and for a motif originally identified under tMAC ChIP-seq peaks. The tMAC motif resembles part of the previously identified 14-bp ß2UE1 element critical for spermatocyte-specific expression. Analysis of downstream sequences relative to transcription start site usage suggested that ACA and CNAAATT motifs at specific positions can help promote efficient transcription initiation. Our results reveal how promoter-proximal sequence elements that recruit and are acted upon by cell type-specific chromatin binding complexes help establish a robust, cell type-specific transcription program for terminal differentiation.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/growth & development , Drosophila melanogaster/genetics , Spermatogenesis/genetics , Amino Acid Motifs/genetics , Animals , Base Sequence/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Male , Promoter Regions, Genetic/genetics , Spermatocytes/cytology , Spermatocytes/metabolism , Transcription Initiation Site , Transcriptome/genetics
5.
Genes Dev ; 34(9-10): 619-620, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32358039

ABSTRACT

In this issue of Genes & Development, Lu and colleagues (pp. 663-677) have discovered a key new mechanism of alternative promoter choice that is involved in differentiation of spermatocytes. Promoter choice has strong potential as mechanism for differentiation of many different cell types.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/growth & development , Drosophila melanogaster/genetics , Promoter Regions, Genetic/genetics , Spermatocytes/cytology , Spermatogenesis/genetics , Amino Acid Motifs/genetics , Animals , Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Male , Transcriptome/genetics
6.
Am J Hum Genet ; 111(6): 1125-1139, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38759652

ABSTRACT

Sperm production and function require the correct establishment of DNA methylation patterns in the germline. Here, we examined the genome-wide DNA methylation changes during human spermatogenesis and its alterations in disturbed spermatogenesis. We found that spermatogenesis is associated with remodeling of the methylome, comprising a global decline in DNA methylation in primary spermatocytes followed by selective remethylation, resulting in a spermatids/sperm-specific methylome. Hypomethylated regions in spermatids/sperm were enriched in specific transcription factor binding sites for DMRT and SOX family members and spermatid-specific genes. Intriguingly, while SINEs displayed differential methylation throughout spermatogenesis, LINEs appeared to be protected from changes in DNA methylation. In disturbed spermatogenesis, germ cells exhibited considerable DNA methylation changes, which were significantly enriched at transposable elements and genes involved in spermatogenesis. We detected hypomethylation in SVA and L1HS in disturbed spermatogenesis, suggesting an association between the abnormal programming of these regions and failure of germ cells progressing beyond meiosis.


Subject(s)
DNA Methylation , Genome, Human , Spermatogenesis , Humans , Spermatogenesis/genetics , Male , Spermatids/metabolism , Spermatocytes/metabolism , DNA Transposable Elements/genetics , Spermatozoa/metabolism , Meiosis/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
7.
Development ; 151(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38512324

ABSTRACT

The conserved MRE11-RAD50-NBS1/Xrs2 complex is crucial for DNA break metabolism and genome maintenance. Although hypomorphic Rad50 mutation mice showed normal meiosis, both null and hypomorphic rad50 mutation yeast displayed impaired meiosis recombination. However, the in vivo function of Rad50 in mammalian germ cells, particularly its in vivo role in the resection of meiotic double strand break (DSB) ends at the molecular level remains elusive. Here, we have established germ cell-specific Rad50 knockout mouse models to determine the role of Rad50 in mitosis and meiosis of mammalian germ cells. We find that Rad50-deficient spermatocytes exhibit defective meiotic recombination and abnormal synapsis. Mechanistically, using END-seq, we demonstrate reduced DSB formation and abnormal DSB end resection occurs in mutant spermatocytes. We further identify that deletion of Rad50 in gonocytes leads to complete loss of spermatogonial stem cells due to genotoxic stress. Taken together, our results reveal the essential role of Rad50 in mammalian germ cell meiosis and mitosis, and provide in vivo views of RAD50 function in meiotic DSB formation and end resection at the molecular level.


Subject(s)
DNA Breaks, Double-Stranded , Animals , Male , Mice , DNA Repair/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Loss of Function Mutation , Mammals/metabolism , Meiosis/genetics , Mutation , Spermatocytes/metabolism , Germ Cells/metabolism , Acid Anhydride Hydrolases/genetics , Acid Anhydride Hydrolases/metabolism
8.
Mol Cell ; 73(3): 392-394, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30735652

ABSTRACT

In this issue of Molecular Cell, Wang et al. (2019) use Hi-C to visualize at high resolution the complex reprogramming of chromatin architecture during spermatogenesis in rhesus monkeys and mice. They find that pachytene spermatocytes have a unique chromosome organization that may result from the presence of the synaptonemal complex and transcription-associated proteins.


Subject(s)
Chromatin , Spermatogenesis , Animals , Chromosomes, Mammalian , Male , Mice , Spermatocytes , Synaptonemal Complex
9.
Mol Cell ; 74(5): 1069-1085.e11, 2019 06 06.
Article in English | MEDLINE | ID: mdl-31000436

ABSTRACT

Orderly segregation of chromosomes during meiosis requires that crossovers form between homologous chromosomes by recombination. Programmed DNA double-strand breaks (DSBs) initiate meiotic recombination. We identify ANKRD31 as a key component of complexes of DSB-promoting proteins that assemble on meiotic chromosome axes. Genome-wide, ANKRD31 deficiency causes delayed recombination initiation. In addition, loss of ANKRD31 alters DSB distribution because of reduced selectivity for sites that normally attract DSBs. Strikingly, ANKRD31 deficiency also abolishes uniquely high rates of recombination that normally characterize pseudoautosomal regions (PARs) of X and Y chromosomes. Consequently, sex chromosomes do not form crossovers, leading to chromosome segregation failure in ANKRD31-deficient spermatocytes. These defects co-occur with a genome-wide delay in assembling DSB-promoting proteins on autosome axes and loss of a specialized PAR-axis domain that is highly enriched for DSB-promoting proteins in wild type. Thus, we propose a model for spatiotemporal patterning of recombination by ANKRD31-dependent control of axis-associated DSB-promoting proteins.


Subject(s)
Carrier Proteins/genetics , DNA Breaks, Double-Stranded , Homologous Recombination/genetics , Meiosis/genetics , Animals , Carrier Proteins/chemistry , Chromosome Segregation/genetics , Male , Mice , Pseudoautosomal Regions/genetics , Spermatocytes/growth & development , Spermatocytes/metabolism , X Chromosome/genetics , Y Chromosome/genetics
10.
Mol Cell ; 74(5): 1053-1068.e8, 2019 06 06.
Article in English | MEDLINE | ID: mdl-31003867

ABSTRACT

Double-strand breaks (DSBs) initiate the homologous recombination that is crucial for meiotic chromosome pairing and segregation. Here, we unveil mouse ANKRD31 as a lynchpin governing multiple aspects of DSB formation. Spermatocytes lacking ANKRD31 have altered DSB locations and fail to target DSBs to the pseudoautosomal regions (PARs) of sex chromosomes. They also have delayed and/or fewer recombination sites but, paradoxically, more DSBs, suggesting DSB dysregulation. Unrepaired DSBs and pairing failures-stochastic on autosomes, nearly absolute on X and Y-cause meiotic arrest and sterility in males. Ankrd31-deficient females have reduced oocyte reserves. A crystal structure defines a pleckstrin homology (PH) domain in REC114 and its direct intermolecular contacts with ANKRD31. In vivo, ANKRD31 stabilizes REC114 association with the PAR and elsewhere. Our findings inform a model in which ANKRD31 is a scaffold anchoring REC114 and other factors to specific genomic locations, thereby regulating DSB formation.


Subject(s)
Cell Cycle Proteins/physiology , Homologous Recombination/genetics , Meiosis/genetics , Recombinases/chemistry , Animals , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/genetics , Chromosome Pairing , Chromosome Segregation/genetics , Chromosomes , Crystallography, X-Ray , DNA Breaks, Double-Stranded , Female , Male , Mice , Protein Conformation , Recombinases/genetics , Spermatocytes/chemistry , Spermatocytes/metabolism
11.
J Cell Sci ; 137(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38372383

ABSTRACT

Male meiotic division exhibits two consecutive chromosome separation events without apparent pausing. Several studies have shown that spermatocyte divisions are not stringently regulated as in mitotic cells. In this study, we investigated the role of the canonical spindle assembly (SAC) pathway in Caenorhabditis elegans spermatogenesis. We found the intensity of chromosome-associated outer kinetochore protein BUB-1 and SAC effector MDF-1 oscillates between the two divisions. However, the SAC target securin is degraded during the first division and remains undetectable for the second division. Inhibition of proteasome-dependent protein degradation did not affect the progression of the second division but stopped the first division at metaphase. Perturbation of spindle integrity did not affect the duration of meiosis II, and only slightly lengthened meiosis I. Our results demonstrate that male meiosis II is independent of SAC regulation, and male meiosis I exhibits only weak checkpoint response.


Subject(s)
Caenorhabditis elegans , Spindle Apparatus , Animals , Male , Caenorhabditis elegans/metabolism , Spindle Apparatus/metabolism , Spermatocytes/metabolism , Meiosis , Kinetochores/metabolism , Chromosome Segregation , Spermatogenesis , Oocytes/metabolism , Cell Cycle Proteins/metabolism
12.
Genome Res ; 33(12): 2060-2078, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38129075

ABSTRACT

In mammals, the adult testis is the tissue with the highest diversity in gene expression. Much of that diversity is attributed to germ cells, primarily meiotic spermatocytes and postmeiotic haploid spermatids. Exploiting a newly developed cell purification method, we profiled the transcriptomes of such postmitotic germ cells of mice. We used a de novo transcriptome assembly approach and identified thousands of novel expressed transcripts characterized by features distinct from those of known genes. Novel loci tend to be short in length, monoexonic, and lowly expressed. Most novel genes have arisen recently in evolutionary time and possess low coding potential. Nonetheless, we identify several novel protein-coding genes harboring open reading frames that encode proteins containing matches to conserved protein domains. Analysis of mass-spectrometry data from adult mouse testes confirms protein production from several of these novel genes. We also examine overlap between transcripts and repetitive elements. We find that although distinct families of repeats are expressed with differing temporal dynamics during spermatogenesis, we do not observe a general mode of regulation wherein repeats drive expression of nonrepetitive sequences in a cell type-specific manner. Finally, we observe many fairly long antisense transcripts originating from canonical gene promoters, pointing to pervasive bidirectional promoter activity during spermatogenesis that is distinct and more frequent compared with somatic cells.


Subject(s)
Promoter Regions, Genetic , Spermatogenesis , Transcriptome , Animals , Male , Mice , Spermatogenesis/genetics , RNA, Untranslated/genetics , Testis/metabolism , Spermatocytes/metabolism , Gene Expression Profiling/methods , Spermatids/metabolism
13.
Development ; 150(14)2023 07 15.
Article in English | MEDLINE | ID: mdl-37401420

ABSTRACT

Valosin-containing protein (VCP) binds and extracts ubiquitylated cargo to regulate protein homeostasis. VCP has been studied primarily in aging and disease contexts, but it also affects germline development. However, the precise molecular functions of VCP in the germline, particularly in males, are poorly understood. Using the Drosophila male germline as a model system, we find that VCP translocates from the cytosol to the nucleus as germ cells transition into the meiotic spermatocyte stage. Importantly, nuclear translocation of VCP appears to be one crucial event stimulated by testis-specific TBP-associated factors (tTAFs) to drive spermatocyte differentiation. VCP promotes the expression of several tTAF-target genes, and VCP knockdown, like tTAF loss of function, causes cells to arrest in early meiotic stages. At a molecular level, VCP activity supports spermatocyte gene expression by downregulating a repressive histone modification, mono-ubiquitylated H2A (H2Aub), during meiosis. Remarkably, experimentally blocking H2Aub in VCP-RNAi testes is sufficient to overcome the meiotic-arrest phenotype and to promote development through the spermatocyte stage. Collectively, our data highlight VCP as a downstream effector of tTAFs that downregulates H2Aub to facilitate meiotic progression.


Subject(s)
Drosophila , Spermatocytes , Animals , Male , Spermatocytes/metabolism , Valosin Containing Protein/genetics , Valosin Containing Protein/metabolism , Cell Differentiation/genetics , Drosophila/genetics , Drosophila/metabolism , Testis/metabolism , Gene Expression , Spermatogenesis/genetics , Meiosis/genetics
14.
Development ; 150(22)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37882771

ABSTRACT

During meiosis, germ cell and stage-specific components impose additional layers of regulation on the core cell cycle machinery to set up an extended G2 period termed meiotic prophase. In Drosophila males, meiotic prophase lasts 3.5 days, during which spermatocytes upregulate over 1800 genes and grow 25-fold. Previous work has shown that the cell cycle regulator Cyclin B (CycB) is subject to translational repression in immature spermatocytes, mediated by the RNA-binding protein Rbp4 and its partner Fest. Here, we show that the spermatocyte-specific protein Lut is required for translational repression of cycB in an 8-h window just before spermatocytes are fully mature. In males mutant for rbp4 or lut, spermatocytes enter and exit meiotic division 6-8 h earlier than in wild type. In addition, spermatocyte-specific isoforms of Syncrip (Syp) are required for expression of CycB protein in mature spermatocytes and normal entry into the meiotic divisions. Lut and Syp interact with Fest independent of RNA. Thus, a set of spermatocyte-specific regulators choreograph the timing of expression of CycB protein during male meiotic prophase.


Subject(s)
Drosophila Proteins , Meiosis , Animals , Male , Meiosis/genetics , Spermatogenesis/physiology , Prophase , Mitosis , Spermatocytes/metabolism , Drosophila/genetics , Cyclin B/genetics , Cyclin B/metabolism , Drosophila Proteins/metabolism
15.
Nature ; 582(7812): 426-431, 2020 06.
Article in English | MEDLINE | ID: mdl-32461690

ABSTRACT

Sex chromosomes in males of most eutherian mammals share only a small homologous segment, the pseudoautosomal region (PAR), in which the formation of double-strand breaks (DSBs), pairing and crossing over must occur for correct meiotic segregation1,2. How cells ensure that recombination occurs in the PAR is unknown. Here we present a dynamic ultrastructure of the PAR and identify controlling cis- and trans-acting factors that make the PAR the hottest segment for DSB formation in the male mouse genome. Before break formation, multiple DSB-promoting factors hyperaccumulate in the PAR, its chromosome axes elongate and the sister chromatids separate. These processes are linked to heterochromatic mo-2 minisatellite arrays, and require MEI4 and ANKRD31 proteins but not the axis components REC8 or HORMAD1. We propose that the repetitive DNA sequence of the PAR confers unique chromatin and higher-order structures that are crucial for recombination. Chromosome synapsis triggers collapse of the elongated PAR structure and, notably, oocytes can be reprogrammed to exhibit spermatocyte-like levels of DSBs in the PAR simply by delaying or preventing synapsis. Thus, the sexually dimorphic behaviour of the PAR is in part a result of kinetic differences between the sexes in a race between the maturation of the PAR structure, formation of DSBs and completion of pairing and synapsis. Our findings establish a mechanistic paradigm for the recombination of sex chromosomes during meiosis.


Subject(s)
DNA Breaks, Double-Stranded , Meiosis , Pseudoautosomal Regions/genetics , Pseudoautosomal Regions/metabolism , Animals , Cell Cycle Proteins/metabolism , Chromatin Assembly and Disassembly , Chromosome Pairing/genetics , DNA-Binding Proteins , Female , Heterochromatin/genetics , Heterochromatin/metabolism , Heterochromatin/ultrastructure , Kinetics , Male , Meiosis/genetics , Mice , Minisatellite Repeats/genetics , Oocytes/metabolism , Recombination, Genetic/genetics , Sex Characteristics , Sister Chromatid Exchange , Spermatocytes/metabolism , Ubiquitin-Protein Ligases/metabolism
16.
PLoS Genet ; 19(12): e1011081, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38048317

ABSTRACT

Haploid males of hymenopteran species produce gametes through an abortive meiosis I followed by meiosis II that can either be symmetric or asymmetric in different species. Thus, one spermatocyte could give rise to two spermatids with either equal or unequal amounts of cytoplasm. It is currently unknown what molecular features accompany these postmeiotic sperm cells especially in species with asymmetric meiosis II such as bees. Here we present testis single-cell RNA sequencing datasets from the honeybee (Apis mellifera) drones of 3 and 14 days after emergence (3d and 14d). We show that, while 3d testes exhibit active, ongoing spermatogenesis, 14d testes only have late-stage spermatids. We identify a postmeiotic bifurcation in the transcriptional roadmap during spermatogenesis, with cells progressing toward the annotated spermatids (SPT) and small spermatids (sSPT), respectively. Despite an overall similarity in their transcriptomic profiles, sSPTs express the fewest genes and the least RNA content among all the sperm cell types. Intriguingly, sSPTs exhibit a relatively high expression level for Hymenoptera-restricted genes and a high mutation load, suggesting that the special meiosis II during spermatogenesis in the honeybee is accompanied by phylogenetically young gene activities.


Subject(s)
Semen , Spermatogenesis , Bees/genetics , Male , Animals , Spermatogenesis/genetics , Spermatids/metabolism , Testis , Spermatocytes/metabolism , Meiosis/genetics
17.
PLoS Genet ; 19(3): e1010654, 2023 03.
Article in English | MEDLINE | ID: mdl-36867662

ABSTRACT

While the biochemistry of gene transcription has been well studied, our understanding of how this process is organised in 3D within the intact nucleus is less well understood. Here we investigate the structure of actively transcribed chromatin and the architecture of its interaction with active RNA polymerase. For this analysis, we have used super-resolution microscopy to image the Drosophila melanogaster Y loops which represent huge, several megabases long, single transcription units. The Y loops provide a particularly amenable model system for transcriptionally active chromatin. We find that, although these transcribed loops are decondensed they are not organised as extended 10nm fibres, but rather they largely consist of chains of nucleosome clusters. The average width of each cluster is around 50nm. We find that foci of active RNA polymerase are generally located off the main fibre axis on the periphery of the nucleosome clusters. Foci of RNA polymerase and nascent transcripts are distributed around the Y loops rather than being clustered in individual transcription factories. However, as the RNA polymerase foci are considerably less prevalent than the nucleosome clusters, the organisation of this active chromatin into chains of nucleosome clusters is unlikely to be determined by the activity of the polymerases transcribing the Y loops. These results provide a foundation for understanding the topological relationship between chromatin and the process of gene transcription.


Subject(s)
Drosophila , Microscopy , Male , Animals , Drosophila/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Nucleosomes/genetics , Spermatocytes/metabolism , Transcription, Genetic , Chromatin/genetics , DNA-Directed RNA Polymerases/genetics
18.
PLoS Genet ; 19(6): e1010797, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37307272

ABSTRACT

Transposable elements (TE) are mobile DNA sequences whose excessive proliferation endangers the host. Although animals have evolved robust TE-targeting defenses, including Piwi-interacting (pi)RNAs, retrotransposon LINE-1 (L1) still thrives in humans and mice. To gain insights into L1 endurance, we characterized L1 Bodies (LBs) and ORF1p complexes in germ cells of piRNA-deficient Maelstrom null mice. We report that ORF1p interacts with TE RNAs, genic mRNAs, and stress granule proteins, consistent with earlier studies. We also show that ORF1p associates with the CCR4-NOT deadenylation complex and PRKRA, a Protein Kinase R factor. Despite ORF1p interactions with these negative regulators of RNA expression, the stability and translation of LB-localized mRNAs remain unchanged. To scrutinize these findings, we studied the effects of PRKRA on L1 in cultured cells and showed that it elevates ORF1p levels and L1 retrotransposition. These results suggest that ORF1p-driven condensates promote L1 propagation, without affecting the metabolism of endogenous RNAs.


Subject(s)
Retroelements , Ribonucleoproteins , Humans , Male , Mice , Animals , Retroelements/genetics , Ribonucleoproteins/genetics , Piwi-Interacting RNA , Spermatocytes/metabolism , Long Interspersed Nucleotide Elements/genetics , RNA/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Cytoplasm/genetics , Cytoplasm/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
19.
Dev Biol ; 508: 46-63, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38242343

ABSTRACT

Male germ cells are connected by intercellular bridges (ICBs) in a syncytium due to incomplete cytokinesis. Syncytium is thought to be important for synchronized germ cell development by interchange of cytoplasmic factors via ICBs. Mammalian ADP-ribosylation factor 6 (ARF6) is a small GTPase that is involved in many cellular mechanisms including but not limited to regulating cellular structure, motility, vesicle trafficking and cytokinesis. ARF6 localizes to ICBs in spermatogonia and spermatocytes in mice. Here we report that mice with global depletion of ARF6 in adulthood using Ubc-CreERT2 display no observable phenotypes but are male sterile. ARF6-deficient males display a progressive loss of germ cells, including LIN28A-expressing spermatogonia, and ultimately develop Sertoli-cell-only syndrome. Specifically, intercellular bridges are lost in ARF6-deficient testis. Furthermore, germ cell-specific inactivation using the Ddx4-CreERT2 results in the same testicular morphological phenotype, showing the germ cell-intrinsic requirement of ARF6. Therefore, ARF6 is essential for spermatogenesis in mice and this function is conserved from Drosophila to mammals.


Subject(s)
ADP-Ribosylation Factor 6 , Spermatogenesis , Animals , Female , Male , Mice , Drosophila , Mammals , Spermatocytes , Spermatogenesis/genetics , Spermatogonia , Testis
20.
Chromosoma ; 133(2): 149-168, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38456964

ABSTRACT

In eukaryotes, meiosis is the genetic basis for sexual reproduction, which is important for chromosome stability and species evolution. The defects in meiosis usually lead to chromosome aneuploidy, reduced gamete number, and genetic diseases, but the pathogenic mechanisms are not well clarified. Kinesin-7 CENP-E is a key regulator in chromosome alignment and spindle assembly checkpoint in cell division. However, the functions and mechanisms of CENP-E in male meiosis remain largely unknown. In this study, we have revealed that the CENP-E gene was highly expressed in the rat testis. CENP-E inhibition influences chromosome alignment and spindle organization in metaphase I spermatocytes. We have found that a portion of misaligned homologous chromosomes is located at the spindle poles after CENP-E inhibition, which further activates the spindle assembly checkpoint during the metaphase-to-anaphase transition in rat spermatocytes. Furthermore, CENP-E depletion leads to abnormal spermatogenesis, reduced sperm count, and abnormal sperm head structure. Our findings have elucidated that CENP-E is essential for homologous chromosome alignment and spindle assembly checkpoint in spermatocytes, which further contribute to chromosome stability and sperm cell quality during spermatogenesis.


Subject(s)
Chromosomal Proteins, Non-Histone , M Phase Cell Cycle Checkpoints , Meiosis , Spermatocytes , Animals , Male , Rats , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Kinesins/metabolism , Kinesins/genetics , M Phase Cell Cycle Checkpoints/genetics , Spermatocytes/metabolism , Spermatocytes/cytology , Spermatogenesis , Spindle Apparatus/metabolism , Testis/metabolism , Testis/cytology
SELECTION OF CITATIONS
SEARCH DETAIL