Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.461
Filter
Add more filters

Publication year range
1.
Cell ; 184(14): 3643-3659.e23, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34166613

ABSTRACT

Vesicle-inducing protein in plastids 1 (VIPP1) is essential for the biogenesis and maintenance of thylakoid membranes, which transform light into life. However, it is unknown how VIPP1 performs its vital membrane-remodeling functions. Here, we use cryo-electron microscopy to determine structures of cyanobacterial VIPP1 rings, revealing how VIPP1 monomers flex and interweave to form basket-like assemblies of different symmetries. Three VIPP1 monomers together coordinate a non-canonical nucleotide binding pocket on one end of the ring. Inside the ring's lumen, amphipathic helices from each monomer align to form large hydrophobic columns, enabling VIPP1 to bind and curve membranes. In vivo mutations in these hydrophobic surfaces cause extreme thylakoid swelling under high light, indicating an essential role of VIPP1 lipid binding in resisting stress-induced damage. Using cryo-correlative light and electron microscopy (cryo-CLEM), we observe oligomeric VIPP1 coats encapsulating membrane tubules within the Chlamydomonas chloroplast. Our work provides a structural foundation for understanding how VIPP1 directs thylakoid biogenesis and maintenance.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Chlamydomonas/metabolism , Protein Multimerization , Synechocystis/metabolism , Thylakoids/metabolism , Amino Acid Sequence , Bacterial Proteins/ultrastructure , Binding Sites , Cell Membrane/metabolism , Chlamydomonas/ultrastructure , Cryoelectron Microscopy , Green Fluorescent Proteins/metabolism , Hydrophobic and Hydrophilic Interactions , Light , Lipids/chemistry , Models, Molecular , Nucleotides/metabolism , Protein Binding , Protein Structure, Secondary , Stress, Physiological/radiation effects , Synechocystis/ultrastructure , Thylakoids/ultrastructure
2.
Nature ; 609(7928): 835-845, 2022 09.
Article in English | MEDLINE | ID: mdl-36045294

ABSTRACT

Phycobilisome (PBS) structures are elaborate antennae in cyanobacteria and red algae1,2. These large protein complexes capture incident sunlight and transfer the energy through a network of embedded pigment molecules called bilins to the photosynthetic reaction centres. However, light harvesting must also be balanced against the risks of photodamage. A known mode of photoprotection is mediated by orange carotenoid protein (OCP), which binds to PBS when light intensities are high to mediate photoprotective, non-photochemical quenching3-6. Here we use cryogenic electron microscopy to solve four structures of the 6.2 MDa PBS, with and without OCP bound, from the model cyanobacterium Synechocystis sp. PCC 6803. The structures contain a previously undescribed linker protein that binds to the membrane-facing side of PBS. For the unquenched PBS, the structures also reveal three different conformational states of the antenna, two previously unknown. The conformational states result from positional switching of two of the rods and may constitute a new mode of regulation of light harvesting. Only one of the three PBS conformations can bind to OCP, which suggests that not every PBS is equally susceptible to non-photochemical quenching. In the OCP-PBS complex, quenching is achieved through the binding of four 34 kDa OCPs organized as two dimers. The complex reveals the structure of the active form of OCP, in which an approximately 60 Å displacement of its regulatory carboxy terminal domain occurs. Finally, by combining our structure with spectroscopic properties7, we elucidate energy transfer pathways within PBS in both the quenched and light-harvesting states. Collectively, our results provide detailed insights into the biophysical underpinnings of the control of cyanobacterial light harvesting. The data also have implications for bioengineering PBS regulation in natural and artificial light-harvesting systems.


Subject(s)
Phycobilisomes , Sunlight , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Energy Transfer/radiation effects , Photosynthesis/radiation effects , Phycobilisomes/chemistry , Phycobilisomes/metabolism , Phycobilisomes/radiation effects , Synechocystis/metabolism , Synechocystis/radiation effects
3.
Plant Cell ; 36(5): 1844-1867, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38146915

ABSTRACT

Hypothetical chloroplast open reading frames (ycfs) are putative genes in the plastid genomes of photosynthetic eukaryotes. Many ycfs are also conserved in the genomes of cyanobacteria, the presumptive ancestors of present-day chloroplasts. The functions of many ycfs are still unknown. Here, we generated knock-out mutants for ycf51 (sll1702) in the cyanobacterium Synechocystis sp. PCC 6803. The mutants showed reduced photoautotrophic growth due to impaired electron transport between photosystem II (PSII) and PSI. This phenotype results from greatly reduced PSI content in the ycf51 mutant. The ycf51 disruption had little effect on the transcription of genes encoding photosynthetic complex components and the stabilization of the PSI complex. In vitro and in vivo analyses demonstrated that Ycf51 cooperates with PSI assembly factor Ycf3 to mediate PSI assembly. Furthermore, Ycf51 interacts with the PSI subunit PsaC. Together with its specific localization in the thylakoid membrane and the stromal exposure of its hydrophilic region, our data suggest that Ycf51 is involved in PSI complex assembly. Ycf51 is conserved in all sequenced cyanobacteria, including the earliest branching cyanobacteria of the Gloeobacter genus, and is also present in the plastid genomes of glaucophytes. However, Ycf51 has been lost from other photosynthetic eukaryotic lineages. Thus, Ycf51 is a PSI assembly factor that has been functionally replaced during the evolution of oxygenic photosynthetic eukaryotes.


Subject(s)
Bacterial Proteins , Open Reading Frames , Photosystem I Protein Complex , Synechocystis , Photosystem I Protein Complex/metabolism , Photosystem I Protein Complex/genetics , Synechocystis/genetics , Synechocystis/metabolism , Open Reading Frames/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Chloroplasts/metabolism , Photosynthesis/genetics , Thylakoids/metabolism , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/genetics , Mutation
4.
Plant Cell ; 35(11): 3937-3956, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37494719

ABSTRACT

Barcoded mutant libraries are a powerful tool for elucidating gene function in microbes, particularly when screened in multiple growth conditions. Here, we screened a pooled CRISPR interference library of the model cyanobacterium Synechocystis sp. PCC 6803 in 11 bioreactor-controlled conditions, spanning multiple light regimes and carbon sources. This gene repression library contained 21,705 individual mutants with high redundancy over all open reading frames and noncoding RNAs. Comparison of the derived gene fitness scores revealed multiple instances of gene repression being beneficial in 1 condition while generally detrimental in others, particularly for genes within light harvesting and conversion, such as antennae components at high light and PSII subunits during photoheterotrophy. Suboptimal regulation of such genes likely represents a tradeoff of reduced growth speed for enhanced robustness to perturbation. The extensive data set assigns condition-specific importance to many previously unannotated genes and suggests additional functions for central metabolic enzymes. Phosphoribulokinase, glyceraldehyde-3-phosphate dehydrogenase, and the small protein CP12 were critical for mixotrophy and photoheterotrophy, which implicates the ternary complex as important for redirecting metabolic flux in these conditions in addition to inactivation of the Calvin cycle in the dark. To predict the potency of sgRNA sequences, we applied machine learning on sgRNA sequences and gene repression data, which showed the importance of C enrichment and T depletion proximal to the PAM site. Fitness data for all genes in all conditions are compiled in an interactive web application.


Subject(s)
Synechocystis , Synechocystis/metabolism , RNA, Guide, CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Photosynthesis/genetics , Gene Expression , Light , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
5.
Plant Cell ; 35(10): 3686-3696, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37477936

ABSTRACT

Prenylated quinones are membrane-associated metabolites that serve as vital electron carriers for respiration and photosynthesis. The UbiE (EC 2.1.1.201)/MenG (EC 2.1.1.163) C-methyltransferases catalyze pivotal ring methylations in the biosynthetic pathways of many of these quinones. In a puzzling evolutionary pattern, prokaryotic and eukaryotic UbiE/MenG homologs segregate into 2 clades. Clade 1 members occur universally in prokaryotes and eukaryotes, excluding cyanobacteria, and include mitochondrial COQ5 enzymes required for ubiquinone biosynthesis; Clade 2 members are specific to cyanobacteria and plastids. Functional complementation of an Escherichia coli ubiE/menG mutant indicated that Clade 1 members display activity with both demethylbenzoquinols and demethylnaphthoquinols, independently of the quinone profile of their original taxa, while Clade 2 members have evolved strict substrate specificity for demethylnaphthoquinols. Expression of the gene-encoding bifunctional Arabidopsis (Arabidopsis thaliana) COQ5 in the cyanobacterium Synechocystis or its retargeting to Arabidopsis plastids resulted in synthesis of a methylated variant of plastoquinone-9 that does not occur in nature. Accumulation of methylplastoquinone-9 was acutely cytotoxic, leading to the emergence of suppressor mutations in Synechocystis and seedling lethality in Arabidopsis. These data demonstrate that in cyanobacteria and plastids, co-occurrence of phylloquinone and plastoquinone-9 has driven the evolution of monofunctional demethylnaphthoquinol methyltransferases and explains why plants cannot capture the intrinsic bifunctionality of UbiE/MenG to simultaneously synthesize their respiratory and photosynthetic quinones.


Subject(s)
Arabidopsis , Synechocystis , Methyltransferases/genetics , Methyltransferases/metabolism , Arabidopsis/metabolism , Plastoquinone/metabolism , Synechocystis/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Plastids/metabolism
6.
Plant J ; 119(5): 2500-2513, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39008444

ABSTRACT

Improvement of photosynthesis requires a thorough understanding of electron partitioning under both natural and strong electron sink conditions. We applied a wide array of state-of-the-art biophysical and biochemical techniques to thoroughly investigate the fate of photosynthetic electrons in the engineered cyanobacterium Synechocystis sp. PCC 6803, a blueprint for photosynthetic biotechnology, expressing the heterologous gene for ene-reductase, YqjM. This recombinant enzyme catalyses the reduction of an exogenously added substrate into the desired product by utilising photosynthetically produced NAD(P)H, enabling whole-cell biotransformation. Through coupling the biotransformation reaction with biophysical measurements, we demonstrated that the strong artificial electron sink, outcompetes the natural electron valves, the flavodiiron protein-driven Mehler-like reaction and cyclic electron transport. These results show that ferredoxin-NAD(P)H-oxidoreductase is the preferred route for delivering photosynthetic electrons from reduced ferredoxin and the cellular NADPH/NADP+ ratio as a key factor in orchestrating photosynthetic electron flux. These insights are crucial for understanding molecular mechanisms of photosynthetic electron transport and harnessing photosynthesis for sustainable bioproduction by engineering the cellular source/sink balance. Furthermore, we conclude that identifying the bioenergetic bottleneck of a heterologous electron sink is a crucial prerequisite for targeted engineering of photosynthetic biotransformation platforms.


Subject(s)
Photosynthesis , Synechocystis , Photosynthesis/physiology , Electron Transport , Synechocystis/genetics , Synechocystis/metabolism , NADP/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Ferredoxins/metabolism , Ferredoxins/genetics , Electrons , Ferredoxin-NADP Reductase/metabolism , Ferredoxin-NADP Reductase/genetics
7.
Plant J ; 118(4): 1207-1217, 2024 May.
Article in English | MEDLINE | ID: mdl-38319793

ABSTRACT

CpcL-phycobilisomes (CpcL-PBSs) are a reduced type of phycobilisome (PBS) found in several cyanobacteria. They lack the traditional PBS terminal energy emitters, but still show the characteristic red-shifted fluorescence at ~670 nm. We established a method of assembling in vitro a rod-membrane linker protein, CpcL, with phycocyanin, generating complexes with the red-shifted spectral features of CpcL-PBSs. The red-shift arises from the interaction of a conserved key glutamine, Q57 of CpcL in Synechocystis sp. PCC 6803, with a single phycocyanobilin chromophore of trimeric phycocyanin at one of the three ß82-sites. This chromophore is the terminal energy acceptor of CpcL-PBSs and donor to the photosystem(s). This mechanism also operates in PBSs from Acaryochloris marina MBIC11017. We then generated multichromic complexes harvesting light over nearly the complete visible range via the replacement of phycocyanobilin chromophores at sites α84 and ß153 of phycocyanins by phycoerythrobilin and/or phycourobilin. The results demonstrate the rational design of biliprotein-based light-harvesting elements by engineering CpcL and phycocyanins, which broadens the light-harvesting range and accordingly improves the light-harvesting capacity and may be potentially applied in solar energy harvesting.


Subject(s)
Bacterial Proteins , Phycobilins , Phycobilisomes , Phycocyanin , Synechocystis , Phycobilisomes/metabolism , Phycocyanin/metabolism , Phycocyanin/chemistry , Synechocystis/metabolism , Bacterial Proteins/metabolism , Phycobilins/metabolism , Phycobilins/chemistry , Cyanobacteria/metabolism
8.
Plant J ; 117(4): 1165-1178, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37983611

ABSTRACT

In the cyanobacterium Synechocystis sp. PCC 6803, translation factor EF-Tu is inactivated by reactive oxygen species (ROS) via oxidation of Cys82 and the oxidation of EF-Tu enhances the inhibition of the repair of photosystem II (PSII) by suppressing protein synthesis. In our present study, we generated transformants of Synechocystis that overexpressed a mutated form of EF-Tu, designated EF-Tu (C82S), in which Cys82 had been replaced by a Ser residue, and ROS-scavenging enzymes individually or together. Expression of EF-Tu (C82S) alone in Synechocystis enhanced the repair of PSII under strong light, with the resultant mitigation of PSII photoinhibition, but it stimulated the production of ROS. However, overexpression of superoxide dismutase and catalase, together with the expression of EF-Tu (C82S), lowered intracellular levels of ROS and enhanced the repair of PSII more significantly under strong light, via facilitation of the synthesis de novo of the D1 protein. By contrast, the activity of photosystem I was hardly affected in wild-type cells and in all the lines of transformed cells under the same strong-light conditions. Furthermore, transformed cells that overexpressed EF-Tu (C82S), superoxide dismutase, and catalase were able to survive longer under stronger light than wild-type cells. Thus, the reinforced capacity for both protein synthesis and ROS scavenging allowed both photosynthesis and cell proliferation to tolerate strong light.


Subject(s)
Antioxidants , Synechocystis , Antioxidants/metabolism , Catalase/genetics , Catalase/metabolism , Reactive Oxygen Species/metabolism , Light , Synechocystis/metabolism , Photosystem II Protein Complex/metabolism , Peptide Elongation Factor Tu/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
9.
Plant Physiol ; 194(3): 1383-1396, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-37972281

ABSTRACT

Photosynthetic organisms harvest light using pigment-protein complexes. In cyanobacteria, these are water-soluble antennae known as phycobilisomes (PBSs). The light absorbed by PBS is transferred to the photosystems in the thylakoid membrane to drive photosynthesis. The energy transfer between these complexes implies that protein-protein interactions allow the association of PBS with the photosystems. However, the specific proteins involved in the interaction of PBS with the photosystems are not fully characterized. Here, we show in Synechocystis sp. PCC 6803 that the recently discovered PBS linker protein ApcG (sll1873) interacts specifically with PSII through its N-terminal region. Growth of cyanobacteria is impaired in apcG deletion strains under light-limiting conditions. Furthermore, complementation of these strains using a phospho-mimicking version of ApcG causes reduced growth under normal growth conditions. Interestingly, the interaction of ApcG with PSII is affected when a phospho-mimicking version of ApcG is used, targeting the positively charged residues interacting with the thylakoid membrane, suggesting a regulatory role mediated by phosphorylation of ApcG. Low-temperature fluorescence measurements showed decreased PSI fluorescence in apcG deletion and complementation strains. The PSI fluorescence was the lowest in the phospho-mimicking complementation strain, while the pull-down experiment showed no interaction of ApcG with PSI under any tested condition. Our results highlight the importance of ApcG for selectively directing energy harvested by the PBS and imply that the phosphorylation status of ApcG plays a role in regulating energy transfer from PSII to PSI.


Subject(s)
Synechocystis , Synechocystis/metabolism , Phycobilisomes/metabolism , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Energy Transfer/physiology
10.
Plant Physiol ; 194(2): 945-957, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-37936332

ABSTRACT

Cyanobacteria have been promoted as a biomass resource that can contribute to carbon neutrality. Synechocystis sp. PCC 6803 is a model cyanobacterium that is widely used in various studies. NADP+ and NAD+ are electron receptors involved in energy metabolism. The NADP+/NAD+ ratio in Synechocystis sp. PCC 6803 is markedly higher than that in the heterotrophic bacterium Escherichia coli. In Synechocystis sp. PCC 6803, NADP+ primarily functions as an electron receptor during the light reaction of photosynthesis, and NADP+ biosynthesis is essential for photoautotrophic growth. Generally, the regulatory enzyme of NADP+ biosynthesis is NAD kinase, which catalyzes the phosphorylation of NAD+. However, a previous study suggested that the regulation of another enzyme contributes to NADP+ biosynthesis in Synechocystis sp. PCC 6803 under photoautotrophic conditions. L-Aspartate oxidase is the first enzyme in NAD(P)+ biosynthesis. In this study, we biochemically characterized Synechocystis sp. PCC 6803 L-aspartate oxidase and determined the phenotype of a Synechocystis sp. PCC 6803 mutant overexpressing L-aspartate oxidase. The catalytic efficiency of L-aspartate oxidase from Synechocystis sp. PCC 6803 was lower than that of L-aspartate oxidases and NAD kinases from other organisms. L-Aspartate oxidase activity was affected by different metabolites such as NADP+ and ATP. The L-aspartate oxidase-overexpressing strain grew faster than the wild-type strain under photoautotrophic conditions. The L-aspartate oxidase-overexpressing strain accumulated NADP+ under photoautotrophic conditions. These results indicate that the regulation of L-aspartate oxidase contributes to NADP+ biosynthesis in Synechocystis sp. PCC 6803 under photoautotrophic conditions. These findings provide insight into the regulatory mechanism of cyanobacterial NADP+ biosynthesis.


Subject(s)
Synechocystis , Synechocystis/metabolism , NADP/metabolism , NAD/metabolism , Aspartic Acid/metabolism , Oxidoreductases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
11.
Plant Physiol ; 196(1): 621-633, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38833609

ABSTRACT

Photomixotrophic growth A (PmgA) is a pleiotropic regulator essential for growth under photomixotrophic and prolonged high-light (HL) conditions in the cyanobacterium Synechocystis sp. PCC 6803. The overall similarity with the antisigma factor of the bacterial partner-switching system indicates that PmgA exerts a regulatory function via phosphorylation of its target proteins. In this study, we performed an in vitro phosphorylation assay and protein-protein interaction analysis and found that PmgA interacts with 4 antisigma antagonist homologs, Ssr1600, Slr1856, Slr1859, and Slr1912, but specifically phosphorylates Ssr1600. Phenotypic analyses using the set of gene disruption and overexpression strains of pmgA and ssr1600 revealed that phosphorylation by PmgA is essential for the accumulation of Ssr1600 protein in vivo. The ssr1600-disrupted mutant showed similar phenotypes as those previously reported for the pmgA-disrupted mutant, namely, no obvious phenotype just after the shift to HL, but higher chlorophyll content, 5-aminolevulinic acid synthesis activity, and psaAB transcript levels than those in the wild type after 6 h. These findings indicate that the phosphorylated form of Ssr1600 works as the output of the partner-switching system to coordinately repress chlorophyll biosynthesis and accumulation of photosystem I during HL acclimation.


Subject(s)
Acclimatization , Bacterial Proteins , Light , Synechocystis , Synechocystis/genetics , Synechocystis/metabolism , Synechocystis/physiology , Synechocystis/radiation effects , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Phosphorylation , Acclimatization/genetics , Gene Expression Regulation, Bacterial , Chlorophyll/metabolism
12.
Plant Physiol ; 195(2): 1491-1505, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38377468

ABSTRACT

Carbon-flow-regulator A (CfrA) adapts carbon flux to nitrogen conditions in nondiazotrophic cyanobacteria. Under nitrogen deficiency, CfrA leads to the storage of excess carbon, which cannot combine with nitrogen, mainly as glycogen. cfrA overexpression from the arsenite-inducible, nitrogen-independent ParsB promoter allows analysis of the metabolic effects of CfrA accumulation. Considering that the main consequence of cfrA overexpression is glycogen accumulation, we examined carbon distribution in response to cfrA expression in Synechocystis sp. PCC 6803 strains impaired in synthesizing this polymer. We carried out a comparative phenotypic analysis to evaluate cfrA overexpression in the wild-type strain and in a mutant of ADP-glucose pyrophosphorylase (ΔglgC), which is unable to synthesize glycogen. The accumulation of CfrA in the wild-type background caused a photosynthetic readjustment although growth was not affected. However, in a ΔglgC strain, growth decreased depending on CfrA accumulation and photosynthesis was severely affected. An elemental analysis of the H, C, and N content of cells revealed that cfrA expression in the wild-type caused an increase in the C/N ratio, due to decreased nitrogen assimilation. Metabolomic study indicated that these cells store sucrose and glycosylglycerol, in addition to the previously described glycogen accumulation. However, cells deficient in glycogen synthesis accumulated large amounts of Calvin-Benson cycle intermediates as cfrA was expressed. These cells also showed increased levels of some amino acids, mainly alanine, serine, valine, isoleucine, and leucine. The findings suggest that by controlling cfrA expression, in different conditions and strains, we could change the distribution of fixed carbon, with potential biotechnological benefits.


Subject(s)
Bacterial Proteins , Carbon , Nitrogen , Photosynthesis , Synechocystis , Carbon/metabolism , Synechocystis/metabolism , Synechocystis/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Nitrogen/metabolism , Glycogen/metabolism , Gene Expression Regulation, Bacterial
13.
Plant Physiol ; 196(1): 397-408, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38850059

ABSTRACT

Alka(e)nes are produced by many living organisms and exhibit diverse physiological roles, reflecting a high functional versatility. Alka(e)nes serve as waterproof wax in plants, communicating pheromones for insects, and microbial signaling molecules in some bacteria. Although alka(e)nes have been found in cyanobacteria and algal chloroplasts, their importance for photosynthetic membranes has remained elusive. In this study, we investigated the consequences of the absence of alka(e)nes on membrane lipid composition and photosynthesis using the cyanobacterium Synechocystis PCC6803 as a model organism. By following the dynamics of membrane lipids and the photosynthetic performance in strains defected and altered in alka(e)ne biosynthesis, we show that drastic changes in the glycerolipid contents occur in the absence of alka(e)nes, including a decrease in the membrane carotenoid content, a decrease in some digalactosyldiacylglycerol (DGDG) species and a parallel increase in monogalactosyldiacylglycerol (MGDG) species. These changes are associated with a higher susceptibility of photosynthesis and growth to high light in alka(e)ne-deficient strains. All these phenotypes are reversed by expressing an algal photoenzyme producing alka(e)nes from fatty acids. Therefore, alkenes, despite their low abundance, are an essential component of the lipid composition of membranes. The profound remodeling of lipid composition that results from their absence suggests that they play an important role in one or more membrane properties in cyanobacteria. Moreover, the lipid compensatory mechanism observed is not sufficient to restore normal functioning of the photosynthetic membranes, particularly under high-light intensity. We conclude that alka(e)nes play a crucial role in maintaining the lipid homeostasis of thylakoid membranes, thereby contributing to the proper functioning of photosynthesis, particularly under elevated light intensities.


Subject(s)
Carotenoids , Glycolipids , Membrane Lipids , Photosynthesis , Synechocystis , Synechocystis/metabolism , Synechocystis/growth & development , Carotenoids/metabolism , Glycolipids/metabolism , Membrane Lipids/metabolism , Cell Membrane/metabolism , Galactolipids/metabolism , Waxes/metabolism
14.
Plant Physiol ; 195(4): 2921-2936, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38386687

ABSTRACT

Thioredoxins play an essential role in regulating enzyme activity in response to environmental changes, especially in photosynthetic organisms. They are crucial for metabolic regulation in cyanobacteria, but the key redox-regulated central processes remain to be determined. Physiological, metabolic, and transcriptomic characterization of a conditional mutant of the essential Synechocystis sp. PCC 6803 thioredoxin trxA gene (STXA2) revealed that decreased TrxA levels alter cell morphology and induce a dormant-like state. Furthermore, TrxA depletion in the STXA2 strain inhibited protein synthesis and led to changes in amino acid pools and nitrogen/carbon reserve polymers, accompanied by oxidation of the elongation factor-Tu. Transcriptomic analysis of TrxA depletion in STXA2 revealed a robust transcriptional response. Downregulated genes formed a large cluster directly related to photosynthesis, ATP synthesis, and CO2 fixation. In contrast, upregulated genes were grouped into different clusters related to respiratory electron transport, carotenoid biosynthesis, amino acid metabolism, and protein degradation, among others. These findings highlight the complex regulatory mechanisms that govern cyanobacterial metabolism, where TrxA acts as a critical regulator that orchestrates the transition from anabolic to maintenance metabolism and regulates carbon and nitrogen balance.


Subject(s)
Carbon , Nitrogen , Synechocystis , Nitrogen/metabolism , Carbon/metabolism , Synechocystis/metabolism , Synechocystis/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Thioredoxins/metabolism , Thioredoxins/genetics , Protein Biosynthesis , Gene Expression Regulation, Bacterial , Photosynthesis/genetics , Cyanobacteria/metabolism , Cyanobacteria/genetics
15.
PLoS Comput Biol ; 20(8): e1012280, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39102434

ABSTRACT

The metabolism of phototrophic cyanobacteria is an integral part of global biogeochemical cycles, and the capability of cyanobacteria to assimilate atmospheric CO2 into organic carbon has manifold potential applications for a sustainable biotechnology. To elucidate the properties of cyanobacterial metabolism and growth, computational reconstructions of genome-scale metabolic networks play an increasingly important role. Here, we present an updated reconstruction of the metabolic network of the cyanobacterium Synechocystis sp. PCC 6803 and its quantitative evaluation using flux balance analysis (FBA). To overcome limitations of conventional FBA, and to allow for the integration of experimental analyses, we develop a novel approach to describe light absorption and light utilization within the framework of FBA. Our approach incorporates photoinhibition and a variable quantum yield into the constraint-based description of light-limited phototrophic growth. We show that the resulting model is capable of predicting quantitative properties of cyanobacterial growth, including photosynthetic oxygen evolution and the ATP/NADPH ratio required for growth and cellular maintenance. Our approach retains the computational and conceptual simplicity of FBA and is readily applicable to other phototrophic microorganisms.


Subject(s)
Light , Models, Biological , Photosynthesis , Synechocystis , Synechocystis/metabolism , Synechocystis/growth & development , Photosynthesis/physiology , Metabolic Networks and Pathways , Metabolic Flux Analysis , Computational Biology , Cyanobacteria/metabolism , Cyanobacteria/growth & development , Cyanobacteria/physiology , Computer Simulation
16.
Mol Cell Proteomics ; 22(7): 100582, 2023 07.
Article in English | MEDLINE | ID: mdl-37225018

ABSTRACT

Carbon metabolism is central to photosynthetic organisms and involves the coordinated operation and regulation of numerous proteins. In cyanobacteria, proteins involved in carbon metabolism are regulated by multiple regulators including the RNA polymerase sigma factor SigE, the histidine kinases Hik8, Hik31 and its plasmid-borne paralog Slr6041, and the response regulator Rre37. To understand the specificity and the cross-talk of such regulations, we simultaneously and quantitatively compared the proteomes of the gene knockout mutants for the regulators. A number of proteins showing differential expression in one or more mutants were identified, including four proteins that are unanimously upregulated or downregulated in all five mutants. These represent the important nodes of the intricate and elegant regulatory network for carbon metabolism. Moreover, serine phosphorylation of PII, a key signaling protein sensing and regulating in vivo carbon/nitrogen (C/N) homeostasis through reversible phosphorylation, is massively increased with a concomitant significant decrease in glycogen content only in the hik8-knockout mutant, which also displays impaired dark viability. An unphosphorylatable PII S49A substitution restored the glycogen content and rescued the dark viability of the mutant. Together, our study not only establishes the quantitative relationship between the targets and the corresponding regulators and elucidated their specificity and cross-talk but also unveils that Hik8 regulates glycogen accumulation through negative regulation of PII phosphorylation, providing the first line of evidence that links the two-component system with PII-mediated signal transduction and implicates them in the regulation of carbon metabolism.


Subject(s)
Carbon , Synechocystis , Phosphorylation , Carbon/metabolism , Proteomics , Synechocystis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Glycogen/metabolism , Nitrogen , Gene Expression Regulation, Bacterial
17.
Mol Cell Proteomics ; 22(11): 100656, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37797745

ABSTRACT

Protein phosphorylation via serine/threonine protein kinases (Spk) is a widespread mechanism to adjust cellular processes toward changing environmental conditions. To study their role(s) in cyanobacteria, we investigated a collection of 11 completely segregated spk mutants among the 12 annotated Spks in the model cyanobacterium Synechocystis sp. PCC 6803. Screening of the mutant collection revealed that especially the mutant defective in SpkB encoded by slr1697 showed clear deviations regarding carbon metabolism, that is, reduced growth rates at low CO2 or in the presence of glucose, and different glycogen accumulation patterns compared to WT. Alterations in the proteome of ΔspkB indicated changes of the cell surface but also metabolic functions. A phospho-proteome analysis revealed the absence of any phosphorylation in two proteins, while decreased phosphorylation of the carboxysome-associated protein CcmM and increased phosphorylation of the allophycocyanin alpha subunit ApcA was detected in ΔspkB. Furthermore, the regulatory PII protein appeared less phosphorylated in the mutant compared to WT, which was verified in Western blot experiments, indicating a clearly delayed PII phosphorylation in cells shifted from nitrate-containing to nitrate-free medium. Our results indicate that SpkB is an important regulator in Synechocystis that is involved in phosphorylation of the PII protein and additional proteins.


Subject(s)
Protein Serine-Threonine Kinases , Synechocystis , Protein Serine-Threonine Kinases/metabolism , Synechocystis/metabolism , Proteome/metabolism , Mutation , Acclimatization , Threonine/metabolism , Serine/metabolism , Bacterial Proteins/metabolism
18.
Mol Cell Proteomics ; 22(4): 100521, 2023 04.
Article in English | MEDLINE | ID: mdl-36858286

ABSTRACT

Lysine methylation is a conserved and dynamic regulatory posttranslational modification performed by lysine methyltransferases (KMTs). KMTs catalyze the transfer of mono-, di-, or tri-methyl groups to substrate proteins and play a critical regulatory role in all domains of life. To date, only one KMT has been identified in cyanobacteria. Here, we tested all of the predicted KMTs in the cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis), and we biochemically characterized sll1526 that we termed cKMT1 (cyanobacterial lysine methyltransferase 1) and determined that it can catalyze lysine methylation both in vivo and in vitro. Loss of cKMT1 alters photosynthetic electron transfer in Synechocystis. We analyzed cKMT1-regulated methylation sites in Synechocystis using a timsTOF Pro instrument. We identified 305 class I lysine methylation sites within 232 proteins, and of these, 80 methylation sites in 58 proteins were hypomethylated in ΔcKMT1 cells. We further demonstrated that cKMT1 could methylate ferredoxin-NADP(+) oxidoreductase (FNR) and its potential sites of action on FNR were identified. Amino acid residues H118 and Y219 were identified as key residues in the putative active site of cKMT1 as indicated by structure simulation, site-directed mutagenesis, and KMT activity measurement. Using mutations that mimic the unmethylated forms of FNR, we demonstrated that the inability to methylate K139 residues results in a decrease in the redox activity of FNR and affects energy transfer in Synechocystis. Together, our study identified a new KMT in Synechocystis and elucidated a methylation-mediated molecular mechanism catalyzed by cKMT1 for the regulation of energy transfer in cyanobacteria.


Subject(s)
Cyanobacteria , Ferredoxins , Synechocystis , Energy Transfer , Ferredoxin-NADP Reductase/chemistry , Ferredoxin-NADP Reductase/genetics , Ferredoxin-NADP Reductase/metabolism , Ferredoxins/chemistry , Ferredoxins/metabolism , Lysine , Methyltransferases/metabolism , NADP/metabolism , Synechocystis/metabolism , Cyanobacteria/metabolism
19.
J Bacteriol ; 206(5): e0045423, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38695523

ABSTRACT

The stoichiometry of photosystem II (PSII) and photosystem I (PSI) varies between photoautotrophic organisms. The cyanobacterium Synechocystis sp. PCC 6803 maintains two- to fivefold more PSI than PSII reaction center complexes, and we sought to modify this stoichiometry by changing the promoter region of the psaAB operon. We thus generated mutants with varied psaAB expression, ranging from ~3% to almost 200% of the wild-type transcript level, but all showing a reduction in PSI levels, relative to wild type, suggesting a role of the psaAB promoter region in translational regulation. Mutants with 25%-70% of wild-type PSI levels were photoautotrophic, with whole-chain oxygen evolution rates on a per-cell basis comparable to that of wild type. In contrast, mutant strains with <10% of the wild-type level of PSI were obligate photoheterotrophs. Variable fluorescence yields of all mutants were much higher than those of wild type, indicating that the PSI content is localized differently than in wild type, with less transfer of PSII-absorbed energy to PSI. Strains with less PSI saturate at a higher light intensity, enhancing productivity at higher light intensities. This is similar to what is found in mutants with reduced antennae. With 3-(3,4-dichlorophenyl)-1,1-dimethylurea present, P700+ re-reduction kinetics in the mutants were slower than in wild type, consistent with the notion that there is less cyclic electron transport if less PSI is present. Overall, strains with a reduction in PSI content displayed surprisingly vigorous growth and linear electron transport. IMPORTANCE: Consequences of reduction in photosystem I content were investigated in the cyanobacterium Synechocystis sp. PCC 6803 where photosystem I far exceeds the number of photosystem II complexes. Strains with less photosystem I displayed less cyclic electron transport, grew more slowly at lower light intensity and needed more light for saturation but were surprisingly normal in their whole-chain electron transport rates, implying that a significant fraction of photosystem I is dispensable for linear electron transport in cyanobacteria. These strains with reduced photosystem I levels may have biotechnological relevance as they grow well at higher light intensities.


Subject(s)
Gene Expression Regulation, Bacterial , Photosystem I Protein Complex , Photosystem II Protein Complex , Synechocystis , Photosystem I Protein Complex/metabolism , Photosystem I Protein Complex/genetics , Synechocystis/genetics , Synechocystis/metabolism , Synechocystis/growth & development , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Mutation , Photosynthesis , Electron Transport , Light , Promoter Regions, Genetic , Oxygen/metabolism
20.
J Proteome Res ; 23(4): 1174-1187, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38427982

ABSTRACT

Protein homeostasis is essential for cyanobacteria to maintain proper cellular function under adverse and fluctuating conditions. The AAA+ superfamily of proteolytic complexes in cyanobacteria plays a critical role in this process, including ClpXP, which comprises a hexameric ATPase ClpX and a tetradecameric peptidase ClpP. Despite the physiological effects of ClpX on growth and photosynthesis, its potential substrates and underlying mechanisms in cyanobacteria remain unknown. In this study, we employed a streptavidin-biotin affinity pull-down assay coupled with label-free proteome quantitation to analyze the interactome of ClpX in the model cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis). We identified 503 proteins as potential ClpX-binding targets, many of which had novel interactions. These ClpX-binding targets were found to be involved in various biological processes, with particular enrichment in metabolic processes and photosynthesis. Using protein-protein docking, GST pull-down, and biolayer interferometry assays, we confirmed the direct association of ClpX with the photosynthetic proteins, ferredoxin-NADP+ oxidoreductase (FNR) and phycocyanin subunit (CpcA). Subsequent functional investigations revealed that ClpX participates in the maintenance of FNR homeostasis and functionality in Synechocystis grown under different light conditions. Overall, our study provides a comprehensive understanding of the extensive functions regulated by ClpX in cyanobacteria to maintain protein homeostasis and adapt to environmental challenges.


Subject(s)
Photosynthesis , Synechocystis , Photosynthesis/genetics , Synechocystis/genetics , Synechocystis/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Phycocyanin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL