Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 16.286
Filter
Add more filters

Publication year range
1.
Annu Rev Cell Dev Biol ; 37: 391-414, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34288709

ABSTRACT

Fertilization is a multistep process that culminates in the fusion of sperm and egg, thus marking the beginning of a new organism in sexually reproducing species. Despite its importance for reproduction, the molecular mechanisms that regulate this singular event, particularly sperm-egg fusion, have remained mysterious for many decades. Here, we summarize our current molecular understanding of sperm-egg interaction, focusing mainly on mammalian fertilization. Given the fundamental importance of sperm-egg fusion yet the lack of knowledge of this process in vertebrates, we discuss hallmarks and emerging themes of cell fusion by drawing from well-studied examples such as viral entry, placenta formation, and muscle development. We conclude by identifying open questions and exciting avenues for future studies in gamete fusion.


Subject(s)
Fertilization , Sperm-Ovum Interactions , Animals , Male , Mammals , Reproduction , Sperm-Ovum Interactions/physiology , Spermatozoa/physiology
2.
Physiol Rev ; 102(1): 7-60, 2022 01 01.
Article in English | MEDLINE | ID: mdl-33880962

ABSTRACT

The spermatozoon is a highly differentiated and polarized cell, with two main structures: the head, containing a haploid nucleus and the acrosomal exocytotic granule, and the flagellum, which generates energy and propels the cell; both structures are connected by the neck. The sperm's main aim is to participate in fertilization, thus activating development. Despite this common bauplan and function, there is an enormous diversity in structure and performance of sperm cells. For example, mammalian spermatozoa may exhibit several head patterns and overall sperm lengths ranging from ∼30 to 350 µm. Mechanisms of transport in the female tract, preparation for fertilization, and recognition of and interaction with the oocyte also show considerable variation. There has been much interest in understanding the origin of this diversity, both in evolutionary terms and in relation to mechanisms underlying sperm differentiation in the testis. Here, relationships between sperm bauplan and function are examined at two levels: first, by analyzing the selective forces that drive changes in sperm structure and physiology to understand the adaptive values of this variation and impact on male reproductive success and second, by examining cellular and molecular mechanisms of sperm formation in the testis that may explain how differentiation can give rise to such a wide array of sperm forms and functions.


Subject(s)
Exocytosis/physiology , Sperm-Ovum Interactions/physiology , Spermatozoa/physiology , Testis/cytology , Animals , Biological Evolution , Humans , Male , Mammals/physiology , Spermatozoa/cytology
3.
Mol Cell ; 78(3): 445-458.e6, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32197065

ABSTRACT

Paternal dietary conditions may contribute to metabolic disorders in offspring. We have analyzed the role of the stress-dependent epigenetic regulator cyclic AMP-dependent transcription factor 7 (ATF7) in paternal low-protein diet (pLPD)-induced gene expression changes in mouse liver. Atf7+/- mutations cause an offspring phenotype similar to that caused by pLPD, and the effect of pLPD almost vanished when paternal Atf7+/- mice were used. ATF7 binds to the promoter regions of ∼2,300 genes, including cholesterol biosynthesis-related and tRNA genes in testicular germ cells (TGCs). LPD induces ATF7 phosphorylation by p38 via reactive oxygen species (ROS) in TGCs. This leads to the release of ATF7 and a decrease in histone H3K9 dimethylation (H3K9me2) on its target genes. These epigenetic changes are maintained and induce expression of some tRNA fragments in spermatozoa. These results indicate that LPD-induced and ATF7-dependent epigenetic changes in TGCs play an important role in paternal diet-induced metabolic reprograming in offspring.


Subject(s)
Activating Transcription Factors/genetics , Diet, Protein-Restricted , Epigenesis, Genetic , Liver/physiology , Spermatozoa/physiology , Activating Transcription Factors/metabolism , Animals , Female , Gene Expression Regulation , Histones/metabolism , Lysine/metabolism , Male , Mice, Inbred C57BL , Mice, Mutant Strains , Mutation , Phosphorylation , Promoter Regions, Genetic
4.
Development ; 151(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39036999

ABSTRACT

Infertility is a global health problem affecting one in six couples, with 50% of cases attributed to male infertility. Spermatozoa are male gametes, specialized cells that can be divided into two parts: the head and the flagellum. The head contains a vesicle called the acrosome that undergoes exocytosis and the flagellum is a motility apparatus that propels the spermatozoa forward and can be divided into two components, axonemes and accessory structures. For spermatozoa to fertilize oocytes, the acrosome and flagellum must be formed correctly. In this Review, we describe comprehensively how functional spermatozoa develop in mammals during spermiogenesis, including the formation of acrosomes, axonemes and accessory structures by focusing on analyses of mouse models.


Subject(s)
Acrosome , Spermatogenesis , Spermatozoa , Animals , Male , Spermatogenesis/physiology , Spermatozoa/physiology , Spermatozoa/metabolism , Acrosome/metabolism , Acrosome/physiology , Humans , Mammals/physiology , Mice , Axoneme/metabolism , Flagella/physiology , Flagella/metabolism
5.
Annu Rev Genet ; 53: 347-372, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31505133

ABSTRACT

The rule of Mendelian inheritance is remarkably robust, but deviations from the equal transmission of alternative alleles at a locus [a.k.a. transmission ratio distortion (TRD)] are also commonly observed in genetic mapping populations. Such TRD reveals locus-specific selection acting at some point between the diploid heterozygous parents and progeny genotyping and therefore can provide novel insight into otherwise-hidden genetic and evolutionary processes. Most of the classic selfish genetic elements were discovered through their biasing of transmission, but many unselfish evolutionary and developmental processes can also generate TRD. In this review, we describe methodologies for detecting TRD in mapping populations, detail the arenas and genetic interactions that shape TRD during plant and animal reproduction, and summarize patterns of TRD from across the genetic mapping literature. Finally, we point to new experimental approaches that can accelerate both detection of TRD and characterization of the underlying genetic mechanisms.


Subject(s)
Genetics, Population/methods , Inheritance Patterns , Plants/genetics , Spermatozoa/physiology , Animals , Chimera , Chromosome Mapping , Female , Germ Cells/physiology , Heterozygote , Inbreeding Depression , Male , Meiosis , Pollen/genetics , Self-Incompatibility in Flowering Plants/genetics , Sex Ratio , Vertebrates/genetics , Zygote
6.
PLoS Biol ; 22(5): e3002519, 2024 May.
Article in English | MEDLINE | ID: mdl-38787858

ABSTRACT

When males compete, sexual selection favors reproductive traits that increase their mating or fertilization success (pre- and postcopulatory sexual selection). It is assumed that males face a trade-off between these 2 types of sexual traits because they both draw from the same pool of resources. Consequently, allocation into mate acquisition or ejaculation should create similar trade-offs with other key life history traits. Tests of these assumptions are exceedingly rare. Males only ejaculate after they mate, and the costs of ejaculation are therefore highly confounded with those of mating effort. Consequently, little is known about how each component of reproductive allocation affects a male's future performance. Here, we ran an experiment using a novel technique to distinguish the life history costs of mating effort and ejaculation for mosquitofish (Gambusia holbrooki). We compared manipulated males (mate without ejaculation), control males (mate and ejaculate), and naïve males (neither mate nor ejaculate) continuously housed with a female and 2 rival males. We assessed their growth, somatic maintenance, mating and fighting behavior, and sperm traits after 8 and 16 weeks. Past mating effort significantly lowered a male's future mating effort and growth, but not his sperm production, while past sperm release significantly lowered a male's future ejaculate quantity, but not his mating effort. Immune response was the only trait impacted by both past mating effort and past ejaculation. These findings challenge the assumption that male reproductive allocation draws from a common pool of resources to generate similar life history costs later in life. Instead, we provide clear evidence that allocation into traits under pre- and postcopulatory sexual selection have different trait-specific effects on subsequent male reproductive performance.


Subject(s)
Ejaculation , Reproduction , Sexual Behavior, Animal , Male , Animals , Ejaculation/physiology , Female , Sexual Behavior, Animal/physiology , Reproduction/physiology , Mating Preference, Animal/physiology , Spermatozoa/physiology , Sexual Selection
7.
Mol Cell ; 76(2): 320-328, 2019 10 17.
Article in English | MEDLINE | ID: mdl-31563431

ABSTRACT

Germline cells are the beginning of new individuals in multicellular animals, including humans. Our understanding of these cell types is limited by the difficulty of analyzing the precious and heterogeneous germline tissue samples. The rapid development of single-cell sequencing technologies provides a chance for comprehensive profiling of the omics dynamics of human germline development. In this review, we discuss progress in analyzing the development of human germline cells, including preimplantation and implantation embryos, fetal germ cells (FGCs), and adult spermatogenesis by single-cell transcriptome and epigenome sequencing technologies.


Subject(s)
Fetal Stem Cells/physiology , Gene Expression Regulation, Developmental , Ovum/physiology , Sequence Analysis, DNA , Single-Cell Analysis/methods , Spermatozoa/physiology , Blastocyst/physiology , Chromatin Assembly and Disassembly , DNA Methylation , Embryonic Development/genetics , Epigenesis, Genetic , Female , Genotype , Humans , Male , Phenotype , Spermatogenesis/genetics
8.
Mol Cell ; 76(4): 676-690.e10, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31495564

ABSTRACT

Conventional methods for single-cell genome sequencing are limited with respect to uniformity and throughput. Here, we describe sci-L3, a single-cell sequencing method that combines combinatorial indexing (sci-) and linear (L) amplification. The sci-L3 method adopts a 3-level (3) indexing scheme that minimizes amplification biases while enabling exponential gains in throughput. We demonstrate the generalizability of sci-L3 with proof-of-concept demonstrations of single-cell whole-genome sequencing (sci-L3-WGS), targeted sequencing (sci-L3-target-seq), and a co-assay of the genome and transcriptome (sci-L3-RNA/DNA). We apply sci-L3-WGS to profile the genomes of >10,000 sperm and sperm precursors from F1 hybrid mice, mapping 86,786 crossovers and characterizing rare chromosome mis-segregation events in meiosis, including instances of whole-genome equational chromosome segregation. We anticipate that sci-L3 assays can be applied to fully characterize recombination landscapes, to couple CRISPR perturbations and measurements of genome stability, and to other goals requiring high-throughput, high-coverage single-cell sequencing.


Subject(s)
Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Nucleic Acid Amplification Techniques , Sequence Analysis, DNA , Sequence Analysis, RNA , Single-Cell Analysis/methods , Whole Genome Sequencing , Animals , Chromosome Segregation , Male , Meiosis/genetics , Mice , Proof of Concept Study , Spermatozoa/physiology , Transcriptome , Workflow
9.
PLoS Biol ; 21(4): e3002049, 2023 04.
Article in English | MEDLINE | ID: mdl-37014875

ABSTRACT

Male animals often show higher mutation rates than their female conspecifics. A hypothesis for this male bias is that competition over fertilization of female gametes leads to increased male investment into reproduction at the expense of maintenance and repair, resulting in a trade-off between male success in sperm competition and offspring quality. Here, we provide evidence for this hypothesis by harnessing the power of experimental evolution to study effects of sexual selection on the male germline in the seed beetle Callosobruchus maculatus. We first show that 50 generations of evolution under strong sexual selection, coupled with experimental removal of natural selection, resulted in males that are more successful in sperm competition. We then show that these males produce progeny of lower quality if engaging in sociosexual interactions prior to being challenged to surveil and repair experimentally induced damage in their germline and that the presence of male competitors alone can be enough to elicit this response. We identify 18 candidate genes that showed differential expression in response to the induced germline damage, with several of these previously implicated in processes associated with DNA repair and cellular maintenance. These genes also showed significant expression changes across sociosexual treatments of fathers and predicted the reduction in quality of their offspring, with expression of one gene also being strongly correlated to male sperm competition success. Sex differences in expression of the same 18 genes indicate a substantially higher female investment in germline maintenance. While more work is needed to detail the exact molecular underpinnings of our results, our findings provide rare experimental evidence for a trade-off between male success in sperm competition and germline maintenance. This suggests that sex differences in the relative strengths of sexual and natural selection are causally linked to male mutation bias. The tenet advocated here, that the allocation decisions of an individual can affect plasticity of its germline and the resulting genetic quality of subsequent generations, has several interesting implications for mate choice processes.


Subject(s)
Coleoptera , Seeds , Female , Animals , Male , Spermatozoa/physiology , Germ Cells , Sexual Behavior, Animal/physiology , Coleoptera/genetics
10.
PLoS Genet ; 19(12): e1011073, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38048348

ABSTRACT

The reproductive process in various species has undergone evolutionary adaptations at both the physiological and molecular levels, playing a significant role in maintaining their populations. In lepidopteran insects, the spermatophore is a unique structure formed in the female reproductive system, in which sperm storage and activation take place. It is known that the formation of the spermatophore is regulated by seminal fluid proteins derived from males. However, studies investigating the genetic mechanisms behind spermatophore formation in lepidopterans have been limited. In this study, our focus was on SPSL1, a gene that encodes a trypsin-type seminal fluid protein in Spodoptera frugiperda, a pest species with global invasive tendencies. Our findings revealed that SPSL1 expression was predominantly observed in the male reproductive tracts, and the disruption of this gene resulted in male sterility. Surprisingly, fluorescence analysis indicated that the absence of SPSL1 did not affect spermatogenesis or sperm migration within the male reproductive system. However, when females mated with SPSL1-mutant males, several defects were observed. These included disruptions in spermatophore formation, sperm activation in the copulatory bursae, and sperm migration into the spermathecae. Additionally, mass spectrometry analysis highlighted reduced levels of energy-related metabolites, suggesting that SPSL1 plays an essential role in promoting hydrolysis reactions during copulation. Consequently, our study demonstrates that SPSL1 is crucial for male fertility due to its functions in spermatophore formation and sperm activation. This research provides valuable insights into the genetic factors underlying reproductive processes in lepidopteran insects and sheds light on potential strategies for controlling invasive pest populations.


Subject(s)
Semen , Spermatogonia , Animals , Male , Female , Spermatogonia/physiology , Spodoptera/genetics , Spermatozoa/physiology , Spermatogenesis/genetics , Insecta
11.
Proc Natl Acad Sci U S A ; 120(4): e2212338120, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36649421

ABSTRACT

To fertilize an oocyte, the membrane potential of both mouse and human sperm must hyperpolarize (become more negative inside). Determining the molecular mechanisms underlying this hyperpolarization is vital for developing new contraceptive methods and detecting causes of idiopathic male infertility. In mouse sperm, hyperpolarization is caused by activation of the sperm-specific potassium (K+) channel SLO3 [C. M. Santi et al., FEBS Lett. 584, 1041-1046 (2010)]. In human sperm, it has long been unclear whether hyperpolarization depends on SLO3 or the ubiquitous K+ channel SLO1 [N. Mannowetz, N. M. Naidoo, S. A. S. Choo, J. F. Smith, P. V. Lishko, Elife 2, e01009 (2013), C. Brenker et al., Elife 3, e01438 (2014), and S. A. Mansell, S. J. Publicover, C. L. R. Barratt, S. M. Wilson, Mol. Hum. Reprod. 20, 392-408 (2014)]. In this work, we identified the first selective inhibitor for human SLO3-VU0546110-and showed that it completely blocked heterologous SLO3 currents and endogenous K+ currents in human sperm. This compound also prevented sperm from hyperpolarizing and undergoing hyperactivated motility and induced acrosome reaction, which are necessary to fertilize an egg. We conclude that SLO3 is the sole K+ channel responsible for hyperpolarization and significantly contributes to the fertilizing ability of human sperm. Moreover, SLO3 is a good candidate for contraceptive development, and mutation of this gene is a possible cause of idiopathic male infertility.


Subject(s)
Infertility, Male , Large-Conductance Calcium-Activated Potassium Channels , Humans , Male , Large-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors , Membrane Potentials/physiology , Semen , Spermatozoa/physiology
12.
Mol Biol Evol ; 41(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38990889

ABSTRACT

Plutella xylostella exhibits exceptional reproduction ability, yet the genetic basis underlying the high reproductive capacity remains unknown. Here, we demonstrate that an orphan gene, lushu, which encodes a sperm protein, plays a crucial role in male reproductive success. Lushu is located on the Z chromosome and is prevalent across different P. xylostella populations worldwide. We subsequently generated lushu mutants using transgenic CRISPR/Cas9 system. Knockout of Lushu results in reduced male mating efficiency and accelerated death in adult males. Furthermore, our findings highlight that the deficiency of lushu reduced the transfer of sperms from males to females, potentially resulting in hindered sperm competition. Additionally, the knockout of Lushu results in disrupted gene expression in energy-related pathways and elevated insulin levels in adult males. Our findings reveal that male reproductive performance has evolved through the birth of a newly evolved, lineage-specific gene with enormous potentiality in fecundity success. These insights hold valuable implications for identifying the target for genetic control, particularly in relation to species-specific traits that are pivotal in determining high levels of fecundity.


Subject(s)
Moths , Reproduction , Animals , Male , Moths/genetics , Reproduction/genetics , Insect Proteins/genetics , Fertility/genetics , Female , Spermatozoa/metabolism , Spermatozoa/physiology
13.
Development ; 149(10)2022 05 15.
Article in English | MEDLINE | ID: mdl-35635101

ABSTRACT

In most sexually reproducing animals, sperm entry provides the signal to initiate the final stages of female meiosis. In Caenorhabditis elegans, this signal is required for completion of female anaphase I and entry into meiosis II (MII). memi-1/2/3 (meiosis-to-mitosis) encode maternal components that facilitate this process; memi-1/2/3(RNAi) results in a skipped-MII phenotype. Previously, we used a gain-of-function mutation, memi-1(sb41), to identify genetic suppressors that represent candidates for the sperm-delivered signal. Herein, we characterize two suppressors of memi-1(sb41): gskl-1 and gskl-2. Both genes encode functionally redundant sperm glycogen synthase kinase, type 3 (GSK3) protein kinases. Loss of both genes causes defects in male spermatogenesis, sperm pseudopod treadmilling and paternal-effect embryonic lethality. The two kinases locate within the pseudopod of activated sperm, suggesting that they directly or indirectly regulate the sperm cytoskeletal polymer major sperm protein (MSP). The GSK3 genes genetically interact with another memi-1(sb41) suppressor, gsp-4, which encodes a sperm-specific PP1 phosphatase, previously proposed to regulate MSP dynamics. Moreover, gskl-2 gsp-4; gskl-1 triple mutants often skip female MII, similar to memi-1/2/3(RNAi). The GSK3 kinases and PP1 phosphatases perform similar sperm-related functions and work together for post-fertilization functions in the oocyte that involve MEMI.


Subject(s)
Caenorhabditis elegans , Sperm Motility , Animals , Caenorhabditis elegans/metabolism , Female , Fertilization/genetics , Glycogen Synthase Kinase 3/metabolism , Male , Meiosis/genetics , Spermatozoa/physiology
14.
PLoS Genet ; 18(2): e1010063, 2022 02.
Article in English | MEDLINE | ID: mdl-35157717

ABSTRACT

Sexual reproduction is a complex process that contributes to differences between the sexes and divergence between species. From a male's perspective, sexual selection can optimize reproductive success by acting on the variance in mating success (pre-insemination selection) as well as the variance in fertilization success (post-insemination selection). The balance between pre- and post-insemination selection has not yet been investigated using a strong hypothesis-testing framework that directly quantifies the effects of post-insemination selection on the evolution of reproductive success. Here we use experimental evolution of a uniquely engineered genetic system that allows sperm production to be turned off and on in obligate male-female populations of Caenorhabditis elegans. We show that enhanced post-insemination competition increases the efficacy of selection and surpasses pre-insemination sexual selection in driving a polygenic response in male reproductive success. We find that after 10 selective events occurring over 30 generations post-insemination selection increased male reproductive success by an average of 5- to 7-fold. Contrary to expectation, enhanced pre-insemination competition hindered selection and slowed the rate of evolution. Furthermore, we found that post-insemination selection resulted in a strong polygenic response at the whole-genome level. Our results demonstrate that post-insemination sexual selection plays a critical role in the rapid optimization of male reproductive fitness. Therefore, explicit consideration should be given to post-insemination dynamics when considering the population effects of sexual selection.


Subject(s)
Insemination , Spermatozoa , Animals , Caenorhabditis elegans/genetics , Female , Male , Reproduction/genetics , Selection, Genetic , Sexual Behavior, Animal/physiology , Spermatozoa/physiology
15.
BMC Biol ; 22(1): 118, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769528

ABSTRACT

BACKGROUND: The animal sperm shows high diversity in morphology, components, and motility. In the lepidopteran model insect, the silkworm Bombyx mori, two types of sperm, including nucleate fertile eupyrene sperm and anucleate unfertile apyrene sperm, are generated. Apyrene sperm assists fertilization by facilitating the migration of eupyrene spermatozoa from the bursa copulatrix to the spermatheca. During spermatogenesis, eupyrene sperm bundles extrude the cytoplasm by peristaltic squeezing, while the nuclei of the apyrene sperm bundles are discarded with the same process, forming matured sperm. RESULTS: In this study, we describe that a mechanoreceptor BmPiezo, the sole Piezo ortholog in B. mori, plays key roles in larval feeding behavior and, more importantly, is essential for eupyrene spermatogenesis and male fertility. CRISPR/Cas9-mediated loss of BmPiezo function decreases larval appetite and subsequent body size and weight. Immunofluorescence analyses reveal that BmPiezo is intensely localized in the inflatable point of eupyrene sperm bundle induced by peristaltic squeezing. BmPiezo is also enriched in the middle region of apyrene sperm bundle before peristaltic squeezing. Cytological analyses of dimorphic sperm reveal developmental arrest of eupyrene sperm bundles in BmPiezo mutants, while the apyrene spermatogenesis is not affected. RNA-seq analysis and q-RT-PCR analyses demonstrate that eupyrene spermatogenic arrest is associated with the dysregulation of the actin cytoskeleton. Moreover, we show that the deformed eupyrene sperm bundles fail to migrate from the testes, resulting in male infertility due to the absence of eupyrene sperm in the bursa copulatrix and spermatheca. CONCLUSIONS: In conclusion, our studies thus uncover a new role for Piezo in regulating spermatogenesis and male fertility in insects.


Subject(s)
Bombyx , Mechanoreceptors , Spermatogenesis , Animals , Spermatogenesis/physiology , Bombyx/physiology , Bombyx/genetics , Male , Mechanoreceptors/physiology , Mechanoreceptors/metabolism , Insect Proteins/metabolism , Insect Proteins/genetics , Spermatozoa/physiology , Spermatozoa/metabolism
16.
Dev Dyn ; 253(8): 781-790, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38340021

ABSTRACT

BACKGROUND: Sea urchins have contributed greatly to knowledge of fertilization, embryogenesis, and cell biology. However, until now, they have not been genetic model organisms because of their long generation times and lack of tools for husbandry and gene manipulation. We recently established the sea urchin Lytechinus pictus, as a multigenerational model Echinoderm, because of its relatively short generation time of 4-6 months and ease of laboratory culture. To take full advantage of this new multigenerational species, methods are needed to biobank and share genetically modified L. pictus sperm. RESULTS: Here, we describe a method, based on sperm ion physiology that maintains L. pictus and Strongylocentrotus purpuratus sperm fertilizable for at least 5-10 weeks when stored at 0°C. We also describe a new method to cryopreserve sperm of both species. Sperm of both species can be frozen and thawed at least twice and still give rise to larvae that undergo metamorphosis. CONCLUSIONS: The simple methods we describe work well for both species, achieving >90% embryo development and producing larvae that undergo metamorphosis to juvenile adults. We hope that these methods will be useful to others working on marine invertebrate sperm.


Subject(s)
Cryopreservation , Lytechinus , Spermatozoa , Strongylocentrotus purpuratus , Animals , Male , Cryopreservation/methods , Lytechinus/physiology , Strongylocentrotus purpuratus/embryology , Strongylocentrotus purpuratus/physiology , Spermatozoa/physiology , Spermatozoa/cytology , Semen Preservation/methods
17.
J Cell Physiol ; 239(4): e31188, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38192157

ABSTRACT

Extracellular vesicles (EVs) play a key role in various diseases. However, their effect on endometriosis (EMs)-associated infertility is poorly understood. We co-cultured EVs from the female vaginal secretions with human sperm and also generated a mouse model of EMs by allogenic transplant to explore the effect of EVs on fertility. EVs from individuals with EMs-associated infertility (E-EVs) significantly inhibited the total motility (26.46% vs. 47.1%), progressive motility (18.78% vs. 41.06%), linear velocity (21.98 vs. 41.91 µm/s) and the acrosome reaction (AR) rate (5% vs. 22.3%) of human sperm in contrast to the control group (PBS). Furthermore, E-EVs dose-dependently decreased the intracellular Ca2+ ([Ca2+]i), a pivotal regulator of sperm function. Conversely, healthy women (H-EVs) increased human sperm motion parameters, the AR rate, and sperm [Ca2+]i. Importantly, the mouse model of EMs confirmed that E-EVs further decreased the conception rate and the mean number of embryo implantations (7.6 ± 3.06 vs. 4.5 ± 3.21) compared with the control mice by inducing the production of inflammatory cytokines leading to a Th17/Treg imbalance. H-EVs could restore impaired fertility by restoring the Th17/Treg balance. We determined the impact of EVs derived from the female genital tract on human sperm function and studied the possible mechanisms by which it affects fertility. Our findings provide a novel rationale to ameliorate EMs-associated infertility.


Subject(s)
Endometriosis , Extracellular Vesicles , Infertility, Female , Sperm Motility , Spermatozoa , Vagina , Animals , Female , Humans , Male , Mice , Endometriosis/complications , Fertility , Mice, Inbred BALB C , Spermatozoa/immunology , Spermatozoa/physiology , T-Lymphocytes, Regulatory , Vagina/physiopathology , Infertility, Female/etiology
18.
EMBO J ; 39(4): e102723, 2020 02 17.
Article in English | MEDLINE | ID: mdl-31880004

ABSTRACT

Cilia serve as cellular antennae that translate sensory information into physiological responses. In the sperm flagellum, a single chemoattractant molecule can trigger a Ca2+ rise that controls motility. The mechanisms underlying such ultra-sensitivity are ill-defined. Here, we determine by mass spectrometry the copy number of nineteen chemosensory signaling proteins in sperm flagella from the sea urchin Arbacia punctulata. Proteins are up to 1,000-fold more abundant than the free cellular messengers cAMP, cGMP, H+ , and Ca2+ . Opto-chemical techniques show that high protein concentrations kinetically compartmentalize the flagellum: Within milliseconds, cGMP is relayed from the receptor guanylate cyclase to a cGMP-gated channel that serves as a perfect chemo-electrical transducer. cGMP is rapidly hydrolyzed, possibly via "substrate channeling" from the channel to the phosphodiesterase PDE5. The channel/PDE5 tandem encodes cGMP turnover rates rather than concentrations. The rate-detection mechanism allows continuous stimulus sampling over a wide dynamic range. The textbook notion of signal amplification-few enzyme molecules process many messenger molecules-does not hold for sperm flagella. Instead, high protein concentrations ascertain messenger detection. Similar mechanisms may occur in other small compartments like primary cilia or dendritic spines.


Subject(s)
Arbacia/physiology , Chemotaxis , Proteomics , Signal Transduction , Animals , Arbacia/ultrastructure , Calcium/metabolism , Cilia/physiology , Cilia/ultrastructure , Cyclic GMP/metabolism , Electron Microscope Tomography , Flagella/physiology , Flagella/ultrastructure , Guanylate Cyclase/metabolism , Male , Mass Spectrometry , Spermatozoa/physiology , Spermatozoa/ultrastructure
19.
EMBO J ; 39(4): e102363, 2020 02 17.
Article in English | MEDLINE | ID: mdl-31957048

ABSTRACT

Navigation of sperm in fluid flow, called rheotaxis, provides long-range guidance in the mammalian oviduct. The rotation of sperm around their longitudinal axis (rolling) promotes rheotaxis. Whether sperm rolling and rheotaxis require calcium (Ca2+ ) influx via the sperm-specific Ca2+ channel CatSper, or rather represent passive biomechanical and hydrodynamic processes, has remained controversial. Here, we study the swimming behavior of sperm from healthy donors and from infertile patients that lack functional CatSper channels, using dark-field microscopy, optical tweezers, and microfluidics. We demonstrate that rolling and rheotaxis persist in CatSper-deficient human sperm. Furthermore, human sperm undergo rolling and rheotaxis even when Ca2+ influx is prevented. Finally, we show that rolling and rheotaxis also persist in mouse sperm deficient in both CatSper and flagellar Ca2+ -signaling domains. Our results strongly support the concept that passive biomechanical and hydrodynamic processes enable sperm rolling and rheotaxis, rather than calcium signaling mediated by CatSper or other mechanisms controlling transmembrane Ca2+ flux.


Subject(s)
Hydrodynamics , Sperm Motility , Spermatozoa/physiology , Animals , Biomechanical Phenomena , Calcium/metabolism , Calcium Channels/genetics , Calcium Channels/metabolism , Calcium Signaling , Humans , Male , Mice , Seminal Plasma Proteins/genetics , Seminal Plasma Proteins/metabolism
20.
Am J Hum Genet ; 108(2): 309-323, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33472045

ABSTRACT

Asthenoteratozoospermia characterized by multiple morphological abnormalities of the flagella (MMAF) has been identified as a sub-type of male infertility. Recent progress has identified several MMAF-associated genes with an autosomal recessive inheritance in human affected individuals, but the etiology in approximately 40% of affected individuals remains unknown. Here, we conducted whole-exome sequencing (WES) and identified hemizygous missense variants in the X-linked CFAP47 in three unrelated Chinese individuals with MMAF. These three CFAP47 variants were absent in human control population genome databases and were predicted to be deleterious by multiple bioinformatic tools. CFAP47 encodes a cilia- and flagella-associated protein that is highly expressed in testis. Immunoblotting and immunofluorescence assays revealed obviously reduced levels of CFAP47 in spermatozoa from all three men harboring deleterious missense variants of CFAP47. Furthermore, WES data from an additional cohort of severe asthenoteratozoospermic men originating from Australia permitted the identification of a hemizygous Xp21.1 deletion removing the entire CFAP47 gene. All men harboring hemizygous CFAP47 variants displayed typical MMAF phenotypes. We also generated a Cfap47-mutated mouse model, the adult males of which were sterile and presented with reduced sperm motility and abnormal flagellar morphology and movement. However, fertility could be rescued by the use of intra-cytoplasmic sperm injections (ICSIs). Altogether, our experimental observations in humans and mice demonstrate that hemizygous mutations in CFAP47 can induce X-linked MMAF and asthenoteratozoospermia, for which good ICSI prognosis is suggested. These findings will provide important guidance for genetic counseling and assisted reproduction treatments.


Subject(s)
Asthenozoospermia/genetics , Infertility, Male/genetics , Animals , Asthenozoospermia/pathology , Asthenozoospermia/physiopathology , Cohort Studies , Female , Gene Deletion , Genes, X-Linked , Hemizygote , Humans , Infertility, Male/metabolism , Infertility, Male/pathology , Infertility, Male/physiopathology , Male , Mice, Inbred C57BL , Mutation , Mutation, Missense , Pedigree , Phenotype , Sperm Injections, Intracytoplasmic , Sperm Motility , Sperm Tail/ultrastructure , Spermatozoa/pathology , Spermatozoa/physiology , Spermatozoa/ultrastructure , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL